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Abstract
The identification of complex disease susceptibility loci has been accelerated considerably by advances in
high-throughput genotyping technologies, improved insight into correlation patterns of common variants and the
availability of large-scale sample sets. Linkage scans and small-scale candidate gene studies have now given way to
genome-wide association scans. In this review, we summarize insights gained from the past, highlight practical
issues relating to the design and analysis of current state-of-the-art GWA studies and look into future trends in
the field of human complex trait genetics.

Keywords: association study; complex disease; single nucleotide polymorphism; genome-wide association scan; meta-analysis;
sequencing

INTRODUCTION
Common complex diseases have traditionally been

ascribed to complicated networks of genetic and

environmental factors. The search for genetic suscep-

tibility loci has been much more straightforward for

Mendelian disorders than for multifactorial traits,

where numerous variants of modest or small effect

sizes contribute to the genetic background of disease.

The common disease–common variant and multiple

rare variant hypotheses had been proposed as distinct

scenarios and polarized the field of complex disease

genetics for some time. However, emerging evi-

dence indicates that the genetic aetiology of complex

traits is likely to be based on a combination of mul-

tiple rare and common susceptibility loci.

The field of human complex trait genetics

has undergone major transformation over the past

decade. Researchers have gradually moved from

family-based approaches for investigating linkage

to association studies offering (and, lately, deliver-

ing) the promise of complex disease locus

robust identification. The journey has witnessed

study design trends come and go, with valuable les-

sons learnt from each such era. Rapid technological

developments, coupled with the availability of larger

sample sizes and a better understanding of human

genome sequence variation, continue to facilitate

progress in the field. In this review, we aim to

distil lessons from the past few years in the field of

complex disease genetics, describe the present state-

of-the-art for finding common susceptibility loci and

look into emerging themes for the near future.

PAST
Genetic association studies have, over the last decade,

evolved from genome-wide linkage scans to candi-

date gene approaches, to gene-centric designs aiming

to capture the majority of common variation and,

ultimately, to genome-wide association (GWA)

scans. Several factors have influenced this trajectory,

including our understanding of human genome
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sequence variation, and ongoing development of

genotyping technologies (moving from low- to

medium- to high-throughput approaches).

Family-based linkage studies prevailed in the lit-

erature for several years as they constituted the only

means of targeting variation genome-wide at the

time. Linkage studies tended to lead to the identifi-

cation of numerous peaks that were rarely repro-

duced in independent studies. For example, in type

2 diabetes (T2D), although more than 40 linkage

scans have been performed, the overall picture has

been one of multiple modest signals, few of which

show evidence of replication [1, 2]. Linkage signals

typically encompass several megabases of sequence

and the resulting localization resolution is low

[although this improved marginally when single

nucleotide polymorphism (SNP)-based linkage

scans were introduced] [3, 4]. Consortia formed for

the meta-analysis of linkage scans of particular phe-

notypes served to distil the number of statistically

believable linkage peaks [2] and promising signals

were traditionally followed up by fine-mapping

experiments [5]. Very few such endeavours have

led to the identification of causal disease susceptibility

variants [6, 7]. This is perhaps not surprising, as link-

age disequilibrium (LD) mapping efforts under link-

age peaks tended to make use of SNPs with common

minor allele frequencies (MAFs), whereas linkage

signals were more likely to reflect more penetrant

effects of rare variants. Moreover, because of the rel-

atively small number of families and microsatellite

markers used, most of these studies may have been

underpowered to detect many of the effects that

association approaches have thus far discovered.

The field shifted towards association studies,

exemplified over the last decade by the candidate

gene study. Candidate gene studies focused on a

few, if not just a single, variant(s) within a biologi-

cally plausible candidate gene. They were typically

carried out in a few hundreds of disease cases and

controls, or in a few hundreds of nuclear families,

consisting of affected offsprings and unaffected par-

ents. The latter approach (transmission disequilib-

rium test) [8] reached high popularity levels in the

nineties due to its property of being robust to pop-

ulation stratification. Although several notable

exceptions exist (for example [9, 10] from the field

of T2D), candidate gene studies on the whole did

not deliver many robustly replicating disease suscep-

tibility loci. This irreproducibility of results could be

ascribed to a combination of several contributing

factors: low power (as a result of small sample sizes)

to detect what we now recognize as modest or small

effects; limited understanding of disease aetiopatho-

genesis leading to inappropriate selection of candi-

date loci; low thresholds for declaring significance

and over-interpretation of results; and inadequate

capture of variation across the genes of interest.

The International HapMap Project [11] greatly

increased our understanding of correlation patterns

(LD) between common variants across the genome.

This enabled the selection of maximally informative,

non-redundant sets of markers across genes or

regions of interest. A wide variety of haplotype-

based and pairwise tagging methods were developed

[12–15]. Tag SNP studies continue to be carried out;

they employ information from relevant HapMap

populations to select SNPs capturing the majority

of common variation across targeted loci. These

markers are then genotyped and analysed in the data-

sets of interest, and inferences about their proxy

variants are made on the basis of the association

patterns observed.

Advances in high-throughput, high-accuracy

genotyping platforms marked a new era for associa-

tion studies, enabling the concurrent examination of

hundreds of thousands of SNPs. Sufficient power

in GWA studies was facilitated by the availability

of large-scale sample collections. Over the last few

years, GWA scans have succeeded in detecting

and establishing complex trait associations, and

have started to provide valuable insights into disease

aetiopathogenesis.

PRESENT
GWA studies undoubtedly constitute the present

state-of-the-art in efforts to elucidate the genetic

aetiology of complex phenotypes. Several commer-

cial products offering the potential to simultaneously

assay hundreds of thousands of SNPs genome-wide

are available from companies such as Affymetrix

and Illumina. These have varying SNP content and

density, and have been designed using diverse

marker selection strategies (Table 1). For example,

arrays with an exon-centric SNP content, such as

the Illumina Human-1, reflect strategies focusing

on potentially functional variants. LD-based plat-

forms contain tag sets of SNPs selected to maximize

the amount of common variation captured on the

basis of HapMap data. Affymetrix platforms comprise

quasi-randomly distributed SNPs or a combination
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of random and tag SNPs. In recognition of their

potential role in complex disease susceptibility,

copy number variants (CNVs) are also increasingly

featured.

Table 1 summarizes the extent to which different

platforms capture common (MAF> 0.05) variation

based on published evaluations in the three different

HapMap phase II populations [11]. Coverage

in European- and East Asian-descent populations

is very high and has substantially improved with

next generation chips. Information capture in

African-descent populations is lower, reflecting

higher recombination rates and lower levels of

inter-marker correlation. However, it has been

shown theoretically that coverage of all common

variation based on HapMap has been overestimated

and that larger sample sizes and denser marker sets are

required for more accurate estimation of tagging

SNP efficacy [19, 20]. Overestimation of previously

reported coverage estimates has also been empirically

confirmed by the analysis of sequence-derived vari-

ation data from 76 genes in HapMap samples [21].

Although variation capture is an important consider-

ation in GWA study design, it is not the sole deter-

minant of power.

The statistical power of a GWA study to detect

variants associated with disease is a function of sample

size, the susceptibility locus effect magnitude, risk

allele frequency of the queried SNP and its correla-

tion with the causal variant. Although the allelic

architecture of complex traits has not been fully

characterized yet, recent GWA scans and follow-up

studies have highlighted that common susceptibility

loci are likely to have modest or small effect sizes

[allelic odds ratios (ORs) between 1.1 and 1.5].

In a genome-wide setting, the large number of

tests performed requires stringent thresholds

for declaring statistical genome-wide significance

(P¼ 5� 10�8) [22, 23], necessitating large-scale

sample sizes. For example, in order to achieve 90%

power to detect a risk allele with 0.20 frequency and

an allelic OR of 1.2 (at the genome-wide signifi-

cance level), more than 6000 affected individuals

and twice as many controls would be required

(Figure 1). To achieve the same power to detect

similar effects at lower frequency variants (frequency

of 0.05 or less), a GWA study would need upwards

of 20 000 cases (Figure 1).

Along with sample size considerations, GWA

studies have also given rise to several logistical

challenges: for example, issues relating to automated

but accurate genotype calling, programmatic data

handling and parsing, genotype quality control

(QC) standards and analytical considerations that

did not previously apply to smaller scale studies.

Genotype calling is the process by which hybrid-

ization intensities on genome-wide chips are trans-

lated into genotypes. Typically, intensities are

normalized and transformed into coordinates which

yield distinct genotype clouds. As high call rate and

accuracy of genotype calling are important factors in

safe-guarding QC standards in GWA scans, a variety

of genotype calling algorithms have been developed

and continue to evolve [24–27]. The possible adverse

effects of inaccurate genotype calling in downstream

analyses have been recognized for a while [28].

Table 1: Overview of marker content and array design across commercially available platforms and coverage of
common variation (MAF> 0.05) based on HapMap phase II data

Platform Number of
markers

Array
design

Coverage
in CEUa (%)

Coverage in
JPTb+CHBc (%)

Coverage
inYRId (%)

Source

Illumina Human-1 More than 109 000 Gene 26 28 12 [16]
Illumina HumanHap300 317511 Tag 75 63 28 [16]
Affymetrix SNPArray 5.0 500568 Random 65 66 41 [16]
Illumina HumanHap550 555352 Tag 87 83 50 [17]
Illumina Human610 620 901 Tag, CNVe 89 86 58 [18]
Illumina HumanHap650Y 660 917 Tag 87 84 60 [17]
Affymetrix SNPArray 6.0 More than 1800 000 Random+Tag, CNVe 83 84 62 [17]
Illumina Human1M 1199187 Tag, CNVe 93 92 68 [17]

aUtah residents with ancestry from northern andwestern Europe.
bJapanese fromTokyo, Japan.
cHan Chinese from Beijing,China.
dYoruba from Ibadan,Nigeria.
eCopy number variation.
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Therefore, inspection of intensity plots for interest-

ing association signals is an essential aspect of geno-

type QC.

Genotype QC is an extremely important step in

GWA studies, as it can dramatically reduce the

number of false positive associations. The field has

converged to an essential set of QC checks; Figure 2

summarizes the sample- and SNP-based QC steps

that are typically employed.

SNP call rate is a good indicator of genotype

probe performance. Removing SNPs with a greater

proportion of missing genotypes is essential to con-

trol for false positives, as spurious associations can

arise due to non-random missingness. Checking for

gross departure from Hardy–Weinberg equilibrium

(HWE) could help in identifying SNPs with geno-

typing errors (e.g. excess of heterozygotes).

Figure 1: Number of affected individuals required (given a case/control ratio of 1:2) in order to achieve 10, 50 and
90% power to detect an effect at �¼ 5�10�8 for variants with modest to low effect sizes (allelic odds ratios 1.10,
1.15 and 1.20) and varying risk allele frequencies: (a) 0.05, (b) 0.20, (c) 0.50 and (d) 0.90.Calculations assume complete
LD between the causal and genotyped variant.

Figure 2: Flowchart of the main quality control steps
in a GWA study.
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As clustering algorithms tend to perform less well

for SNPs with low-frequency alleles, it is current

practice in GWA studies to exclude rare SNPs

from single point analyses (these are underpowered

to detect effects anyway). Genotype calling algo-

rithms have the potential to make incorrect calls.

Therefore, inspecting intensity plots, though not

feasible on a genome-wide scale, is necessary for

SNPs with interesting association signals.

Sample call rate is a good indicator of hybridiza-

tion performance; high rates of missingness usually

indicate low DNA quality or problematic arrays.

Discrepancies in gender assignment (SNP data

versus phenotype data) can help identify sample

mix-ups. Excess genome-wide heterozygosity may

indicate possible contamination leading to a larger

proportion of heterozygous genotypes. Accidentally

duplicated and related individuals in large-scale stu-

dies can be identified through identity-by-descent

estimation given identity-by-state information in a

relatively large homogeneous sample [29]. Typically,

the sample with the lowest call rate from each pair of

related individuals is removed. Finally, ethnic outliers

can be detected and either removed or accounted for

in downstream analyses.

Population stratification can be a major con-

founding factor in GWA studies, both for case/

control designs and population-based quantitative

analyses. If undetected, it can lead to false positive

associations due to differences in allele frequency

between the different populations [30]. To guard

against it, most GWA scans attempt to match cases

and controls for broad ethnic background from

the outset and then rely on statistical approaches to

detect population substructure and correct for it

[29, 31, 32]. Genomic control (�) is an estimate of

the degree of inflation of the test statistics genome-

wide and can serve as a crude correction factor [31].

Principal component analysis [32] and multidimen-

sional scaling [29] are methods employed to identify

individuals of different ethnic origin visualized

onto a two-dimensional projection on axes of

genetic variation. Inferred principal components

can be included as covariates in association analyses.

Directly typed SNPs in GWA studies are typically

analysed by single-point methods, most frequently

under the additive or multiplicative model. General

models are less frequently tested as they increase

dimensionality; dominant and recessive models are

equally parsimonious but generally less powerful

than the additive model. Multimarker tests (such as

sliding haplotype window analyses) are less feasible

at the genome-wide scale. However, imputation

approaches have recently been developed to take

into account information from multiple surrounding

markers in order to infer genotypes at untyped loci

[33]. Imputation therefore currently allows testing

for association at >2.5 million markers genome-

wide, thus maximizing information output from

GWA studies, and additionally serves as an ideal

tool for the combination of data from GWA scans

that have been carried out on different platforms.

The analysis of imputed data necessitates taking

into account uncertainty by analysing the full geno-

type probability distribution appropriately.

The sheer number of SNPs tested for association

with disease raises important statistical considera-

tions about type I error and statistical significance

levels. To account for the inflation in false positives,

a variety of approaches, such as the conservative

Bonferroni correction and the less stringent control

of the false discovery rate [34], have been proposed.

Obtaining empirical P-values after hundreds of

thousands or millions of permutations are an alterna-

tive but prohibitively computer-intensive way to

assess statistical significance. To overcome the mul-

tiple testing problem, stringent genome-wide signif-

icance thresholds have been proposed: adjustment

for 1–2 million independent tests at common

variants genome-wide has resulted in the aforemen-

tioned generally accepted significance threshold

of P¼ 5� 10�8 [22, 23]. In practise, most GWA

studies prioritize signals for follow-up on the basis

of their relative statistical strength for association

and on evidence accrued from bioinformatics

approaches. Replication in independent datasets

(of the same variant, in the same direction, under

the same model) constitutes the gold standard in

genetic association studies of any scale.

T2D serves as a prime example of the success

of the GWA scan approach. Over the past 2 years,

multiple GWA scans have been published, greatly

accelerating progress in identifying novel susceptibil-

ity variants for the disease [24, 35–42]. This first

wave of studies collectively raised the number of

established T2D loci to 11.

Approaches aiming to identify complex trait

susceptibility loci have recently also extended

to the meta-analysis of diverse scans carried out for

the same phenotype. This move in the field has been

brought about by the realization that effect sizes for

common variants are becoming increasingly low.

Common susceptibility variants for complex disease 349



As Figure 1 attests, sample size is one of the most

important factors in boosting power for an associa-

tion study. Synergy across research groups, leading to

the synthesis of GWA scan results, can greatly

increase sample size and, hence, power to detect

small individual effects. Several design and analytical

challenges are associated with GWA scan meta-

analysis (reviewed in [43]). These collaborative

efforts have recently started to successfully extend

the list of robustly replicating associations with

complex traits [44–48]. For example, the Diabetes

Genetics Initiative, Finland–United States Investiga-

tion of NIDDM and Wellcome Trust Case Control

Consortium T2D scans undertook a three-way

meta-analysis, which led to the identification of 6

novel susceptibility loci [44].

FUTURE
The first wave of GWA studies and meta-analyses

conducted indicate that only a small amount of the

genetic variance underlying the heritable component

of common complex traits has been identified. For

example, in the case of T2D, the so far identified loci

account for <4% of the estimated heritability

(reviewed in [49]). This reflects the fact that current

studies involving thousands of individuals are still

underpowered to discover most of the common

genetic variants with the very modest to low effect

sizes that are likely to exist. It is anticipated that

sample sizes of many tens of thousands or even hun-

dreds of thousands will be required to fulfil this

purpose. The identification of further common

variants with small effect sizes may not have imme-

diate consequences in disease prediction and prog-

nosis, but will hopefully continue to provide novel

insights into implicated biological pathways, pointing

to new targets for therapy. Therefore, the future is

poised to continue in the same trend of large-scale

consortia being formed to facilitate the accumula-

tion of data and the combination of expertise, in

order to make the next generation of GWA scan

meta-analyses possible. These will in turn start to

enable the investigation of gene–gene and gene–

environment interactions, currently hindered by

low power.

The associated SNPs uncovered by GWA scans

are unlikely to be the functional polymorphisms.

One of the major challenges that the field of com-

plex disease genetics faces over the next few years

is how best to explore information in association

regions delineated by recombination hotspots,

typically spanning several kilobases, in order to iden-

tify the truly causal variants. Deep resequencing

in samples of interest and subsequent large-scale

follow-up of interesting markers through fine-

mapping is an emerging study design paradigm,

enabled by next generation sequencing technologies.

However, several study design issues remain unclear,

including the choice of resequencing and fine-

mapping samples and their ethnicity, sample size,

spectrum of typed marker allele frequency and

analytical approach. It is generally recognized that

the benefits of fine-mapping will be finite, particu-

larly in regions of very strong LD, and that functional

studies will be necessary in order to pinpoint the

truly causal variant. The availability of global gene

expression profiles coupled with genotype data

from the same samples can also serve as a valuable

resource, as associated variants might display strong

cis associations with expression of a nearby gene

whose expression levels are causally linked with the

underlying phenotype or disease trait [50].

The future of genetic association studies is poised

to have an increasing focus on CNVs; this will be

facilitated by ongoing efforts to provide a catalogue

of structural variants (e.g. the CNV project [51]).

Along with rare variants, CNVs could account for

some of the missing complex trait heritability.

For example, schizophrenia studies have uncovered

CNV associations [52, 53] in a disease where GWA

studies have not returned significant evidence for

robust common SNP associations (reviewed in [54]).

Current studies are focused on common variants,

which invariably have small effects. However, the

field is now starting to recognize the role of rare

variants, which can have larger effect sizes, in com-

plex disease susceptibility. The analysis of lower

frequency polymorphisms necessitates larger sample

sizes and tailored analytical approaches in order to

increase power [55]. The 1000 genomes project

[56] will improve our understanding of variation at

the lower end of the frequency spectrum and is

expected to enhance information capture and inter-

pretation in genetic association studies.

There is little doubt that large-scale sequencing

studies will constitute the way forward for character-

izing the allelic architecture of complex disease.

Several challenges with respect to the design, analysis

and interpretation of such studies continue to emerge

and will undoubtedly keep researchers busy for the

foreseeable future. The landscape of human complex
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disease genetics has witnessed major changes over the

past 10 years, and is poised to change even more

dramatically in the near future.
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