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Abstract. The objective of this stimulation study was to evaluate effect of simoidicity of the
concentration–effect (C–E) relationship on the efficiency of population parameter estimation from
sparse sampling and is a continuation of previous work that addressed the effect of sample size and
number of samples on parameters estimation from sparse sampling for drugs with C–E relationship
characterized by high sigmoidicity (γ>5). The findings are based on observed C–E relationships for two
drugs, octreotide and remifentanil, characterized by simple Emax and sigmoid Emax models (γ=~2.5),
respectively. For each model, C–E profiles (100 replicates of 100 subjects each) were simulated for
several sampling designs, with four or five samples/individual randomly obtained from within sampling
windows based on EC50-normalized plasma drug concentrations, PD parameters based on observed
population mean values, and inter-individual and residual variability of 30% and 25%, respectively. The
C–E profiles were fitted using non-linear mixed effect modeling with the first-order conditional
estimation method; variability parameters were described by an exponential error model. The results
showed that, for the sigmoid Emax model, designs with four or five samples reliably estimated the PD
parameters (EC50, Emax, E0, and γ), whereas the five-sample design, with two samples in the 2–3 Emax

region, provided in addition more reliable estimates of inter-individual variability; increasing the
information content of the EC50 region was not critical as long as this region was covered by a single
sample in the 0.5–1.5 EC50 window. For the simple Emax model, because of the shallower profile,
enriching the EC50 region was more important. The impact of enrichment of appropriate regions for the
two models can be explained based on the shape (sigmoidicity) of the concentration–effect relationships,
with shallower C–E profiles requiring data enrichment in the EC50 region and steeper curves less so; in
both cases, the Emax region needs to be adequately delineated, however. The results provide a general
framework for population parameter estimation from sparse sampling in clinical trials when the
underlying C–E profiles have different degrees of sigmoidicity.
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INTRODUCTION

Population pharmacodynamic modeling is useful in
assessing quantitative relationships between plasma drug

concentrations, drug response, and patient covariates. In the
learn and confirm paradigm of drug development, pharma-
cokinetic–pharmacodynamic (PK-PD) models can be developed
in the early phase (phase 1/2a,b; learning) to gain an under-
standing of a drug’s behavior in terms of its concentration–effect
(C–E) relationship, variability, etc., to make decisions regarding
its future development. In the confirming part (i.e., phase 3), it
is feasible to obtain only a few samples (sparse samples) from
individual patients because of practical constraints.

The decision regarding the number of samples and
timing of sample collection depends on the underlying PK
and PD properties of a drug, as well as practical aspects
related to implementation of PK sampling in clinical trials.
We previously showed that, for a drug with a C–E profile
characterized by a high Hill coefficient (γ>5), it is possible to
accurately and precisely estimate population PD parameters
from sparse sampling (1). The reliability of PD and inter-
individual variability parameters were not only dependent on
the number of samples collected per individual but also on
the sample size (number of individuals sampled) and the
underlying variability in the parameters. It was demonstrated
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that four or five samples per individual, obtained from within
pre-defined windows, were sufficient to provide accurate and
precise estimates of almost all of the PD and variability
parameters.

Because the sensitivity of the C–E profile is character-
ized by the steepness of the relationship (i.e., sigmoidicity),
which can then influence the reliability of parameter esti-
mates when only a few samples are obtained, the objective of
the current paper was to evaluate the efficiency of population
parameter estimation from sparse sampling for drugs with
different degrees of sigmoidicity. This was evaluated by
simulations based on observed C–E relationships for two
drugs, octreotide (2), and remifentanil (3). The C–E relation-
ship for octreotride was characterized by a simple Emax model
and that for remifentanil by a sigmoid Emax model with
moderate sigmoidicity (γ=2.51). This evaluation and that
published previously (1) would collectively be applicable for
population PD parameter estimation of drugs with C–E
profiles with varying degrees of sigmoidicity.

MATERIALS AND METHODS

Pharmacodynamic Parameters. The reported population PD
parameters of octreotide (2), based on insulin-like growth
factor-1 (IGF-1) response, were E0 and Emax (expressed as
percent of baseline) of 110 and 40, respectively, EC50=746
pg/mL, and γ=1 (Eq. 1).

E ¼ E0 � Emax � Cp

Cp þ EC50
ð1Þ

where E is the PD response, E0 is the baseline, Emax is the
percentage of maximal decrease in IGF-1 concentration, Cp is
octreotide plasma concentration, and EC50 is the plasma
concentration of octreotide corresponding to 50% of the
maximal effect.

For remifentanil (3), the reported PD parameters were
(using electroencephalogram to measure the drug effect)
E0=20 Hz, Emax=5.62 Hz, EC50=11.2 ng/mL, and γ=2.51
(Eq. 2).

E ¼ E0 þ Emax � E0ð Þ C�
e

C�
e þ EC�

50

� �
ð2Þ

where E is the PD response. E0 is the measured baseline,
Emax is the maximum measured effect, Ce is the apparent
effect site concentration, EC50 is the concentration that
produces 50% of the maximum effect, and γ is the steepness
of the concentration–response relationship (sigmoidicity
constant).

Plasma concentrations of octreotide and remifentanil were
normalized to their EC50 (by using EC50 as the unit of
concentration, viz., the concentration is a fraction or multiple
of the EC50). Therefore, the findings can be generalized to other
drugs with comparable concentration–response characteristics.

Sampling Designs. As shown in the schematic in Fig. 1, for
each PD model, four sampling designs each with four or five
concentration samples per individual obtained from sampling
windows that were based on EC50 concentration units
(Table I and Fig. 2) were evaluated. The concentration

samples were randomly obtained from each sampling window
using the random number generator in Excel. Design 1 was
previously found to reliably estimate PD parameters from
sparse sampling for a drug with a high hill coefficient (γ=
6.22) (1). Designs 1 and 2 were common to both drugs and
encompassed concentrations that were threefold higher than
the EC50 (i.e., in the Emax region), with four samples per
individual (four sampling windows). Designs 3S and 4S, with
five samples per individual (five sampling windows), were
applied to the sigmoid Emax model, whereas designs 3E and
4E, with four and five samples per individual, respectively,
were applied to the simple Emax model. For each design, 100
subjects were simulated, and this was repeated 100 times;
therefore, evaluation of each of the designs was based on
40,000 or 50,000 concentration–effect pairs (i.e., four sam-
ples×100 subjects×100 replicates or five samples×100 sub-
jects×100 replicates).

Pharmacodynamic and Statistical Models. In the simulation
experiments, a simple Emax model was used to describe the
C–E relationship of octreotide, and a sigmoid Emax model
was used for remifentanil; for both drugs, inter- and intra-
individual variability were described by exponential error
models, as described previously (1). For each drug, using the
appropriate PD model and associated parameters summar-

Fig. 1. Simulation strategy for the evaluation of the designs for
accuracy and precision
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ized above, C–E profiles were simulated in individual subjects
for the sampling designs summarized in Table I and Fig. 2. In
these simulations, for each of the drugs, the PK model was not
fitted separately. The individual response was calculated using
PD parameters generated from a normal distribution with
population mean values summarized above and coefficient of
variation for inter-individual variability set at 30% (for all
parameters). The coefficient of variation of the residual error
(added to the response) was set at a moderate level of 25% (4).
The concentration–effect profiles were simulated by nonlinear
mixed effect modeling using NONMEM (Version V) (5),
taking variability into consideration. A PRED subroutine (5)
was used for the simulations. The first-order conditional
estimation (without interaction) method in NONMEM was
used to estimate the PD and variability parameters. This
method provides more accurate and precise estimates of the
variability parameters using the exponential error model than
the first order method (5,6). The estimated parameters were
EC50, Emax, E0 and γ (for the sigmoid Emax model), with their
respective inter-individual variability, ωEC50, ωEmax, ωE0 and !�

(for the sigmoid Emax model), and residual error σ.

Bias and Precision of Parameter Estimates. Each replicate of
100 individuals provided the population estimates of the PD
and variability parameters, and the values from 100 replicates
were used to estimate the accuracy (bias) and precision of the

estimates using the percent prediction error (%PE), as
follows (7):

%PE ¼ �sim � �true
�true

100 ð3Þ

where θsim is the estimated population value of the parameter
from one simulated data set and θtrue is the true population
value for the parameter. The %PE was calculated for the 100
simulated data sets for each design. The mean and standard
deviation of %PE were used to measure bias and precision of
parameter estimates, respectively. A mean of %PE for a
parameter estimate ≤15% was accepted as being unbiased,
and standard deviation of% PE of ≤35% was accepted as
being precise (7).

RESULTS

For the sigmoid Emax model, in regard to parameter
accuracy (Fig. 3a), design 1 (four samples per individual) with
concentrations ranging from one tenth to three times the
EC50 yielded unbiased population estimates of EC50, Emax,
E0, γ, ωEmax, and ωE0; however, inter-individual variability of
EC50 and γ (i.e., ωEC50 and !� ) were biased. In regard to

Table I. Sampling Designs Evaluated for Estimation of Parameter Accuracy and Precision

Design Model Model drug

Sampling windows (EC50 units)
a

(1) (2) (3) (4) (5)

1 Sigmoid Emax Remifentanil 0.1–1 1–2 2–2.5 2.5–3 NS
Emax Octreotide

2 Sigmoid Emax Remifentanil 0.1–0.5 0.5–1.5 2–2.5 2.5–3 NS
Emax Octreotide

3S Sigmoid Emax Remifentanil 0.1–0.5 0.5–1 1–1.5 1.5–2 2–3
4S Sigmoid Emax Remifentanil 0.1–0.5 0.5–1.5 1.5–2 2–2.5 2.5–3
3E Emax Octreotide 0.1–0.5 0.5–1 1–1.5 2.5–3 NS
4E Emax Octreotide 0.1–0.5 0.5–1 1–1.5 1–1.5 2.5–3

NS not sampled
aRepresents sampling intervals in terms of EC50 units; for each design a single sample was obtained within each window

Fig. 2. Sampling windows used for various investigated designs based on EC50 units. Designs 1, 2, 3S, and 4S were applied to the sigmoid Emax

model, and Designs 1, 2, 3E, and 4E were applied to the Emax model
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precision, all PD parameters were precisely estimated
(Fig. 3b), whereas ωEmax and !� estimates were imprecise
and estimates of ωE0 and ωEC50 were marginally imprecise (%
PE, 39 and 43, respectively). Design 2, also with four samples
per individual, yielded unbiased estimates of all PD and
variability parameters, except ωEC50 and !� , which were
biased. In regard to precision, all PD parameters and ωE0 were
estimated with good precision; however, ωEmax, and !� were
imprecise and ωEC50 was marginally imprecise (%PE, 40).

For the sigmoid Emax model, design 3S, with five samples
per individual (with the additional sample in the 0.5–1.5 EC50

region), yielded unbiased and precise estimates of all PD
parameters; however the inter-individual variability parame-
ters were biased and imprecise with the exception of ωEC50,
which was unbiased and marginally imprecise (%PE, 39).
Design 4S, also with five samples per individual (with the
additional sample in the Emax region), yielded unbiased and
precise estimates of all PD and variability parameters except
ωEmax, ωEC50 that were marginally imprecise and !� , which
was biased and imprecise. The residual error was unbiased
and precise for the four designs with either four or five
samples. Overall, design 4S was the most satisfactory design
in terms of accuracy and precision of both PD and variability
parameters (with the exception of !� ) for a drug with a hill
coefficient of ~2.5.

For the Emax model, in regard to the accuracy of the
parameter estimates (Fig. 4a), designs D1 and D2 gave
unbiased estimates of PD parameters E0 and Emax; EC50

was biased. In regard to inter-individual variability, ωE0 was
unbiased, whereas ωEC50 and ωEmax were biased. In regard to
precision, E0 and Emax were precisely estimated, EC50 was
imprecise, and inter-individual variability parameters, with
the exception of ωE0, were imprecise. With designs 3E and
4E, with samples in the 0.5–1.5 EC50 window, the PD
parameters E0 and Emax were unbiased (as with D1 and D2,
Fig. 2a). In regard to EC50, this parameter was marginally
biased (%PE, 18) with design 3E and biased with 4E. In
regard to inter-individual variability in the PD parameters
(Fig. 4b), ωE0 was unbiased, and ωEC50 and ωEmax were
biased. In regard to precision, E0 and Emax were precisely
estimated, EC50 was imprecise, and inter-individual variabil-
ity parameters, with the exception of ωE0, were imprecise.
The residual error was unbiased and precise for all four
designs.

In general, for the sigmoid Emax model, the four
evaluated designs with four or five samples performed well
in terms of accuracy and precision of the PD parameters
(EC50, Emax, E0, and γ). The five-sample design, with two
samples in the 2–3 Emax region (design 4S), provided
estimates of inter-individual variability that were in general
markedly more accurate and precise than with the other

Fig. 3. Accuracy (top) and precision (bottom) of parameter estimates
for the sigmoid Emax model. The horizontal line represents the 15%
cut-off for accuracy and 35% cut-off for precision

Fig. 4. Accuracy (top) and precision (bottom) of parameter estimates
for the Emax model. The horizontal line represents the 15% cut-off for
accuracy and 35% cut-off for precision
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designs. Thus, placement of the additional fifth sample in the
Emax region was important as evidenced by the better
performance of design 4S versus 3S. For the Emax model,
design 3E with sampling in the 0.5–1.5 EC50 window (EC50

region) performed better than designs D1 and D2 in regard to
EC50 bias but not precision of this parameter. For design 4E,
addition of the fifth sample in the 1–1.5 window (i.e., two
samples in the same window) did not further improve the
accuracy and precision of the PD and inter-individual
variability parameters.

DISCUSSION

As a continuation of our previous work (1) that
addressed the effect of sample size and number of samples
on population PD parameters from sparse sampling for drugs
with a high hill coefficient (γ>5), the objective of the present
work was to generalize the utility of sparse sampling to
estimate population PD parameters for drugs with lower hill
coefficients.

The results showed that, for the sigmoid Emax model,
enriching the data with an additional (fifth) sample in an
appropriate region of the profile resulted in more reliable
parameter estimates. The impact of data enrichment on the
efficiency of parameter estimates is in agreement with the
results of Al-Banna et al. (8) and Ette et al. (9) where
increasing the number of samples, respectively, from two to
three and three to four (i.e., increasing the information
content) resulted in improved efficiency of parameter esti-
mates for a simple one-compartment PK model with IV bolus
administration; the point of location of the additional sample
on the IV profile did not markedly affect the estimates.
However, in the current evaluation, placement of the addi-
tional sample in an appropriate region of the C–E profile,
rather than just its presence within the profile, markedly
influenced the efficiency of parameter estimation. This is
evidenced for the sigmoid Emax model, by improved param-
eter accuracy and precision for design 4S (versus 3S) in which
the additional fifth sample was obtained in the Emax region
(rather than the EC50 region), i.e., Emax was better delineated
by obtaining one sample in each of the 2–2.5 and 2.5–3 EC50

windows versus 3S where a single sample was obtained in the
2–3 EC50 window. It is well recognized that reliable delin-
eation of Emax of the concentration–effect profile dictates the
reliability of parameter estimates (10). For the simple Emax

model, while the Emax coverage window was the same (i.e.,
2.5–3 EC50 units) for all the four designs, the importance of
sample placement was also evidenced for this model, where
providing better coverage of the EC50 region (compared to
designs D1 and D2) by obtaining two samples in the 0.5–1.5
EC50 region (i.e., one sample in each of the 0.5–1 and 1–1.5
EC50 windows, design 3E) resulted in improved accuracy
of EC50. The lack of agreement between the two evaluations
regarding the effect of sample placement is due solely to the
more complex nature of C–E profile compared to the simple
one-compartment IV bolus model evaluated in Al-Banna et
al. (8) and Ette et al. (9)

For the sigmoid Emax model, both the four- and five-
sample designs yielded accurate and precise estimates of the

PD parameters (EC50, Emax, E0, and γ). The five sample
designs (4S), with the additional sample in the Emax region of
the profile (vide supra), in addition to accurate PD parame-
ters, also yielded inter-individual variability parameters
(except !� ) that were more accurate and more precise than
with the other designs. The estimation problem with the inter-
individual variability of γ (sigmoidicity factor) may be related
to the general problem of parameter estimation when the
dependent variable (e.g., response) changes steeply within a
narrow range of the independent variable. The sigmoidicity
factor only reflects the degree of sensitivity of the C–E
relationship, with a larger value of the exponent resulting in a
steeper curve, and is devoid of any biological meaning. While
accurate and precise estimates of γ were obtained in these
simulations, the poor estimates of inter-individual variability
of this parameter are apparently an inherent estimation
problem. A proposed approach that may overcome this
problem is to estimate inter-individual variability in γ after
all the other parameters have been estimated (11).

For the simple Emax model, design 3E with one sample
each in the 0.5–1 and 1–1.5 EC50 windows performed better
than D1 and D2 in regard to EC50 bias; precision of this
parameter was not affected. Including an additional sample in
an adjacent window (e.g., 1.5–2 EC50) may also have further
improved EC50 precision. Collectively, the results of the
simple and sigmoid Emax models show that appropriate
coverage of the EC50 region is necessary for shallower C–E
profiles. Inclusion of the additional fifth sample (design 4E) in
the same 1–1.5 window did not further improve the accuracy
and precision of the PD and inter-individual variability
parameters, demonstrating that obtaining replicate samples
within the same window did not increase the information
content. Currie (12) and Endrenyi (13), using Monte Carlo
simulation and D-optimal designs, respectively, showed that
the best designs for estimating the parameters of the
Michaelis–Menton equation was to place half the concen-
trations at the EC50 (i.e., to provide for appropriate coverage
of the EC50) and the other half at a concentration as high as
possible. The results of the current series of simulations are in
agreement with this finding, as evidenced by the better
performance of designs 3E over D1 and D2.

Thus, the results of these simulation experiments show
that for, both the sigmoid and simple Emax models, as few as
four samples obtained in appropriate regions of the
concentration–effect profile yields reliable estimates of the
majority of the parameters of interest. For the sigmoid Emax

model, because of the steeper C–E relationship, better
delineation of the Emax region by the addition of the fifth
sample in this region yielded reliable estimates of all PD
and inter-individual variability parameters (except inter-
individual variability of γ); increasing the information
content of the EC50 region was not critical, as long as this
region was covered by a single sample in the 0.5–1.5 EC50

window. For the simple Emax model, because of the
shallower profile, enriching the EC50 region by obtaining
one sample each in the 0.5–1 and 1–1.5 EC50 windows was
important.

The impact of enrichment of appropriate regions for the
two models is intuitively clear based solely on the steepness
(sigmoidicity) of the concentration–effect relationships, with
shallower C–E curves requiring data enrichment in the EC50
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region and steeper curves less so. In this regard, the results of
these simulation experiments and those previously described
(1) are in agreement and provide a general framework for
sparse sampling for C–E profiles with varying degrees of
sigmoidicity. Thus, depending on the sigmoidicity, sparse
sampling in the following EC50 windows is recommended:
for C–E profiles with no sigmoidicity (γ=1), 0.1–0.5, 0.5–1,
1–1.5, and 2.5–3 EC50 units; for C–E profiles with moderate
sigmoidicity (γ=~2.5), 0.1–0.5, 0.5–1.5, 1.5–2, 2–2.5 and 2.5–3
EC50 units; and as previously published, for C–E profiles with
marked sigmoidicity (γ>5) (1), 0.1–1, 1–2, 2–2.5, and 2.5–3
EC50 units.

The efficiency of parameter estimation depends on an
interplay between the sample size, the number of samples per
individual, and the underlying variability (1). To facilitate
meaningful cross-design comparisons of parameter estimation
efficiency, we used a common sample size (100 subjects),
inter-individual variability (30%), and residual variability
(25%) across the various designs. Regarding the sample size,
100 subjects were used based on our previous work (1), where
population sizes of 25, 50, and 100 individuals were evaluated.
For PD design with four samples per individual, a reduction
in sample size from 100 to 25 individuals did not affect the
accuracy and precision of PD parameters estimates; however,
it affected the accuracy (at N=25) and precision (at N=25 or
50) of the variability parameters that were accurate at
samples size of 50 or 100 and both accurate and precise at
N=100. For PD design with five samples per individual, the
accuracy of parameter estimates were not affected by a
reduction of sample size from 100 to 25 individuals; however,
it affected the precision of variability parameters at N=25 and
50 individuals. From the standpoint of implementation in
clinical trials, four or five samples per individual are routinely
obtained in phase 2a/b trials, and a sample size of 100 subjects
represents only a small fraction of the total sample size
utilized in the pivotal (phase 3) trials, with PK/PD sampling
performed during (routine) clinic visits for other evaluations
(e.g., clinical chemistry and safety).

The inter-individual variability (30%) that was utilized,
while moderate and may indeed vary among parameters,
nevertheless shows the effect of sigmoidicity on population
PK/PD parameter estimation using the sparse sampling
paradigm. The observed residual variability for octreotide
(2) and remifenatil (3) was low (15.6% and 15%, respec-
tively) and likely a result of the controlled conditions and
intensive (serial) sampling used to obtain the underlying
observational data. The relatively more practical 25% resid-
ual variability used in these evaluations provides additional
confidence regarding parameter estimation efficiency under
sparse sampling conditions. It is recognized that the levels of
inter-individual and residual variability may preclude broader
generalizations for situations in which the variability is
significantly larger. Prior to initiation of the pivotal phase 3
trials, however, the PK/PD variability characteristics of a drug
is usually known from early phase clinical pharmacology
studies and/or phase 2a/b; indeed, biomarkers/surrogate

endpoints are increasingly being used in such trials (even as
perhaps as early as the multiple ascending dose study) to
make go/no-go decisions as early as possible. Based on this a
priori information, sampling points can be optimized and
implemented in the pivotal human trials.

Population PD parameters (typical values), in general,
are more accurately and precisely estimated than the
variability parameters (8,9). The desire to estimate all PD
and variability parameters versus the need to do so should be
tempered with practical (and cost) constraints of obtaining a
large number of samples. Obtaining a reasonable number of
samples (four or five samples) from a subset of subjects in
out-patient trails is both feasible and practical. Implicit in
these evaluations is the need to drive the concentrations as
high as possible to reliably delineate Emax, as is often done
(within the constraints of the maximum tolerated dose) to
maximize the probability of a successful outcome. If this
cannot be achieved because of unanticipated safety concerns,
then parameter estimation will be severely compromised
regardless of the number of samples collected.
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