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Abstract. The neonatal Fc receptor, FcRn, is responsible for controlling the half-life of IgG antibodies.
As a result, inhibitors of FcRn have been investigated as a possible way to modulate IgG half-lives. Such
inhibitors could have possible applications in reducing autoantibody levels in autoimmune disease states.
To date, monoclonal antibodies, engineered Fc domains, and short peptides have been reported to inhibit
FcRn function and modulate IgG half-lives in vivo.
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INTRODUCTION

The existence of a receptor that is responsible for the
long half-life of IgG was first proposed in the 1960s by
Brambell (1). It was suggested that this receptor was
saturable based on studies demonstrating increased metabo-
lism of IgG with hyperimmunization (2). Decades later, this
hypothesis was validated with the cloning of the neonatal Fc
receptor, FcRn (3). FcRn is a 52-kDa membrane-bound
heterodimeric glycoprotein comprising a heavy chain and a
light chain (β2-microglobulin, β2m) (4). IgGs are taken up
into cells most likely by fluid-phase pinocytosis since the
steady-state location of FcRn is endosomal. FcRn binds Fc in
the acidic environment of the endosome. IgG that binds FcRn
is then recycled either apically or basolaterally to the plasma
membrane, where upon exposure to a neutral pH it is
released. In contrast, IgGs that do not bind to FcRn enter
the lysosomal pathway and are degraded. As FcRn biology is
not the focus of this review, the reader is directed to more
detailed reviews for further FcRn background (4,5).

There are several lines of evidence suggesting that FcRn
has a role in the regulation of IgG catabolism. For example,
IgG has an abnormally short half-life in FcRn- (6) and β2m-
deficient (7–9) mice compared to normal mice, and mutant
murine IgG-Fc fragments have impaired binding to FcRn and
abnormally short half-lives (10,11).

The fact that FcRn plays a critical role in the long half-
life of IgG has prompted the proposal that inhibitors of FcRn
may be useful in the treatment of autoimmune disease by
competing with autoantibodies for FcRn binding, resulting in
lysosomal degradation of the pathogenic antibodies (12,13).
In support of this theory, it has been shown that FcRn-

deficient mice are protected against arthritis (14). In addition,
FcRn deficiency has been shown to protect against autoim-
mune blistering diseases (15,16). High doses of intravenous
immunoglobulin (IVIg), which binds FcRn through its Fc
domain, has also been shown to accelerate the catabolism of
model antibodies (17) and ameliorate symptoms of idiopathic
thromobocytopenia purpura (18), arthritis (14), and pemphi-
gus (15) in rodent models. These data suggest that FcRn
blockade may have effects on these and other IgG-mediated
autoimmune diseases by saturating and inhibiting FcRn.

Each of these examples suggests that specific high-
affinity FcRn inhibitors may have utility in the treatment of
antibody-mediated autoimmune conditions. Several
approaches to generating inhibitors of the IgG:FcRn interac-
tion have been reported, and these will be the focus of this
mini-review.

ANTI-FcRn MONOCLONAL ANTIBODIES

Over the course of studying FcRn biology, the monoclo-
nal antibody 1G3 was generated by the Bjorkman group
against the heavy chain of rat FcRn (19). 1G3 has an affinity
for rat FcRn of 1.9 nM at pH 6 and 5.8 nM at pH 7.4. This is
in comparison to the natural ligand IgG which does not bind
to FcRn at pH 7.4. Liu et. al. exploited this property of the
antibody and demonstrated that following two consecutive
doses of 1G3 (30 mg/kg) 24 h apart, endogenous IgG levels in
rats were reduced by 40%, and the effects of 1G3 appeared to
last for 3 days (20). Interestingly, the pharmacokinetics of
1G3 were very short: after a 10-mg/kg i.p. injection, 1G3 had
a similar Cmax to that of a mouse IgG control antibody
(~50 μg/mL), but at 24 h, the serum concentration of 1G3 was
less than 0.01 μg/mL. In contrast, the mouse IgG control
antibody had a half-life of approximately 104 h. This
shortened 1G3 antibody half-life may be the result of 1G3
binding tightly to FcRn at both pH 6 and 7.4, thus unable to
recycle via FcRn (20).
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Myasthenia gravis (MG) is an autoimmune disease that
is predominantly mediated by autoantibodies. The disease
symptoms include muscle weakness and fatigability which are
due to antibodies generated against the acetylcholine recep-
tor (AChR) and other neuromuscular antigens. Depending
on disease severity, MG patients can be categorized into two
groups: patients who have developed myasthenic crisis and
patients who have generalized MG but are not in crisis (21).
A rat model of passive experimental autoimmune myasthenia
gravis (EAMG) in which the disease is induced by adminis-
tering the anti-acetylcholine receptor antibody, mAb35,
resembles the disease characteristics of MG crisis, in that it
is severe and has a fast onset. The disease symptoms that
occur in the passive EAMG model include a decrease in body
weight and a loss of grip strength due to muscle weakness.
When 1G3 was administered 24 or 2 h before mAb35
injection, a dose of 30 mg/kg almost completely prevented
the symptoms of EAMG in this rat model. Importantly, there
was a dose-dependent decrease in serum mAb35 levels at
48 h after 1G3 treatment, indicating that the mechanism of
1G3 action was due to enhanced clearance of mAb35 by
FcRn blockade. To investigate the effects of FcRn blockade
on chronic MG, rats were immunized with AChR in Freund’s
Complete Adjuvant (11). At the onset of disease symptoms
(approximately 21 days after administration of the AChR),
1G3 was administered and resulted in significantly suppressed
disease symptoms.

The Bjorkman group also developed a monoclonal
antibody, 4C9, directed against the light chain of FcRn,
β2m. This antibody was found to block the binding of IgG
to FcRn in vitro (19). Getman and Balthasar (22) treated rats
with 4C9, at doses of 3 to 60 mg/kg, and found that 4C9
induced a transient and dose-dependent increase in the
elimination of an exogenously administered anti-methotrex-
ate IgG (AMI). In particular, the AMI clearance rate was
increased from 0.99 mL h−1 kg−1 (control) to 1.97 mL h−1 kg−1

in rats dosed with 60 mg/kg 4C9, and the effects of 4C9
appeared to last for approximately 2 days. One caveat with
4C9 is that the effect of targeting β2m, which is also present
in other major histocompatibility complex class I proteins,
renders 4C9 less selective than inhibitors that target the heavy
chain of FcRn. Nevertheless, these experiments demonstrate
that inhibitors targeting the light chain of FcRn can impact
the pharmacokinetics of IgG antibodies.

MUTANTS OF THE Fc REGION OF IgG1
ANTIBODIES

IgG has the longest half-life in circulation of all
immunoglobulin classes, ranging from 7 to 21 days in healthy
humans (23). The Fc region of IgG has been implicated as the
domain responsible for the long half-life of IgG through
binding to FcRn (5).

Petkova et al. (24) engineered Fc mutants of the
humanized monoclonal antibody Herceptin (Hu4D5-IgG1)
which is directed against human epidermal growth factor
receptor 2. The two mutants, N434A (NA) and T307A/
E380A/N434A (TENAAA) had 3.4-fold and 11.8-fold im-
proved binding to human FcRn, respectively, using enzyme-
linked immunosorbent assay-based assays (25) and 1.6-fold
and 3.3-fold improved binding to human FcRn, respectively,

in cell-based assays (16) compared to the wild-type antibody.
The improved binding of the mutant Hu4D5-IgG antibodies
to human FcRn resulted in a 2.2-2.5-fold increased half-life in
mice and correlated with the ability to increase the catabolism
of human IgG in human FcRn mice. Two 2 mg doses of NA
or TENAAA 24 h apart decreased the half-life of human IgG
to 3.37±0.81 days and 3.26±0.19 days, respectively, compared
to the wild-type Hu4D5-IgG (5.24±0.64 days), and the effects
of these inhibitors appeared to last for several days.

Plasma or purified antibodies from patients with rheu-
matoid arthritis have been found to cause inflammatory joint
lesions in mice that are deficient in the Fc inhibitory receptor,
FcγRIIB (26). When human FcRn transgenic mice that have
been crossed with FcγRIIB deficient mice were treated with
plasma from a rheumatoid arthritis patient followed by
treatment with 2.5 mg injections of TENAAA, there was
reduced ankle swelling in comparison to mice treated with the
wild-type Hu4D5-IgG control (16). These data suggest that
the high-affinity IgG-Fc mutants NA and TENAAA can
block FcRn from binding autoimmune antibodies responsible
for diseases such as rheutmatoid arthritis. As a result, these
autoantibodies are cleared more rapidly, and symptoms of the
disease are ameliorated in this mouse model.

Vaccaro et al. (27) developed an antibody that enhances
IgG degradation which has been named an “Abdeg.” This
Abdeg (MST-HN) is a mutant of IgG1 in which the amino
acids Met252, Ser254, Thr256, His433, and Asn434 were
mutated to Tyr252, Thr254, Glu256, Lys433, and Phe434,
respectively. MST-HN has an increased affinity for human
FcRn binding at pH 6.0 (KD1=15.5 nM for MST-HN
compared to 370 nM for wild-type human IgG1) and retains
significant binding activity at pH 7.2 unlike wild-type IgG1
which does not bind to FcRn at neutral pH. In mice treated
with 200 or 500 μg of MST-HN, the clearance of 125I-IgG1
was increased by 80% to 88% after 120 h and, interestingly,
significantly lowered endogenous IgG concentrations. In
addition, the effects of MST-HN appeared to last for
approximately 2 days. The same group also studied a
mutant of IgG1 (named “HN”), where only amino acids
His433 and Asn434 of IgG1 were mutated to Lys433 and Phe
434, respectively (28). HN possessed weaker binding affinity
to both mouse and human FcRn than MST-HN but was still
effective as an Abdeg in mice. In mice treated with 500 μg of
HN, serum levels of a tracer 125I-IgG1 were reduced by 59%
after 120 h.

ANTI-FcRn PEPTIDES

Recently, a family of peptides was identified capable of
binding to human FcRn and inhibiting the binding of hIgG
(29). These peptides were discovered by peptide phage
display and contain no homology to the Fc domain of IgG.
The consensus motif consisted of GHFGGXY, where X is
preferably a hydrophobic amino acid and the motif is
enclosed by a disulfide loop. One member of the peptide
family was chemically optimized (30) into a 3.1-kDa peptide
homodimer named SYN1436. SYN1436 binds to human FcRn
with subnanomolar affinity in surface plasmon resonance
affinity binding experiments. This peptide binds to human
FcRn and not to rodent FcRn; therefore, initial in vivo
activity experiments were performed in transgenic mice
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where the mouse FcRn and β2m genes have been replaced
with their human homologs (TG32B mice). SYN1436 was
found to accelerate the catabolism of exogenously adminis-
tered human IgG in doses as low as 1 mg kg−1 day−1. Lastly,
treatment of cynomolgus monkeys with repeated doses of
5 mg/kg SYN1436 three times per week was found to reduce
endogenous IgG levels by approximately 80%, providing the
first evidence that FcRn inhibitors can affect IgG levels in
nonhuman primates. In addition, the peptide effects appeared
to last for several days in monkey groups that were dosed
with a frequency of once per week.

CONCLUSION

There has been an increasing interest over the last
several years in generating inhibitors of FcRn in order to
better understand the biology and therapeutic potential of
inhibiting FcRn function in vivo. To date, inhibitors have
included monoclonal antibodies, mutant Fc (IgG) proteins,
and peptides. Data are now accumulating that each of these
types of molecule can bind effectively to FcRn in vitro, and
some are capable of alleviating symptoms of autoimmune
disease in rodent models and/or increase the catabolism of
IgG. Peptide inhibitors of FcRn have also been shown to
reduce endogenous IgG levels in cynomolgus monkeys.
Collectively, the in vitro and in vivo FcRn inhibitor data in
rodents and nonhuman primates indicates an intriguing and
novel potential for future treatments of autoimmune diseases.
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