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Abstract. Breast cancer resistance protein (ABCG2), the newest ABC transporter, was discovered
independently by three groups in the late 1990s. ABCG2 is widely distributed in the body with
expression in the brain, intestine, and liver, among others. ABCG2 plays an important role by effluxing
drugs at the blood–brain, blood–testis, and maternal–fetal barriers and in the efflux of xenobiotics at the
small intestine and kidney proximal tubule brush border and liver canalicular membranes. ABCG2
transports a wide variety of substrates including HMG-CoA reductase inhibitors, antibiotics, and many
anticancer agents and is one contributor to multidrug resistance in cancer cells. Quantitative structure–
activity relationship (QSAR) models and structure–activity relationships (SARs) are often employed to
predict ABCG2 substrates and inhibitors prior to in vitro and in vivo studies. QSAR models correlate in
vivo biological activity to physicochemical properties of compounds while SARs attempt to explain
chemical moieties or structural features that contribute to or are detrimental to the biological activity.
Most ABCG2 datasets available for in silico modeling are comprised of congeneric series of compounds;
the results from one series usually cannot be applied to another series of compounds. This review will
focus on in silico models in the literature used for the prediction of ABCG2 substrates and inhibitors.

KEY WORDS: ABC transporter; ABCG2; breast cancer resistance protein; quantitative structure–
activity relationships; structure–activity relationships.

INTRODUCTION

Breast cancer resistance protein (BCRP/ABCG2) is the
newest member of the ATP binding cassette (ABC) superfamily
of transporters. It was namedBCRP because it was discovered in
a breast cancer cell line co-selected for doxorubicin in the
presence of verapamil, a P-glycoprotein inhibitor (1). This breast
cancer cell line transported doxorubicin and rhodamine 123 in
the absence of P-glycoprotein (ABCB1) and multidrug resis-
tance protein 1 (ABCC1). ABCG2 was also cloned and named
MXR for mitoxantrone resistance and named ABCP for ABC
transporter expressed in the placenta (2,3). Following its
discovery, ABCG2was fully cloned and characterized and added
as the second member of the G subfamily of ABC transporters.
Other members of this family include two proteins involved in
cholesterol transport, the human homolog of the Drosophila
white protein, and two sterol transporters, among others (4).

ABCG2 shares limited amino acid sequence similarity
with ABCB1 and ABCC1 but has 29.3% identity with the

human homolog of Drosophila white protein ABCG1. The
difference between ABCG2 and other ABC efflux trans-
porters is evident by examining the structure of the protein.
ABCG2 is composed of only 655 amino acids that make up its
single nucleotide binding domain and six transmembrane
domains, while many other ABC transporters are comprised
of two nucleotide binding and 12 transmembrane domains. It
is known that eukaryotic ABC transporters require at least
two nucleotide binding and 12 transmembrane domains for
transporter activity; therefore, ABCG2 is considered a half-
transporter and functions by forming homodimers (4).

Molecular mechanisms controlling ABCG2 expression
have not been fully identified, but recent studies suggest
regulation through sex hormones, hypoxia, peroxisome pro-
liferator activated receptorγ (PPARγ), or the aryl-hydrocarbon
(Ahr) receptor. The sex hormones estradiol, progesterone,
and testosterone affect ABCG2 regulation at the transcrip-
tional level, but the data are controversial, particularly
concerning cell-type-dependent estradiol effects (5). Addi-
tionally, histone modification was shown to be important in
regulating ABCG2 in resistant cells. ABCG2 induction has
also been noted following administration of histone deace-
tylase inhibitor romidepsin, though the effects are cell type
specific (6). Regulation of ABCG2 has been described in
normal cells to date, with little known regarding changes in
regulation in cancer cells.
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Tissue Distribution and Cellular Localization

ABCG2 tissue distribution is ubiquitous, with high
mRNA expression in the placenta and lower levels in the
brain, prostate, intestine, testis, ovary, and liver. ABCG2
expression in cancer cells has been linked to the multidrug
resistance phenomenon, but the data are controversial.
ABCG2 expression in breast cancer has been extensively
studied, and the consensus is that expression levels are
relatively low (5). In polarized cells, ABCG2 is located on
the apical membrane and can limit the entry of xenobiotics
across the small intestine or the blood–placental barrier (4).

Substrates and Inhibitors

ABCG2 transports a variety of substrates, some shared
with ABCB1 and ABCC1 but some are ABCG2 specific.
ABCG2 has been shown to transport chemotherapy agents,
anti-virals, HMG-CoA reductase inhibitors, carcinogens,
fluorescent compounds like rhodamine 123 and Hoechst
33342, flavonoids, phase II metabolites including sulfate and
glucuronide conjugates, antibiotics, and many others (4).
ABCG2 substrates include mitoxantrone, topotecan, SN-38,
and flavopiridol among others. ABCG2 transport, unlike
those of ABCC1 and ABCC2, is not dependent on intra-
cellular GSH concentration. ABCG2 inhibitors include some
ABCB1 inhibitors such as elacridar (GF120918), cyclosporine
A, and tariquidar (XR9576). Other inhibitors include estrone
and 17β-estradiol and flavonoids quercetin, biochanin A, and
genistein. Since many flavonoids are found in the diet, these
compounds can significantly affect the pharmacokinetics and
pharmacodynamics of ABCG2 substrates and also lead to
diet–drug interactions (7).

Function

ABCG2 plays an important role in drug absorption,
distribution, and elimination and in drug efficacy. Based on
the tissue distribution of ABCG2, its presumed function
includes protecting the body from xenobiotics through its role
at the blood–brain, blood–testis, maternal–fetal barriers and
in efflux of xenobiotics at the small intestine brush border and
liver canalicular membranes. ABCG2 can play a role in
multidrug resistance, and many inhibitors have been synthe-
sized to overcome this effect. There is also considerable
interest in identifying ABCG2 substrates because ABCG2
substrates can have poor oral bioavailability, extensive first
pass elimination via the biliary route, and poor efficacy as
cancer therapeutic agents. Supporting evidence has been
reported by Jonker et al. (8) in studies performed in
Abcb1a/1b (−/−) knockout mice, where the authors found
that oral bioavailability of topotecan increased sixfold in
knockout mice compared to wild-type mice. Abcb1a/1b (−/−)
mice were administered topotecan and the ABCG2 inhibitor
GF120918 orally: Topotecan is an ABCG2 and ABCB1
substrate, and GF120918 inhibits both ABCG2 and ABCB1.
In these mice, exposure (AUC) of topotecan increased sixfold
due to the increased absorption from the intestine and
reduced elimination into bile. The role of ABCG2 at the
placental barrier was studied in pregnant Abcb1a/1b (−/−)
mice. The mice were administered oral GF120918 2 h prior to

intravenous topotecan administration. Fetal distribution and
maternal plasma distribution were measured, and topotecan
levels were threefold higher in the fetus when the parent was
treated with GF120918 (8). Overexpression of ABCG2 is one
of the mechanisms behind multidrug resistance (MDR), a
phenomenon where cancer cells display cross-resistance to
structurally unrelated drugs. One approach to circumvent
ABCG2-mediated efflux is through inhibition of ABCG2.
The role of ABCG2 clinically is controversial where many
groups have reported that ABCG2 is predictive of response
to chemotherapy, whereas others have reported the opposite
(4).

The focus of this article is to review the literature for in
silico models to predict ABCG2 substrates and inhibitors and
to determine if any structural features are necessary for
transport or inhibition of ABCG2.

SAR AND QSAR OF ABCG2 INHIBITORS

In silico modeling is a powerful tool often employed to
predict drug properties prior to in vitro and in vivo studies
(9,10). Many different in silico modeling techniques have
been employed to discover ABCG2 substrates and inhibitors,
including quantitative structure–activity relationships
(QSAR), 3D-molecular models, pharmacophore models,
and structure based approaches. The most common
approaches are development of QSAR models and struc-
ture-activity relationships (SARs). The goal of QSAR
modeling is to construct a mathematical relationship between
descriptors and pharmacological activities of compounds. The
model can then be used to predict the activity for an untested
compound. The goal of SARs is usually to discern the
structural features or side groups that directly lead to the
desired activity under investigation. In order to use these in
silico modeling techniques, compounds need to be screened
to find the degree of substrate binding or inhibition. The two
most commonly used assays include whole-cell-based assays
screened using flow cytometry or cytotoxicity measurements
and using membrane-based assays with inverted vesicles of
plasma membranes for high throughput screening (11). So far,
there are many inhibitor datasets available for ABCG2
modeling, while very few substrate datasets exist in the
literature. Studies examining SARs and QSARs for ABCG2
are presented below, with the SAR studies summarized in
Table I and the QSAR studies summarized in Table II.

Taxanes

MDR modulators were designed based on the structure
of paclitaxel and tested for their ability to inhibit ABCB1,
ABCC1, and ABCG2. While paclitaxel and docetaxel are
ABCB1 substrates, they are not ABCG2 substrates. On the
other hand, ortataxel is an ABCB1, ABCC1, and ABCG2
inhibitor (12). Eighteen taxane analogues with variations at
one of six positions on the baccatin backbone of paclitaxel
were generated (Fig. 1a). The ability of these taxane
analogues to inhibit ABCG2 was tested in an ABCG2
overexpressing whole-cell-based system with mitoxantrone
as the test drug. Multiple linear regression (MLR) was used
to establish which side chain was contributing to or subtract-
ing from the ABCG2 inhibition. It was found that an O-
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methyl group at position 1 provided a positive contribution,
while a cyclic carbonate at position 4 was detrimental to the
activity of the taxane analogue toward ABCG2 inhibition.
Removal of the cyclic carbonate at position 4 resulted in a

significant improvement of ABCG2 inhibition. In addition, a
tertiary amine in the substituent at position 2 resulted in
increased ABCG2 inhibition, while a methyl group at the
same position was a strong detriment. Based on the SAR, the

Table I. Summary of Structure–Activity Relationships for ABCG2

Dataset (N) Cell line

Structure–activity relationships

ReferencePositivea Negativeb

CDK inhibitors (6) Plasma membrane
vesicles from Sf9 cells

Planar structure (33)

Fumitremorgin C
analogues (42)

T8 human Lipophilic side chains (29)

Paclitaxel
analogues (18)

8226/MR20 O-Me at position 1, tertiary amine
at position 2, side chain E and
F at position 2c

Cyclic carbonate at position 4,
methyl at position 2, side chain
C, D, G, H, M at position 2

(13)

GF120918
analogues (9)

HEK-293 Single O-Me group at R1 or R2 in
series I, single O-Me substituent
at phenethyl group in series II

OH at R1 or R2 in series I, two
O-Me substituents at phenethyl
group in series II

(21)

Tamoxifen
analogues (12)

K562/BCRP N,N-dimethylaminoethoxy substituent (26)

Flavonoids (25) MCF7 MX100 2,3-double bond in ring C, OH at
position 5 or 7, methylation of OH
group at position 6 or 4′, substitution
of Me group or addition of benzene
ring to position 7 or 8

OH at position 3, 6, 8, or 4′,
methylation of OH group at
position 5, B-ring attached
to position 3

(19)

Flavonoids (12) HEK-293 2,3-double bond on ring C, OH at
position 5, C-isoprenylation at
position 6 or 8

OH at position 3, 7 and 4′ (20)

Flavonoids (32) K562/BCRP 2,3-double bond on ring C, OH or
O-Me at position 4′ on B ring,

OH at position 3 of the C ring or
position 3’ of the B ring

(24)

Flavonoids (27) K562/BCRP OH at position 3 on the C ring (23)
Isoflavonoid
analogues (11)

HEK-293 6a,12a-double bond, planar structure,
O-Me group at position 6

Me group at position 10,
tetrasubstitution on D ring,
5 membered B ring

(25)

Camptothecin
analogues (15)d

HEK-293 OH or NH2 groups at position 10 or 11
on the A ring, planar structure, polarity

(37,38)

a Positive substitutions lead to an increase in ABCG2 inhibitory activity
bNegative substitutions lead to a decrease in ABCG2 inhibitory activity
cDetails about side chains can be found in the reference
d Positive substitutions lead to an increase in ABCG2 substrate activity

Table II. Summary of Quantitative Structure–Activity Relationships for ABCG2

Dataset (N) Modeling Method Descriptors

Performance

ReferenceTraining (R2) Validation (Q2)

Propafenone
analogues (23)

MLR/PLS Q_VSA_HYD, b_1rotN, a_acc, mr N/A 0.78 (16)

Structurally diverse
compounds (123)

PLS logD7.4, molecular polarizability 93%a 79%b (34)

Flavonoids (25) Genetic Algorithm/MLR logP, SdssC_acnt, Dy 0.852 0.784c, 0.922d (19)
Structurally diverse
compounds (49)

MLR H121, D023, M240, OH, M531,
J2, H481, RS4

0.920 N/A (32)

Tariquidar
analogues (30)

Free–Wilson 6,7-Dimethoxy group at R1,
para-nitroph and 3,4-dimethoxyph
groups at R2, 3-quinoline at R3,
amide linker 2

0.959 N/A (27)

a Percentage of correct predictions of ABCG2 inhibition in training set
b Percentage of correct predictions of ABCG2 inhibition in test set
c Internal validation using leave one out method
dExternal validation using test set
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authors have proposed the structure for a broad spectrum
MDR modulator (Fig. 1b), which remains to be synthesized
and tested (13).

Propafenone Analogues

Propafenone and its analogues have been identified as
ABCB1 substrates and inhibitors. Twenty-three compounds
modified from propafenone in the phenone substructure and
in the vicinity of the nitrogen atom were synthesized and their
potencies evaluated in mitoxantrone accumulation studies in
ABCG2 overexpressing cell lines (Fig. 2). The potencies of
the propafenone analogues were calculated, and the EC50

values ranged from ~1 to 600 μM with six compounds having
EC50 values less than 5 μM. SARs showed that the charge of

the nitrogen atom, a previously accepted descriptor for
ABCB1 inhibition (14), does not contribute to the interaction
of these compounds with ABCG2, because the activities of
the aniline and amide propafenone analogues are similar to
that of tertiary amines. Another commonly used in silico
approach is the development of a pharmacophore model: A
pharmacophore was first defined by Paul Ehrlich in the early
1900s as a “molecular framework that carries the essential
features responsible for a drug’s biological activity” (15).
Pharmacophore models were generated for ABCB1 showing
that the nitrogen atom and carbonyl group act as H-bond
acceptors, but when the pharmacophore was applied to
ABCG2, it further showed that the nitrogen atom does not
contribute to the activity. Hydrogen bond acceptor strength in
the vicinity of the nitrogen atom, a previous determinant for
ABCB1 activity, does not influence ABCG2 activity. A
QSAR model was generated for ABCG2 interaction with
propafenone analogues and was described by four descrip-
tors, namely, number of H-bond acceptors, molar refractivity,
number of rotatable bonds, and total hydrophobic van der
Waals surface area. This model performed satisfactorily with
a cross-validated correlation coefficient of 0.780 (16).

Flavonoids

Flavonoids, a large class of polyphenolic compounds, are
present in the diet in vegetables and fruits and in herbal
medicines (Fig. 3). Many studies have suggested that flavo-

Fig. 1. Chemical structure of paclitaxel analogues with substitutions at position 1, 2, 3, and
4 (Fig. 1a). The most potent inhibitor selected using structure–activity relationships
(Fig. 1b) (13)

Fig. 2. Chemical structure of propafenone analogues with two
substituent groups R1 and R2 (16)
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noids have beneficial effects in coronary heart disease, bone
loss, prevention of cancer, and others (17,18). Flavonoids are
known ABCB1 and ABCG2 modulators with low toxicity
and, due to their abundance in the diet, may alter the
pharmacokinetics of ABCB1 and ABCG2 substrates (7,19).
Our laboratory has derived SARs and QSAR models to
predict flavonoid–ABCG2 interactions. The structural fea-
tures of flavonoids significant to ABCG2 inhibition were
elucidated by comparing the EC50 values (concentration that
increases the accumulation of mitoxantrone by 50%) of
flavonoids with and without a structural element. A genetic
algorithm coupled to MLR was used to derive a QSAR
model that could predict the ABCG2 inhibition of untested
flavonoids. The EC50 values of 25 flavonoids were calculated
and ranged from 0.07±0.02 μM for 7,8-benzoflavone to 183±
22 μM for silybin. The SAR analysis showed that a 2,3-double
bond in ring C led to an increase in ABCG2 inhibition
activity. The mean EC50 value of the flavones and flavonols
was 1.15±0.38 μM, significantly lower than the mean EC50

value of the flavanones (15.3±2.9 μM). Another structural
feature that led to an increase in ABCG2 inhibition activity
was the substitution of a methyl group or addition of a
benzene ring at position 7 or 8 of the A ring. A QSAR model
was also derived for ABCG2 inhibition by the 25 flavonoids.
The model consisted of three descriptors; log P and two other
3D structural descriptors Dy and SdssC_acnt. Lipophilicity,
calculated as either log P or log D, the octanol–water
partition coefficient, is commonly accepted as a descriptor

for membrane partitioning. The model predicted the EC50

values of the training set well (r2=0.852) and also produced a
satisfactory cross-validation correlation coefficient of 0.784.
The model was used to predict the EC50 values for six
compounds in a test set and resulted in a correlation
coefficient of 0.922 (19). The SAR and QSAR model
complement each other in that an increase in log P
increases ABCG2 inhibition, and increasing hydrophobicity
at certain positions on the structure of the flavonoid also
increases ABCG2 inhibition.

The SARs for ABCG2 inhibition by flavonoids were also
explored in a second study (20), with mitoxantrone accumu-
lation studies performed using four different flavonoids from
four different classes, each compound having three hydroxyl
groups. The flavone apigenin was most efficient with an EC50

of 16 μM, followed by the flavonol galangin (19 μM), and
isoflavone genistein (24 μM), and the flavanone naringenin
(37 μM) was the least efficient. Based on the EC50 values, a
series of flavones based on the structure of apigenin (N=12)
were screened with different hydroxyl groups and hydro-
phobic substituents and mitoxantrone accumulation studies
performed. GF120918 was used as a positive control in the
experiments. SARs showed that hydroxyl groups at positions
3, 7, and 4′ had a negative impact on ABCG2 inhibition,
while a hydroxyl position at position 5 produced a positive
effect. In addition, C-isoprenylation at positions 6 or 8 had a
positive effect on ABCG2 inhibition. 6-Prenylchrysin was
identified as the best wild-type ABCG2 inhibitor with an

Fig. 3. Representative structures of the six different classes of flavonoids (19)
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EC50 of 0.29±0.06 μM, while tectochrysin was identified as
the best mutant ABCG2-T482 inhibitor with an EC50 of 1.9±
0.3 μM. Both compounds were further tested and found to be
ABCG2 selective with little effect on ABCB1 and ABCC1.
These compounds had no effects on ABCG2 ATPase activity,
suggesting that the mechanism of inhibition is different from
GF120918 and fumitremorgin C (FTC), which both strongly
inhibited ABCG2 ATPase activity (20). The positive and
negative contributions of different substituents on ABCG2
inhibition are shown in Fig. 4.

Based on the results from the previous study, GF120918
and tectochrysin were selected as lead compounds to
potentially inhibit ABCG2, and two series of structural
analogues were synthesized. Mitoxantrone accumulation
studies were undertaken to determine the extent of inhibition
of ABCG2. Nine GF120918 analogues with substitution
patterns similar to tectochrysin at three positions were tested
resulting in EC50 values ranging from 0.77±0.07 to >20 μM
(Fig. 5, series I). SARs showed that a single methoxy group at
R1 or R2 improved the inhibition, while hydroxylation at any
position was detrimental to the activity. The best inhibitor
had methoxy and trifluoromethyl substitution and resulted in
an EC50 of 0.77±0.07 μM, though all analogues had EC50

values less than that of GF120918. Four GF120918 analogues
with substituents at two positions were tested, resulting in
EC50 values ranging from 0.35±0.16 to 1.38±0.22 μM (Fig. 5,
series II). SAR studies revealed that single methoxy sub-
stitutions on the phenethyl group led to better inhibitors than
two methoxy groups (0.35±0.16 vs 0.45±0.07 μM). The best
GF120918 derivative was more potent than GF120918 (0.35±
0.16 vs 0.41±0.21 μM) (21).

Estrone and 17-β-estradiol were recently shown to be
ABCG2 inhibitors in ABCG2-overexpressing K562 cells. The
structure of flavonoids resembles estrogen, and flavonoids
have been shown to have estrogenic activities (22). The
inhibitory potencies of 19 flavonoids from different classes
and eight glycosylated flavonoids were investigated in
ABCG2-overexpressing K562 cells. Intracellular accumula-
tion of SN-38 and mitoxantrone was measured with or
without the flavonoids and drug reversal indexes (ratios of
EC50 measurements in the absence of reversing agents
divided by levels in presence of reversing agents) calculated.
The isoflavone genistein, flavanones naringenin and hesperetin,

flavonols galangin, kaempferide, and kaempferol and all
flavones tested displayed potent reversing effects. Only
naringenin-7-glucoside and luteolin-4′-O-glucoside displayed
moderate reversal activity, while all other glycosylated
flavonoids were poor ABCG2 inhibitors. A SAR suggested
the importance of the 3-hydroxyl group of the C ring for
ABCG2 inhibitory activity. The 3-hydroxyl group is present on
the structures of not only potent ABCG2 inhibitors genistein,
naringenin, and kaempferol but also onweakABCG2 inhibitors
daidzein and quercetin (23). A more detailed SAR was
proposed in another study by the same authors (24). Potent
ABCG2 inhibition was observed in flavonoids with a double
bond between position 2 and 3 on the C ring and 4′-O-
methoxylation or 4′-hydroxylation of the B ring. Flavonoids
with 3-hydroxylation of the C ring or 3′-hydroxylation of the B
ring were poor ABCG2 inhibitors. These detrimental effects of
3-hydroxylation seen in this study seems to contradict earlier
work by the same group (24). A consensus on the SARs of
flavonoids is clearly lacking with different groups presenting
contradicting results on which substituents have positive and
negative effects on ABCG2 inhibition.

The plant Boerhaavioa diffusa is often used as herbal
remedy to improve liver and kidney function. Eleven
rotenoids, isoflavonoid derivatives found in plants as secon-
dary metabolites, were isolated from the B. diffusa root
extract. These 11 compounds, differing in structure at seven
positions (Fig. 6), were assayed for their ABCG2 inhibition
activity in HEK293 ABCG2 overexpressing cells. ABCG2
was almost completely inhibited by compound 1 (percent
maximal mitoxantrone accumulation=92±7%) and com-
pound 2 moderately inhibited ABCG2 (68±6%). The
remaining compounds were weak inhibitors of ABCG2, with
GF120918 used as a reference. Concentration-dependent
studies were performed for the two most potent inhibitors,

Fig. 4. Summary of structure–activity relationships for apigenin
analogues. Thin arrows show unfavorable substitutions, while thick
arrows show favorable substitutions (20). Reproduced with permis-
sion with American Association for Cancer Research in the format
journal via copyright clearance center. Copyright 2005 by American
Association for Cancer Research

Fig. 5. Structural analogues of tectochrysin with substitutions at
positions R1, R2, and R3 and of GF120918 with substitutions at
position R and Y (21)
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and EC50 values were determined. The EC50 for compound 1
was 0.7±0.1 μM and for compound 2 was 2.5±0.5 μM. A
SAR showed that a five-membered B ring was detrimental to
ABCG2 inhibition compared to a six-membered ring (com-
pound 11 vs compound 6). A planar molecular structure was
deemed necessary for flavonoid-mediated ABCG2 inhibition,
and the same effect is seen for these rotenoid derivatives. A
loss of the planar structure in compounds 8 and 9 leads to
decreased potency. The same effect is seen for compound 10
where a tetra-substitution in ring D leads to loss of the planar

structure and reduced activity of the compound. Comparison
of the structures of tectochrysin and compound 1 shows that
both compounds have similar C and D rings but differ in rings
A and B. The EC50 of compound 1 was 0.7 μM as compared
to tectochrysin with an EC50 of 3.0 μM. Further structure
adjustments are being studied to improve the potency of the
rotenoid derivatives (25).

Tamoxifen Analogues

Another set of estrogen-like compounds were tested for
their ability to inhibit ABCG2. It was also discovered that
tamoxifen and toremifene, a structural analogue of tamoxifen,
slightly increased topotecan accumulation in ABCG2-over-
expressing K562 cells. Based on this, 14 structural analogues of
tamoxifen were synthesized and their ABCG2 inhibition
potential tested. The tamoxifen analogue 11 (TAG-11) was
identified as the lead structure, and 25 structural analogues of
TAG-11 were synthesized. Structures of the 12 representative
compounds are shown in Fig. 7. Topotecan accumulation was
measured in the presence or absence of the tamoxifen
analogues in K562 ABCG2 overexpressing cells. Tag-5, Tag-
8, Tag-11, Tag-72, Tag-126, and Tag-139 were identified as the
most potent ABCG2 inhibitors. Cytotoxicity studies using SN-

Fig. 6. Rotenoid derivatives isolated from the plant Boerhaavia
diffusa with substitutions at positions 3, 4, 6, 8, 9, and 10 and the
presence or absence of a double bond between positions 6a and 12a (25)

Fig. 7. Structure of tamoxifen analogues designed to inhibit ABCG2 (26)
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38 and mitoxantrone in K562/ABCG2 cells demonstrated Tag-
139 at a concentration of 3 μM as the most potent compound.
The six lead compounds were also tested for their interactions
with the estrogen receptor. Tag-139 showed moderate estrogen
receptor alpha inhibition and no estrogen receptor beta
inhibition. Based on these results, Tag-139 was selected as the
lead compound for further studies on ABCG2 inhibition (26).

Tariquidar Analogues

SARs were utilized to design the third-generation
ABCB1 inhibitor tariquidar (XR9576) (27). Recently, it was
discovered that tariquidar also inhibits ABCG2. Based on this
observation, six anthranilamide derivatives (Fig. 8, template
1) and 24 tetrahydroisoquinoline-ethyl-phenyl-amide deriva-
tives were synthesized and tested for their interaction with
ABCG2 (Fig. 8, template 2). The breast cancer cell line MCF/
MX100 cells overexpressing ABCG2 were cultured, and
different concentrations of test compounds were incubated
with 1 μM pheophorbide A. Accumulation of pheophorbide
A was determined at 5-min intervals for up to 60 min.
pIC50 values were calculated and ranged from 3.58±0.17
to 6.00±0.23. A Free–Wilson analysis was performed on 15
compounds to determine the structural elements that influence
ABCG2 function. Methoxy groups at positions 6 and 7 of the
structurally related analogues had a negative impact onABCG2
inhibition. A para nitro group or a 3,4-dimethoxyphenyl at
substituent position R2 and an amide linker had positive effects
on ABCG2 inhibition. Log P and log D values showed no
correlation with pIC50 values or ABCG2 inhibition. 3D-QSARs
were also calculated using comparative molecular field analysis
(CoMFA) and comparative molecular similarity indices analysis
(CoMSIA). CoMFA aims to derive a correlation between
biological activity and their 3D shape using steric (s), electro-
static (e), and hydrogen bonding (h-bnd) fields. CoMSIA has
similar aims as CoMFA except the 3D-QSAR models are
generated using steric (s), electrostatic (e), hydrophobic (h),

hydrogen bond donor (d), and hydrogen bond acceptor (a)
fields. The 3D-QSARmodels were generated using partial least
squares regression and evaluated using the leave-one-out cross-
validation method. The best CoMFA models were generated
using the s, e, and h-bnd fields and s and hbnd fields with cross-
validated correlation coefficients of 0.757 and 0.760. The best
CoMSIAmodels were generatedwith the s, e, and d fields, e and
d fields, and the s, e, h, and d fields with cross-validated
correlation coefficients of 0.803, 0.801, and 0.785, respectively.
The best CoMSIA models were further subjected to leave-
many-out cross-validation where the dataset was split into
groups of the same size (number of groups=5, 4, 3, 2). For all
models, a significant drop in the q2 was seen from the leave-one-
out method to the leave-many-out method with the dataset split
into five groups. As more compounds were left out of the
dataset (number of groups=4, 3, 2), the q2 decreased slightly for
all models. For example, the q2 generated using the leave-many-
out method with five groups for the e and d CoMSIA model
dropped to 0.702 from 0.801 to the leave-one-out method. The
q2 further dropped to 0.681, 0.598, and 0.507 for the leave-many-
out method with 4, 3, and 2 groups, respectively. Contour plots
were generated by the authors to help visualize the contribution
of the different fields to the biological activity of compounds
toward ABCG2 inhibition (27).

Fumitremorgin Analogues

FTC is a potent and specific ABCG2 inhibitor but
exhibits in vivo toxicities (28). A group of 42 FTC analogues
synthesized as diastereoisomers were screened for their
ABCG2 inhibitory activity (Fig. 9). The analogues differed
from FTC at two substituent positions, R1 and R2 with six
possible substituents at R1 (A-F) and seven possible sub-
stituents at R2 (1–7). Mitoxantrone accumulation assays were
performed in a T6400 mouse cell line overexpressing mouse
ABCG2 but lacking both ABCB1 and ABCC1 activity and in
a human T8 cell line overexpressing human ABCG2 and
lacking human ABCB1 and ABCC1. Fluorescence of mitox-
antrone was measured in the cells using flow cytometry; the
higher the mitoxantrone fluorescence inside the cells, the
greater the inhibition of ABCG2. GF120918 was used as a
positive control and gave 438±17 and 722±27 fluorescence
units in the mouse and human cell lines, respectively. SARs
were performed on the effect of substituents on human and
mouse ABCG2 inhibition, and it was found that lipophilic
substituents increase the inhibition of ABCG2. Substituents
C, D, and E at the R1 position and 4, 5, and 6 at the R2

Fig. 8. Template 1 derived from anthranilamide and template two
based on the tetrahydroisoquinoline-ethyl-phenyl-amide backbone
(27)

Fig. 9. Fumitreomorgin C analogues with six possible substituents at
R1 (a–f) and seven possible substitutents at R2 (1–7) (29)
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position were most beneficial with efficacy approaching that
of GF120918. The two most potent analogues, Ko132 and
Ko134, both with an isobutyl substitution at the R1 position,
were chosen for further in vitro and in vivo studies (29).

Ko134, Ko132, and Ko143 (a newly synthesized methoxy
analogue of Ko134) were selected for detailed in vitro and in
vivo studies. Mitoxantrone accumulation studies showed that
the three compounds were more potent than FTC and that
Ko143 was twice as potent as GF120918. All three com-
pounds had low activity against ABCB1 and ABCC1, with
Ko143 being the most specific ABCG2 inhibitor. Ko143 was
selected for in vivo studies in Abcb1a/1b (−/−) knockout
mice. Topotecan plasma concentrations increased four- to
sixfold at 30 and 60 min post-administration of the drug, and
this was speculated to be the direct result of ABCG2
inhibition in the small intestine (30).

Cyclin-Dependant Kinases

Cyclin-dependant kinases (CDKs) regulate cell cycle
progression and gene transcription necessary for survival of
cancer cells (31), and CDK inhibitors are being pursued as
potential drug targets in drug discovery and development.
Based on a previous QSAR model by Saito et al. (32),
compounds with an amine bonded to a heterocyclic carbon, a
fused heterocyclic ring(s), and two substituents on a carbox-
ylic ring of the fused heterocyclic ring(s) are chemical
moieties important for inhibition of ABCG2. This QSAR
model predicted five CDK inhibitors, purvalanol A, WHI-
P180, bohemine, roscovitine, and olomoucine to be ABCG2
inhibitors. Hematoporphyrin transport was measured in ATP-
dependent plasma membrane vesicles isolated from ABCG2
overexpressing cells. Most CDK inhibitors (except olomou-
cine) inhibited hematoporphyrin transport by ABCG2, and
purvalanol Awas the strongest ABCG2 inhibitor with an IC50

of 3 μM. Photosensitivity of pheophorbide Awas measured in
ABCG2-expressing Flp-In-293 cells with or without the CDK
inhibitors. Only purvalanol A increased the photosensitivity
of the ABCG2-expressing Flp-In-293 cell line, suggesting that
purvalanol A plays a significant role in the inhibition of
ABCG2. SARs showed that only two CDK inhibitors,
purvalanol A and WHI-P180, have a planar structure and
are also the two strongest ABCG2 inhibitors. WHI-P180 did
not enhance the photosensitivity of ABCG2-expressing Flp-
In-293 cells. Energy of the highest occupied molecular orbital
(HOMO) profile was calculated using molecular orbital
calculations. The HOMO profile of WHI-P180 was similar
to that of gefitinib, an ABCG2 substrate. The molecular
structure and HOMO profile suggest that WHI-P180 is also
an ABCG2 substrate; on the other hand, purvalanol A, a
potent inhibitor, exhibits a different HOMO profile and
molecular structure (33).

Structurally Unrelated Compounds

A disadvantage of most SAR and QSAR models is the
use of structurally related compounds in the dataset. In this
case, the generated model does not apply to a different
structural set of compounds. Matsson et al. (34) generated 2D
and 3D models to predict ABCG2 inhibition using 123
structurally unrelated compounds. Mitoxantrone accumula-

tion was measured in Saos-2 ABCG2 overexpressing cells
incubated with different compounds. The increase in mitox-
antrone accumulation was normalized to the accumulation
measured using Ko143, a potent ABCG2 inhibitor. Molecular
descriptors (N=152) representing molecular size, flexibility,
connectivity, polarity, charge, hydrogen bonding potential,
and log P were calculated and a model generated for ABCG2
inhibition using orthogonal partial least squares regression.
The dataset was split into training and test sets of 80 and 43
compounds, respectively. A final model was generated with
two descriptors, log DpH=7.4 and molecular polarizability. The
model correctly predicted 93% of ABCG2 inhibitors and
92% of non-interactors for the training set and 83% of
ABCG2 inhibitors and 76% of non-interactors for the test set.
The authors reasoned that lipophilicity represents the need
for partitioning of the compound into the cell membrane as a
first step before interacting with ABCG2. To model the
binding of compounds to ABCG2, a lipophilicity-independent
dataset (N=22) was used with each inhibitor (N=11) and non-
inhibitor (N=11) paired for lipophilicity. The final model was
described by hydrogen bonding and nitrogen atoms and
correctly classified 91% of inhibitors and 82% of non-
interactors. A molecular polarizability-independent dataset
(N=10) was used to generate a model that correctly classified
100% of inhibitors and non-interactors. The descriptors in the
final model represented lipophilicity, the surface area of non-
polar atoms, and the surface area of nitrogen atoms. A
pharmacophore model was generated using 28 inhibitors in
the training set. The pharmacophore was described by two
hydrophobic features and one hydrogen bond acceptor,
confirming the QSAR results (34).

A second study utilizing a non-congeneric dataset was
performed to determine a QSAR model to predict ABCG2
inhibition (32). In this study, 49 compounds were selected to
represent nine different classes: neurotransmitters, calcium
channel blockers, potassium channel modulators, steroids,
non-steroidal anti-inflammatory drugs, anti-cancer, antibiotics,
other drugs like tacrolimus and quinidine, and ABCG2
inhibitors. ATP-dependent inhibition of mitoxantrone trans-
port by the 49 test compounds was determined in ATP-
dependent plasma membrane vesicles. A QSAR model was
generated using chemical fragmentation codes calculated using
the programMarkush Topfrag (Derwent Information Limited,
London, UK). A chemical fragmentation code consists of
alphanumeric symbols that represent a fragment of the
chemical structure of the molecule of interest. A QSARmodel
describing the extent of ABCG2 inhibition was derived:

ABCG2 inhibition ð%Þ ¼
X

ci � scorei þ C ð1Þ

where i designated a specific chemical fragmentation code
and the score represents the presence or absence of that code
in the structure of the molecule of interest. C is a constant,
and c is the chemical fragmentation code coefficients that are
calculated by MLR. A QSARmodel was derived, which could
explain the ABCG2 inhibition using one set of chemical
fragmentation codes. The final model consisted of eight
descriptors representing 29 different chemical fragmentation
codes and was able to predict the inhibition of ABCG2
reasonably well (r2=0.920). The observed ABCG2 inhibition
values ranged from 0% to 94.5%. The model predictions
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ranged from −11.3% to 93.8%. The model better predicted
the higher values with significant deviations in the lower
range. For example, the observed ABCG2 inhibition for
bepridil, a calcium channel blocker, is 20.7, while the
predicted value is 1.74%. The predictability of the method
was tested on gefitinib, a compound not included in the
original analysis. The percent of ABCG2 inhibition was
calculated experimentally to be 95% and was predicted well
by the model (percent ABCG2 inhibition=104%). The model
predicts that an amine bonded to a carbon in a heterocyclic
ring, a fused heterocyclic ring(s), and two substituents on a
carboxylic ring of the fused heterocyclic ring(s) are important
positive contributors to ABCG2 inhibition. These structural
features are present on gefitinib, and thus, it is correctly
predicted to fully inhibit ABCG2 (32). One disadvantage of
this approach is that the model cannot predict inhibition of
ABCG2 for steroids because chemical fragmentation codes
cannot be calculated for steroids.

A pharmacophore model was derived by Chang et al.
(35) using four ABCG2 inhibitors: GF120918, Ko143, nelfi-
navir, and nicardipine. The pharmacophore model contained
three hydrogen bond acceptors and three hydrophobic
features and was tested on 500 commercially available drugs.
The search resulted in 37 ABCG2 ligands with six already
known inhibitors: digoxin, nicardipine, indinavir, lopinavir,
ritonavir, and saquinavir (35).

SAR AND QSAR OF ABCG2 SUBSTRATES

Very few studies have examined the SARs and QSAR
models for ABCG2 substrates. Irinotecan is a wide spectrum
anticancer agent and is a standard therapy for many cancers
including colon cancer. ABCG2 overexpression in tumor cells
is associated with poor outcome because ABCG2 actively
transports anticancer agents out of tumor cells (36), including
SN-38, the active metabolite of irinotecan. Plasma membrane
vesicles prepared from an ABCG2 overexpressing cell line

transported SN-38 and its glucuronide conjugate. To circum-
vent efflux by ABCG2, 14 analogues of SN-38 were
synthesized and studied for their substrate specificity toward
ABCG2 (Fig. 10). The 14 structural analogues differed from
SN-38 at positions 10 and 11 on the A ring. Accumulation and
cytotoxicity of SN-38 and its analogues was measured in SN-
38-sensitive PC-6 and SN-38-resistant PC-6/SN2-5H2 cell
lines and the IC50 values calculated. Drug resistance ratios
were also calculated as the ratio of the IC50 in the resistant
cell line to the IC50 in the sensitive cell line. The IC50 for SN-
38 in the sensitive cell line was 1.00±0.10 μM and in the
resistant cell line was 262±6 μM, corresponding to a drug
resistance ratio of 262, indicating that SN-38 is effluxed out of
the SN-38-resistant cell line by ABCG2. Three SN-38
analogues had IC50 values similar to that of SN-38 in the
resistant cell line. The drug resistance ratios for SN-355, SN-
392, and SN-398 were 105, 55, and 213, suggesting that they
are also substrates for ABCG2. The accumulation of these
three compounds and SN-38 was much lower in the resistant
cell line confirming the results of the cytotoxicity assay. A
SAR analysis showed similarities in substituents in SN-38 and
SN-355, SN-392, and SN-398. SN-38 and SN-398 have a
hydroxyl group at position 10 on the A ring, SN-355 has a
hydroxyl group on position 11 of the A ring, while SN-392 has
an amino group at position 10. No other structural analogues
have a hydroxyl or amino substitution at positions 10 or 11 on
the A ring. A hydroxyl or amino group can form hydrogen
bonds and might be an important step in the substrate
recognition pattern of ABCG2. It was also suggested that
polarity of the compound might be an important feature for
transport by ABCG2. The high-performance liquid chroma-
tography retention time of the compounds, as measured using
a reverse phase column, correlated inversely with the drug
resistance ratio where compounds with a short retention time
had higher ratios and vice versa. The SAR showed that SN-
355, SN-392, and SN-398 have similar substituents on the 10
and 11 positions making these compounds susceptible to

Fig. 10. Chemical structure of SN-38 analogues with substitutions at position X and Y (37).
Reprinted with permission of John Wiley & Sons, Inc from Novel camptothecin analogues
that circumvent ABCG2-associated drug resistance in human tumor cells, Vol. 110, No. 6,
2004, pp 921–927. Copyright 2009
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transport by ABCG2 like SN-38 (37). Based on the SAR, it
was speculated that the remaining SN-38 analogues would be
able to circumvent efflux by ABCG2.

The initial SARs for SN-38 analogues were followed up
with quantum mechanical calculations and derivation of
neural network QSARs. The solvation free energy (ΔG)
was calculated as:

$G ¼ ECOSMO � Einvacuo þ 0:00542� SASAþ 0:92 ð2Þ

where ECOSMO, Einvacuo, and SASA are the energies of SN-38
and its analogues as calculated by AM1/COSMO, AM1/invacuo,
and the solvation accessible surface area, respectively. A plot of
the drug resistance ratios vs the solvation energy separated the
SN-38 analogues into two distinct groups: substrates and non-
substrates of ABCG2. Electrostatic properties were also calcu-
lated for the analogues, and a negative electrostatic potential
area was seen at position 10 in the A ring for SN-38 and SN-398.
On the other hand, this negative electrostatic potential area was
missing for SN-22 (drug resistance ratio=3.5). This suggests that
the negative electrostatic potential at position 10 in the A ring is
crucial for hydrogen bond formation with the active site of
ABCG2 and SN-38 analogues with this feature are potential
substrates for ABCG2 (38).

CONCLUSION

In silico models can be used to predict pharmacokinetic
and pharmacodynamic properties during the drug discovery
and development phases and can be used to synthesize drugs
with favorable physicochemical properties. SAR and QSAR
models are commonly applied in silico models that have been
extensively used to predict drug distribution properties like
volume of distribution and clearance (9,39). QSAR models
for ABCB1 substrates and inhibitors have been comprehen-
sively studied (40,41), but so far, a model that can predict
substrates and inhibitors accurately has not been discovered.
Similarly, QSAR models to predict ABCG2 substrate and
inhibitors aremissing.One common structural descriptor among
the SARs and QSAR models is lipophilicity. Lipophilicity,
calculated as either log P or log D, has been shown to be a
predictor of inhibition of ABCG2 by a few groups (19,29,34). In
our laboratory, we have derived a QSAR model to describe
the pEC50(-log EC50) values of ABCG2 inhibitors using 19
flavonoids in the training set. The final model consisted of three
descriptors including log P and was able to accurately predict
the pEC50(-log EC50) values for the six flavonoids in the test set
(19). Lipophilicity, expressed as log D7.4 was present in another
model to predict ABCG2 inhibitors. The authors suggest a logD
cutoff of 0.5, above which there is an increased likelihood of a
compound-inhibiting ABCG2 (34). Though lipophilicity has
been shown to be a good predictor ofABCG2 inhibition in some
studies, other investigators have not found this descriptor to be
significant (16,27). No correlation was found between log IC50

and log P or log D for 30 tariquidar analogues (27). In another
study, ten descriptors, including log P, were used to construct a
QSAR model for 23 propafenone analogues. The final model
consisted of four descriptors but did not include log P (16).
Finally, no correlation was found between percent ABCG2
inhibition observed and log P for 49 structurally unrelated
compounds (32).

A second possible common feature among ABCG2
inhibitors is the existence of a planar structure required for
binding to the protein and inhibiting its function. Proof of this
comes from multiple studies looking at different structural
series of compounds. We have proposed that the 2,3-double
bond in ring C in flavonoids increases the inhibition potency
for flavonoids, and this is clearly observed in the low EC50

values for flavones (1.15±0.38 μM) vs flavanones (15.3±
2.87 μM) (19). A similar observation was made by Ahmed-
Belkacem et al. (20,25) with regards to flavonoids and
rotenoid derivatives. The loss of the 2,3-double bond in ring
C of flavonoids and the 6a,12a-double bond between rings B
and C of rotenoid derivatives led to a decrease in inhibition of
ABCG2 (20,25). A similar conclusion was drawn for CDK
inhibitors with regards to their ABCG2 inhibition potency.
Purvalanol A and WHI-P180, the two most potent ABCG2
inhibitors in the class had a planar structure, whereas the
other compounds do not have a planar structure and are
weak ABCG2 inhibitors (33). Nakagawa et al. (38) examined
SARs for SN-38 analogues in an attempt to discover
analogues with similar anticancer properties as SN-38 but
without the drug resistance of SN-38. It was suggested that
the planar structure of SN-38 is critical for binding to the
active site of the protein.

QSAR models for ABCG2 inhibitors and substrates
have mostly been evaluated using congeneric series of
compounds. A lead compound with experimental data on
the interaction with ABCG2 is used to derive a series of
compounds with good pharmacokinetic, pharmacodynamic,
or toxicokinetic properties. ABCG2 inhibitors have been
tested in vitro, and a model is derived. This model has limited
applicability because it cannot be applied to another con-
generic series, presenting a major disadvantage of most
QSAR models. Another disadvantage of QSAR studies is
the dependence of the relationships on the experimental
systems used to generate the data. Activity measurements
(EC50 values) in cellular systems may be influenced by
permeability and cellular uptake of the substrate or inhibitor.
A high resolution crystallized structure of ABCG2 has not
been discovered, and thus, interactions of compounds with
ABCG2 cannot be accurately modeled.

In conclusion, QSAR models have been used to predict
potent and specific ABCG2 inhibitors that have been
successfully tested in vitro. In a study of non-congeneric
compounds, log D and molecular polarizability emerged as
significant determinants of ABCG2 inhibition. Studies with
congeneric series of compounds indicated the importance of
log P or lipophilicity, planar structure, and hydrogen bonding
potential for ABCG2 inhibition.
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