

# NIH Public Access

**Author Manuscript**

*Bioorg Med Chem Lett*. Author manuscript; available in PMC 2010 September 1.

Published in final edited form as:

*Bioorg Med Chem Lett*. 2009 September 1; 19(17): 5176–5181. doi:10.1016/j.bmcl.2009.07.025.

# **Semi-Rigid Tripeptide Agonists of Melanocortin Receptors**

**Andrew R. Ruwe**a, **Leonid Koikov**b,\* , **Zalfa Abdel-Malek**b, **Carrie Haskell-Luevano**d, **Marvin L. Dirain**d, **Federico Portillo**d, **Zhimin Xiang**d, **Matt Wortman**c, and **James J. Knittel**a,\*

<sup>a</sup> University of Cincinnati: James L. Winkle College of Pharmacy

<sup>b</sup> College of Medicine, Department of Dermatology, Cincinnati, OH 45267, USA

c Genome Research Institute, Cincinnati, OH 45267, USA

<sup>d</sup> University of Florida, College of Pharmacy, Gainesville FL 32610, USA

# **Abstract**

A series of 30 RCO-**HfR**-NH2 derivatives show preference for the mouse MC1R *vs*. MC3-5Rs. *trans*-4-HOC6H4CH=CHCO-**HfR**-NH2 (**13**) [EC50 (nM): MC1R 83, MC3R 20500, MC4R 18130 and MC5R 935; ratio 1:246:217:11] is 11 times more potent than the lead compound LK-394 Ph (CH<sub>2</sub>)<sub>3</sub>CO-HfR-NH<sub>2</sub> (2) and only 11 times less potent than the native tridecapeptide α-MSH at mMC1R. Differences in conformations of **2** and **13** are discussed.

#### **Keywords**

Melanocortin receptors; Melanocortin agonists; N-capping. Peptidomimetics; Conformational analysis; Molecular modeling

> Melanocortin receptors (MCRs) are found in different tissues, have a plethora of physiological functions<sup>1</sup> and are a target of intensive pharmacological research.<sup>2</sup> Five MCRs (MC1R – MC5R) have been cloned. From the very onset of research in this area, the role of melanocortins in skin pigmentation has been firmly established and shown to be the result of activation of the MC1R. α-, β- and γ-Melanocyte stimulating hormones (MSH), the natural agonists of MC1, MC3, MC4 and MC5Rs, sharing the common melanocortin core sequence His<sup>6</sup>-Phe<sup>7</sup>-Arg<sup>8</sup>- $\text{Trp}^9$  (HFRW), and their synthetic analogs (NDP-MSH, MT-II) with a similar His<sup>6</sup>-D-Phe<sup>7</sup>-Arg<sup>8</sup>-Trp<sup>9</sup> (HfRW) core are very potent but non-selective. Although many peptide and nonpeptide ligands of MCRs have been reported, pharmacological differentiation of properties of MC1, MC3, MC4 and MC5Rs is still a major challenge.<sup>1,2</sup>

| $\alpha$ -MSH | Ac-Ser-Tyr-Ser-Met-Glu- $His^6-Phe^7-Arg^8-Trp^9-Gly-Lys-Pro-Val-NH_2$   |
|---------------|--------------------------------------------------------------------------|
| NDP-MSH       | Ac-Ser-Tyr-Ser-Nle-Glu-His-D-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH <sub>2</sub> |
| $LK-184(1)$   | $Ph(CH_2)_2CO$ -His-D-Phe-Arg-Trp-NH <sub>2</sub>                        |
| $LK-394(2)$   | $Ph(CH_2)_2CO$ -His-D-Phe-Arg-NH <sub>2</sub>                            |
|               |                                                                          |

<sup>\*</sup>Corresponding authors. Fax: 1-513-558-5061, lkoikov@hotmail.com.

Current address of JJK: Western New England College, School of Pharmacy, Springfield, MA 01119 USA; fax 413-796-2266, e-mail: jknittel@wnec.edu.

**Publisher's Disclaimer:** This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Recently, we have described a superpotent hMC1R agonist LK-184 Ph(CH<sub>2</sub>)<sub>3</sub>CO-**HfR**W-NH<sub>2</sub> (1) with an EC<sub>50</sub> of 0.01 nM and *ca*. 500-fold selectivity for hMC1R compared to hMC3 and hMC4Rs.<sup>3a</sup> Truncation of 1 to Ph(CH<sub>2</sub>)<sub>3</sub>CO-HfR-NH<sub>2</sub> gave a full hMC1 agonist LK-394 (2) with an  $EC_{50}$  of 5 nM and weak partial agonism at hMC3/4Rs.<sup>3b</sup> We have also shown that tetrapeptide 1 was more potent than  $\alpha$ -MSH in repairing DNA damage resulting from exposure to solar UV radiation, in addition to stimulating pigmentation that confers further photoprotection and prevents mutagenesis.<sup>4a</sup> Such double-headed action can be used as an effective prevention strategy for the most fatal skin cancer - melanoma.<sup>4b</sup> The goal of this work was to explore modifications of the N-terminal end-capping group on the HfR-NH<sub>2</sub> core sequence in order to increase potency and/or selectivity at MC1R compared to the lead compound **2** and provide insight into the interaction of short peptides with MCRs.

Our previous studies on the tetrapeptides RCO-**HfR**W-NH2 suggested that an aromatic πbinding site in the hMC1R conferred selectivity of the N-capped peptides for this receptor over other hMCRs.<sup>3</sup> Thus, all tripeptides in this study contained an aromatic ring connected to the C=O group *via* C<sub>2</sub> (3–10, 12–16 and 18–25), C<sub>3</sub> (26–28) or C<sub>4</sub> (29–31) spacer, a cyclic C<sub>2</sub> mimic (**11** and **17**) or directly (**32**) (Table 1). For mapping the putative  $\pi$ -binding site, cinnamic derivatives  $3-9$ ,  $12$ ,  $13$ ,  $15$ ,  $16$ ,  $18$ ,  $20$  and  $23-25$  provided a shorter and more rigid  $C_2$  link compared to the freely rotating saturated  $C_3$  chain in 2, while the substituents in their phenyl rings provided an extended conjugated  $\pi$  system overlapping the conformational space with the π system of the phenyl (shown below) in lead compound **2**. In addition, pyridine and imidazole derivatives 21 and 22 with saturated  $C_2$  chain served as flexible probes for potential basic or H-bonding sites at hMC1R near the N-terminal binding region. The N-capping groups with  $\pi$ -conjugated diene system (29 and 30) and the corresponding saturated  $C_4$  analog 31 were chosen to explore the space beyond  $Ph(CH_2)$ <sub>3</sub> in **2**.



As seen in Table 1, the selectivity profile for reference compounds **1** and **2** differs from that previously reported for hMCRs.<sup>3</sup> Tetrapeptide 1 has an  $EC_{50}$  in the nanomolar range at mMC1R, MC4R and MC5R (MC1/3/4/5Rs ratio 1:16:0.3:0.2), while its tripeptide analog **2** retains mMC1R selectivity (MC1/3/4/5Rs ratio 1:46:16:12) albeit with 590-fold loss in potency compared to **1**. As we expected on the basis of our data for **1** and **2** 3b and literature data on the melanocortin core sequence<sup>6</sup>, removal of Trp<sup>9</sup> from HfRW-NH<sub>2</sub> resulted in very low potency at mMC3R-MC5R. This desirable effect is most pronounced at mMC3R, where 2/3 of the synthesized tripeptides show no activity. Apparently, the binding site of mMC3R is larger than that of mMC1R, MC4R and MC5Rs and the Ph-C-C-group is too short to interact with the receptor. The elongation of the end-capping group (see the alignment above) due to aromatic substituents (**4**, **7**, **8**, **11–13** and **26**) or spacer extensions (**29–31** *vs*. **18–19**) elicits a weak mMC3R response. This SAR is not straightforward and polar groups (**5**, **6**, **9**, **10**, **14–19, 26** and **28**) cancel the response.

In accordance with our initial reasoning that restrictions in spacer flexibility on the tripeptide core lacking tertiary structure might produce a conformation active at MC1R, we explored an

unsaturated series consisting of **3–9**, **12**, **13**, **15–18**, **20** and **23–26**. The direct unsaturated analog **26** of the parent tripeptide **2** was equipotent to **2** at mMC1R but showed some loss of selectivity (MC1/3/4/5Rs ratio 1:24:5:3). At the same time, the simple cinnamic derivative **3** was more promising - its potency at mMC1R was close to that of **2** and it showed much better selectivity (MC1/4/5Rs 1:44:25 and no activity at mMC3R). Substitution on the cinnamoyl aromatic ring revealed considerable tolerance of the mMC1R for structural changes. *meta*-Substitution (**7– 9**) was favorable with a 2- to 3-fold increase in potency, while the *para*-OH derivative **13** was the most potent  $(11x)$  and selective  $(MC1/3/4/5Rs 1:246:217:11)$ . The *p*-OH group was essential for activity since methylation (**15**) or substitution by the isosteric and isoelectronic Cl (**12**) resulted in a substantial drop in potency (Table 1).

In an attempt to pinpoint the location of the OH binding site in mMC1R, we synthesized free rotating analogs (**14** and **10**) of semi-rigid **13** and **9,** as well as their rigid cyclic analogs (**17** and **11**). All of them were less potent than **13**, *i.e*. the cinnamic scaffold provided an optimal positioning of the polar H-bonding group in the aromatic binding region of mMC1R.

To determine factors contributing to high potency of **13**, we did a conformational search on **2, 13**, **11** and **17** using the Monte Carlo Multiple Minimum (MCMM) mixed torsional/lowfrequency sampling and the OPLS\_2005 force field in water as implemented in Macromodel<sup>7</sup> . The results show that although the number of conformers for **2** (108 within 3 kcal/mol, 293 within 5 kcal/mol) and **13** (55 within 3 kcal/mol, 221 within 5 kcal/mol) does not vary drastically, their 3D distribution is totally different (Figure 1).

While **2** has no preferred conformation (Figure 1a), all 221 conformers of **13** are very well aligned (Figure 1b). Even though the *p*-OH does not contribute to any intramolecular bonds, the semi-rigid cinnamic tail influences the rest of otherwise flexible tripeptide core placing the polar basic Arg and His on the same side of the molecule opposite to the non-polar aromatic D-Phe and cinnamoyl. Together with the existence of **13** in multiple but similar conformations that can morph into the biologically active conformation upon binding, such "pre-alignment" is beneficial for initial recognition of the ligand by the mMC1R that contains known compact acidic (Glu-94, Asp-117 and 121) and aromatic hydrophobic (Phe-175, 179, 196, and 257) binding pockets.<sup>8</sup> The results of the conformational search for the cyclic analog **17** (not shown) are similar to **13,** which demonstrates that its lower potency relative to **13** is related to misplacement of HO in the active site due to an increase in girth or rigidity of the end-capping group. It is interesting to note that the drop in potency of **17** is observed on all mMCRs subtypes with the total loss of activity at mMC3 and mMC4Rs.

Thus, the use of semi-rigid N-capping groups with the  $C_2$  spacer allows for a "soft" control of the peptide conformation without restricting dihedral angles of the backbone or side chains favorable for interaction with an active site. Application of this principle to a very flexible tripeptide **2** resulted in the compound **13** that was more selective than the tridecapeptide α-MSH and only 11 times less potent at mMC1R. Many of the N-capped HfR-NH<sub>2</sub> derivatives show low potency or are inactive at mMC3 and/or MC4Rs (Table 1) and this could be relevant for future design of low molecular weight synthetic drugs acting only on targeted MCRs subtypes.<sup>10</sup>

#### **Acknowledgments**

This work was funded by grants RO1CA114095 (Z.A-M), RO1DK057080 (C.H-L) and Skin Cancer Foundation Henry W. Menn Memorial Award (JJK).

### **References and Notes**

- 1. The Melanocortin Receptors; Cone RD. Humana. Totowa2000Abdel-Malek Z. Cell Molec Life Sci 2001;58:1420.Understanding G Protein-coupled Receptors and their Role in the CNS (The Molecular and Cellular Neurobiology Series); Pangalos M, Davies CH. Oxford University Press2002Garcia-Borron JC, Sanchez-Laorden BL, Jimenez-Cervantes C. Pigment Cell Res 2005;18:393. [PubMed: 16280005]Wikberg JES, Mutulis F. Nature Rev Drug Disc 2008;7:307.
- 2. Todorovic A, Haskell-Luevano C. Peptides 2005;26:2026. [PubMed: 16051395]Hadley ME, Hruby VJ, Jiang J, Sharma SD, Fink JL, Haskell-Luevano C, Bentley DL, Al-Obeidi F, Sawyer TK. Pigment Cell Res 2006;9:213. [PubMed: 9014208]Insights into Receptor Function and New Drug Development Targets (Research and Perspectives in Endocrine Interactions); Conn M, Kordon C, Christen Y. Springer2006Ligand Design for G Protein-coupled Receptors (Methods and Principles in Medicinal Chemistry); Rognan D, Mannhold R, Kubinyi H, Folkers G. Wiley-VCH2006Current Top Med Chem 2007;7No 11 – a special issue on Melanocortin Receptor Ligands and Their Potential Therapeutic Uses; Nozawa D, Chaki S, Nakazato A. Expert Opinion Ther Patents 2008;18:403.
- 3. (a) Koikov LN, Knittel JJ, Solinsky MG, Cross-Doersen D, Ebetino FH. Bioorg Med Chem Lett 2003;13:2647. [PubMed: 12873485] (b) 2004;14:3997.ibid
- 4. (a) Abdel-Malek ZA, Kadekaro AL, Kavanagh RJ, Todorovic A, Koikov LN, McNulty JC, Pilgrim JJ, Jackson PJ, Millhauser GL, Schwenberger S, Babcock J, Haskell-Luevano C, Knittel JJ. The FASEB Journal 2006;20:1561. [PubMed: 16723376]Abdel-Malek ZA, Kavanagh RJ, Koikov LN, Todorovic A, Haskell-Luevano C, McNulty JC, Jackson P, Millhauser G, Knittel JJ. Pigment Cell Res 2004;17:449. (b) Hearing VJ, Rouzaud F. Peptides 2005;26:1858. [PubMed: 16005546]Abdel-Malek ZA, Knittel JJ, Kadekaro AL, Starner R, Swope VB. Photochem Photobiol 2008;84:501. [PubMed: 18282187]
- 5. Haskell-Luevano C, Holder JR, Monck EK, Bauzo RM. J Med Chem 2001;44:2247. [PubMed: 11405661]
- 6. Hruby VJ, Wilkes BC, Hadley ME, Al-Obeidi F, Sawyer TK, Staples DJ, DeVaux A, Dym O, Castrucci AM, Hintz MF, Riehm JP, Rao KR. J Med Chem 1987;30:2126. [PubMed: 2822931]Haskell-Luevano C, Sawyer TK, Hendrata S, North C, Panahinia L, Stum M, Staples DJ, Castrucci AM, Hadley ME, Hruby VJ. Peptides 1996;17:995. [PubMed: 8899819]Sahm UG, Oliver GWJ, Branco SK, Moss SH, Pouton CW. Peptides 1994;15:1297. [PubMed: 7854984]Sahm UG, Quarawi MA, Oliver GWJ, Ahmed ARH, Moss SH, Pouton CW. FEBS Lett 1994;350:29. [PubMed: 8062918]Bednarek MA, Silva MV, Arison B, MacNeil T, Kalyani RN, Huang RRC, Weinberg DH. Peptides 1999;20:401. [PubMed: 10447101]Bednarek MA, MacNeil T, Kalyani RN, Tang R, Van der Ploeg LHT, Weinberg DH. Biochem Biophys Res Communs 1999;261:209.Holder JR, Xiang Z, Bauzo R, Haskell-Luevano C. J Med Chem 2002;45:5736. [PubMed: 12477357]Bednarek MA, MacNeil T, Tang R, Tung MF, Cabello MA, Maroto M, Teran A. Biopolymers 2007;89:401. [PubMed: 17926329]
- 7. Schrodinger Suite 2008. Schrodinger LLC; New York, NY: 2008.
- 8. Haskell-Luevano C, Sawyer TK, Trumpp-Kallmayer S, Bikker JA, Humblet C, Gantz I, Hruby VJ. Drug Design Discovery 1996;14:197.Yang Y, Dickinson C, Haskell-Luevano C, Gantz I. J Biol Chem 1997;272:23000. [PubMed: 9287296]Haskell-Luevano C, Rosenquist A, Souers A, Khong KC, Ellman JA, Cone RC. J Med Chem 1999;42:4380. [PubMed: 10543881]Holder JR, Haskell-Luevano C. Med Res Rev 2004;24:325. [PubMed: 14994367]Hogan K, Peluso S, Gould S, Parsons I, Ryab D, Wu L, Visiers I. J Med Chem 2006;49:911. [PubMed: 16451057]
- 9. Koikov, L.; Ruwe, AR.; Abdel-Malek, Z.; Haskell-Luevano, C.; Dirain, ML.; Portillo, F.; Xiang, Z.; Wortman, M.; Knittel, JJ. Pept Sci; Abstract P263, American Peptide Symposium; 2009; Bloomington, IN. 2009. p. 362Jois SDS, Koikov L, Abdel-Malek Z, Kavanagh R, Wortman M, Knittel JJ. ibid : 361.Abstract P259
- 10. Nickolls SA, Cismowski MI, Wang X, Wolf M, Conlon PJ, Maki RA. J Pharmcol Exp Ther 2003;304:1217.Sun H, Fry D. Curr Top Med Chem 2007;7:1042. [PubMed: 17584125]
- 11. Compounds 1–32 (purity >95%) were obtained, analyzed and assayed as previously described.3,5 The EC<sub>50</sub> values for compounds 1–32 (all of them are full agonists) in Table 1 are an average of at least three separate experiments with the associated standard error of the mean.

Ruwe et al. Page 5



# **Figure 1.**

Conformations within 5 kcal/mol: a. Ph(CH2)3CO-**His-D-Phe-Arg**-NH2 (**2**)**,** b. *trans*-4- HOC6H4CH=CHCO-**His-D-Phe-Arg**-NH2 (**13**).



Agonist activity of N-capped tripeptides on mouse MC1, MC3, MC4, and MC5 receptors.

 $\overline{\phantom{a}}$ 





NIH-PA Author Manuscript

NIH-PA Author Manuscript



NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript



NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

 NIH-PA Author ManuscriptNIH-PA Author Manuscript





 NIH-PA Author ManuscriptNIH-PA Author Manuscript





 NIH-PA Author ManuscriptNIH-PA Author Manuscript





 NIH-PA Author ManuscriptNIH-PA Author Manuscript



 $\circ$ 



Ruwe et al. Page 14

NIH-PA Author Manuscript

NIH-PA Author Manuscript