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X chromosomal regulation in flies: when less is more
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Abstract In Drosophila, dosage compensation of the
single male X chromosome involves upregulation of
expression of X linked genes. Dosage compensation
complex or the male specific lethal (MSL) complex is
intimately involved in this regulation. The MSL
complex members decorate the male X chromosome
by binding on hundreds of sites along the X chromo-
some. Recent genome wide analysis has brought new
light into X chromosomal regulation. It is becoming
increasingly clear that although the X chromosome
achieves male specific regulation via the MSL complex
members, a number of general factors also impinge on
this regulation. Future studies integrating these aspects
promise to shed more light into this epigenetic
phenomenon.
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Abbreviations

AEL After Egg Laying

CBD Chromo barrel domain

CES Chromatin entry site

DCC Dosage compensation complex
DHS Dnase hypersensitive site
HAS High affinity sites

HAT Histone acetyltransferase
HDAC Histone deacetylase

ISWI Imitation switch

LAS Low affinity sites

MLE Maleless

MRE  MSL recognition

MOF Males absent on the first
MSL Male specific lethal

NPC Nuclear pore complex

NuRD  Nucleosome remodeling and deacetylase
NURF  Nucleosome remodeling factor
roX RNA on X

SCF Supercoiling factor

SXL Sex lethal

UTR Untranslated region

Introduction

Dosage compensation is an exquisite example of a
chromosome wide phenomenon for regulating gene
expression (Payer and Lee 2008; Meyer 2005; Straub
and Becker 2007; Mendjan and Akhtar 2007). In
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Fig. 1 Dosage compensa- s
tion in Drosophila mela-
nogaster. Female cells have 9
two X chromosomes, while
males have one X and one
degenerated Y chromosome. Autosome
The male X produces the P o
same dose of RNA as the

female to compensate for the
absence of homologue

MRNA
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Drosophila this process involves upregulation of
expression of X chromosomal genes in male flies by
approximately two-fold in comparison to female flies
which possess two X chromosomes (Fig. 1). In
Drosophila melanogaster, dosage compensation is
regulated by male specific lethal (MSL) factors whose
product is essential for male survival. These factors
are collectively called the MSL complex or the
dosage compensation complex (DCC).

Domain architecture
Who interacts with whom?
MSLI and MSL2

The MSL complex is a ribonucleoprotein complex that is
composed of two long non-coding RNAs; roX1 or roX2
and at least five proteins namely MSL1, MSL2, MSL3,
MOF and MLE (Fig. 2). All protein-coding genes are
transcribed in both sexes (Kelley et al. 1995; Zhou et al.
1995; Gorman et al. 1995; Palmer et al. 1993; Kuroda
et al. 1991; Hilfiker et al. 1997) however MSL2 mRNA
translation is strictly inhibited by SXL, master sex
regulator, in females (Beckmann et al. 2005). In the
absence of MSL2, MSLI1 protein is destabilized and
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presumably degraded because MSL1 protein is detected
at very low level unless msi2 is expressed ectopically in
females (Kelley et al. 1995). MSL1 can be regarded as
an assembly platform of the complex because it
interacts with all other protein members, except for
MLE (Scott et al. 2000). Leucine zipper like motif at
the amino (N) terminus interacts with MSL2 (Li et al.
2005) and carboxyl (C) terminus binds MOF and
MSL3 (Scott et al. 2000). MSL3 and MOF contact
occurs on different parts of MSL1, MSL3 being close
to the C terminus and MOF with PEHE domain
(Morales et al. 2004). MSL1 also contains a coiled coil
domain however the importance of this domain has not
been determined. MSL2 has a RING finger domain
along with a cysteine rich motif at its C terminus (Zhou
et al. 1995). The RING domain has two zinc finger
clusters and mutations of polar residues chelating the
first zinc ion have been shown to disrupt the interaction
of MSL2 with MSL1 (Copps et al. 1998). Although the
RING finger is conserved in many species, the novel
combination of RING domain and cysteine cluster has
been proposed to have an important contribution for the
birth of ‘msl2 like’ genes and a driving force for the
formation of compensasome (Marin 2003). MSL3 has
an MRG domain located at the C-terminus that
mediates the interaction with MSL1 (Morales et al.
2005). MRG domains are highly conserved in MRG
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Fig. 2 MSL complex and known interactions; a MSL complex
binds specifically to X chromosome in male cells. This is
clearly seen in polytene squashes of salivary glands from third
instar male larvae. DNA is stained with Hoechst and MSL1 is
detected by specific antibody; b The MSL complex. MSL1 and
MSL2 interact through RING domain of MSL2 and N terminus
of MSL1. MOF chromobarrel (CHB) domain interacts with
RNA. HAT (histone acetylase) domain acetylates H4K16
residue (represented by a red ball) and Zinc finger (ZnF) is
important for the H4 specificity. MSL3 chromo- related domain
(CRD) has been shown to bind to DNA and nucleosomes and
been suggested to interact with tri-methylated H3 on K36

gene family and they are thought to be interaction
platforms in large complexes that are usually chromatin
related (Bowman et al. 2006). Interestingly the MRG
domain of MSL3 is interrupted by non-conserved
sequences and the importance of these MSL3 specific
linkers are yet to be determined (Morales et al. 2005).

MOF and MSL3

The early observations of polytene squashes from the
male larvae salivary glands revealed an interesting
discovery that male X chromosome was enriched for a
specific acetylation mark on the histone 4 lysine 16
(H4K16) (Turner et al. 1992). Observations of
co-localization of this mark with MSL members and
its absence in MSL mutants predicted a histone

(H3K36me3 represented by red Flag). MSL3 and MOF bind
MSLI1 through ZnF and MRG domain, respectively. PEHE
domain of MSLI was shown to be crucial for MSL3
interaction. MLE has two RNA binding domains (RB1 and
RB2) but only RB1 can bind RNA. Glycine rich region on the
C terminus has a high affinity for RNAs. MLE could associate
with the rest of the complex though RNA. The stoichiometry of
the components and the mutual presence of roX RNAs are not
known. The complex is not drawn to scale due to absence of
any structural data therefore the figure must be seen as an
artistic rendering of what is known

acetyltransferase (HAT) enzyme in the complex (Bone
et al. 1994). Concordantly MOF, a member of MYST
family of HATs, was shown to colocalize with MSL
members and mark the male X chromosome on
H4K16 (Gu et al. 1998, Hilfiker et al. 1997). MOF
has a peculiar C2HC zinc finger motif, which mediates
substrate recognition (Akhtar and Becker 2001), and its
interaction with MSL1 (Morales et al. 2004). Although
MOF binds to nucleosomes and its preferred substrate
is H4 (Akhtar and Becker 2000; Smith et al. 2000), it
can also acetylate MSL3 (Buscaino et al. 2003) and
MSLI, nevertheless integration into the complex shifts
the substrate specificity strongly to H4 (Morales et al.
2004). Both MOF and MSL3 have a chromo-related
domain but accumulating evidence indicate that they
may have different substrate specificities. Solution
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structure of MOF chromo-related domain revealed that
this fold has five beta strands forming a barrel shape,
therefore named as chromo-barrel domain (CBD),
which is structurally similar to Tudor domains. This
fold is quite different from chromodomains that bind
lysine methylated histone tails through a hydrophobic
cage formed by three conserved aromatic residues
(Jacobs and Khorasanizadeh 2002; Nielsen et al.
2002). These residues are not found in MOF and in
fact Arg387 of CBD may clash with superimposed
methylated lysine H3 peptide (Nielsen et al. 2005).
Instead MOF chromo-barrel domain in the context of
the full-length protein is important for RNA binding
activity in vivo and in vitro and mutation of a
conserved tyrosine disrupts this interaction (Akhtar et
al. 2000). Nucleic acid binding activity of a chromo
domain is not unique to MOF but also well docu-
mented for dMi-2 protein of NuRD remodeling-HDAC
complex in Drosophila (Bouazoune et al. 2002).
Curiously, the CBD used for structure determination
was not able to bind RNA by itself leading to the
hypothesis that the fold may need additional surround-
ing residues for RNA binding activity (Nielsen et al.
2005). Supportive evidence for this idea came from the
structural elucidation of yeast homologue of MOF,
Esal chromo-domain (Shimojo et al. 2008). Computa-
tionally predicted Esal chromo-domain folds similar to
MOF CBD and does not show nucleotide binding
activity in vitro however structure of N terminally
extended domain has an extra beta sheet which induces
a loop in the barrel. This “knotted” barrel has a high
affinity for RNA in vitro (Shimojo et al. 2008). In the
same vein, MOF chromo-barrel domain could adopt a
slightly different form in the context of full protein
such that it has a high affinity for RNA.

MSL3 chromo related domain is predicted to fold
similar to chromobarrel domain but unlike MOF, it
contains the typical hydrophobic residues that forms the
aromatic cage (Nielsen et al. 2005). MSL3 has been
shown to bind nucleosomes that are methylated on
H3K36 and mutation of hydrophobic residues causes
the loss of this interaction (Sural et al. 2008, Larschan
et al. 2007). Besides, the chromodomain by itself can
bind to a nucleosomal template (Buscaino et al. 20006).
Chromodomain structures of Eaf3 and MRG15, yeast
and human homologue of MSL3, were solved and
showed to bind methylated H3K36 (Zhang et al. 2006a;
Sun et al. 2008). Nevertheless, Eaf3 interaction is a
rather weak one and was suggested to take assistance
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from PhD finger for the optimal binding (Xu et al.
2008; Li et al. 2007). MRG15 binding to H3K36me3 is
predicted to be different from canonical chromodo-
mains because a beta strand in chromo-barrel preoccu-
pies the histone peptide-binding groove (Zhang et al.
2006a). Interestingly, MSL3 chromo-related domain
can bind DNA in vitro suggesting that nucleosome
interaction may occur partly through DNA (Buscaino et
al. 2006). Additionally, MSL3 localization to X-
chromosome is lost upon RNAse treatment and MSL3
can bind roX RNA both in vivo and in vitro (Morales et
al. 2005; Buscaino et al. 2003) therefore nucleic acid
binding surfaces can be used to bind both RNA and
DNA. Acetylated MSL3 cannot immunoprecipitate
significant amounts of 10X2 RNA; hence this posttrans-
lational modification may be used as a regulatory switch
for the substrate specificity of MSL3 (Buscaino et al.
2003). Structure determination of MSL3 will delineate
the properties of this peculiar domain.

MLE

The second known enzyme associated with the MSL
complex is MLE. MLE bears a modified DEAD box
motif, DEIH, which is one of the key signatures for RNA
helicases (Kuroda et al. 1991). Mutations in the DEAD
box and the ATP binding pocket are lethal for flies
(Richter et al. 1996; Lee et al. 1997). MLE fulfills
single stranded nucleic acid binding, double stranded
nucleic acid binding, ATPase activity and homo-hetero
duplex unwinding activities in vitro (Lee et al. 1997). It
has two RNA binding domains in the N terminal region
but only RB2 domain was shown to bind RNA (Izzo et
al. 2008). RNA binding and deletion of C terminal
glycine rich region increases the ATPase activity (Izzo
et al. 2008). Therefore MLE may undergo continuous
self-regulation through its own domains. MLE X
chromosome localization is RNAse sensitive and it
has a very salt susceptible, weak interaction with the
rest of the complex, suggesting the possibility that it
may bind MSL proteins through an RNA intermediate,
presumably the roX RNAs (Copps et al. 1998; Richter
et al. 1996). However till today, direct MLE interaction
with roX RNAs have not been shown.

roX RNAs

RoX RNAs were discovered in two different enhancer
trap screens; one to look for sex specific expression in
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mushroom bodies of fly brains that causes dimorphic
courtship behavior (Amrein and Axel 1997) and the
other to look for differential expression of a reporter in
mushroom bodies (Meller et al. 1997). These RNAs
are male specific, confined to nucleus and expressed in
all tissues of flies (Franke and Baker 1999; Amrein and
Axel 1997; Meller et al. 1997). They both colocalize
with MSL proteins along the X chromosome in males
(Franke and Baker 1999). Although the big size and
sequence difference, they are functionally redundant
(Meller and Rattner 2002; Franke and Baker 1999).
The only sequence similarity is a 30 bp sequence
identity however deletion of this sequence has no
phenotypic output (Kageyama et al. 2001). Many
evidence suggest that roX RNAs exert their functions
through a yet unpredictable tertiary structure or at least
not in a strict sequence dependent manner. Additional
to the inter-redundancy of roXs, there is also high
intra-redundancy in each roX (Stuckenholz et al. 2003;
Park et al. 2008). Successive ten percent deletions of
roX1 and series of small deletions in roX2 do not
change the male viability except for a region near 3’ end
of roX1 that contains a predicted stem loop structure
(Stuckenholz et al. 2003). Moreover, roX RNAs from
other Drosophila species can be integrated into D.
melonagester MSL complex in spite of the low
sequence homology; 31% in the example of D.
willistoni 10X2 (Park et al. 2008). Recent findings
suggest that there are evolutionary conserved “roX
boxes” that may be the exchangeable functional units of
rox RNAs (Park et al. 2008). Inarguably roX RNAs
have physical contacts to the complex; they can be
immunoprecipitated with MSL proteins and female
expression of MSL2 causes stabilization of rox RNAs
(Meller et al. 2000; Amrein and Axel 1997; Akhtar et
al. 2000; Smith et al. 2000). Although, MLE, MOF and
MSL3 have the capacity to bind roX RNAs, direct
targets of r0Xs have not been determined but consid-
ering their size (roX1 3.7 kb and roX2 0.6 kb), it is
plausible that they have several contact points. Interest-
ingly, there is a time frame in the early hours of
embryogenesis, where roX1 is transcribed in the
absence of any detectable level of MSL components,
but the rapid turnover of roX RNAs in the absence of
the MSL complex led to the question how this stability
is achieved. It was found that in the absence of maternal
MLE, roX1 RNA is hardly detectable, therefore
maternal stores of MLE can contribute to early
stabilization of roX1 (Meller 2003).

Early events
What do females do?

The MSL complex formation is strictly inhibited in
female cells, which is achieved by the master sex
regulator, SXL protein. SXL is expressed only in
females. In males, SXL pre-mRNA is spliced in a
way that a premature stop codon is retained and the
mRNA is degraded (Schiitt and Nothiger 2000).
Many observations clearly showed MSL2 as the
direct target of SXL. MSL2 mRNA has poly U
stretches, binding sequences of SXL, in both UTRs
and in males a 133 bp intron in 5'UTR, containing
two of these binding sites are spliced out but retained
in females (Bashaw and Baker 1995). Additionally
transgenic constructs lacking poly U stretches enabled
expression of MSL2 protein in females (Kelley et al.
1995). SXL modulates female specific intron reten-
tion by interfering with U2AF65 and U2AF35 snRNP
interaction on the 3’ splice site (Merendino et al.
1999) and U1 recognition of the 5 splice site (Forch
et al. 2001). Msl2 mRNA translation inhibition occurs
a by a dual mechanism, one conducted through 3'UTR
binding and inhibition of 43S recruitment and the
second one through 5’ UTR binding and prevention of
43S pre-initiation complex scanning (Beckmann et al.
2005; Grskovic et al. 2003; Gebauer et al. 2003;
Kelley et al. 1997). 3'UTR control of SXL requires a
co repressor, UNR, which is present in both male and
female cytoplasm but is specifically recruited to the
msl2 mRNA 3'UTR by SXL in females (Duncan et al.
2006; Abaza et al. 2006; Grskovic et al. 2003).
Interestingly, UNR was recently found to have an
important role in male dosage compensation (Patalano
et al. 2009). Overexpression of UNR causes a
preferential male lethality and loss of the MSL
complex from the X chromosome. UNR also immno-
precipitates roX1 and roX2 however if this is a direct
or indirect interaction has not been shown (Patalano et
al. 2009).

Somatic versus germ line

Most of the available data on dosage compensation
comes from observations of somatic cells, therefore
much less is known how the male germ line deals
with the dose problem. MLE had been known to
function in spermatogenesis and consistently it can be
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detected in male germ line cells (Rastelli and Kuroda
1998). Interestingly MSL1, MSL2 and MSL3 are not
observed in these cells and MLE, along with H4K16
acetylation, is not concentrated on X but rather
scattered throughout the genome (Rastelli and Kuroda
1998; Rastelli et al. 1995). Nevertheless, expression
microarray analysis showed that male germ line do
compensate for the imbalance despite the absence of
the MSL complex although the number of escaping
genes are higher than those on the somatic cells
(Gupta et al. 2006). The possibility of an MSL
independent dosage compensation mechanism was
pointed out before because ms/ mutant males can
complete embryogenesis, survive up to third instar
larvae—early pupae and additionally some genes are
compensated in the absence of MSL, like runt (Baker
et al. 1994). This mechanism could be the result of a
complex buffering system inherent in genetic net-
works or another uncharacterized protein complex
may function in the early dosage compensation
(Zhang and Oliver 2007). Although the nature and
the timing of an MSL independent mechanism is
elusive, it appears that MSL mediated activation
begins at blastoderm, coinciding with zygotic tran-
scription start in embryos (Meller 2003; Franke et al.
1996; McDowell et al. 1996). In males with homo-
zygous msll, mle or msl3 mutant mothers, the onset
of MSL detection on X chromosome is delayed,;
supporting the idea that maternal contribution may
help balancing the low level of zygotic expression in
initial stages of the MSL complex establishment
(Franke et al. 1996; Rastelli et al. 1995). Initiation
of dosage compensation relies on the expression of
one of the roX RNAs (Meller 2003). In males, roX1
RNA transcription starts in the early stages of blasto-
derm (2 h After Egg Laying, AEL) and MSL2
localization to nuclei foci follows after. When roX1 is
absent, MSL2 localization to the nuclear foci can only
be seen after roX2 expression, which is nearly 6 h AEL.
This may indicate that roX transcription may guide the
MSL complex to the X chromosome.

Targeting the male X chromosome
Single gene versus global analyses

The advances of new technologies such as expression-
arrays, high resolution tiling arrays and new generation
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sequencing technologies coupled with biochemical
methods gave a totally new pace in understanding the
mechanism of dosage compensation in Drosophila.
MSL-chromatin interactions had often been carried
out in polytene squashes of salivary glands by
immunofluoresence but the resolution of this technique
is low, therefore one big leap in the field occurred
when MSL components were mapped in high resolu-
tion throughout the Drosophila genome by ChIP on
chip method (Kind et al. 2008; Gilfillan et al. 2006;
Legube et al. 2006; Alekseyenko et al. 2006;
Alekseyenko et al. 2008; Straub et al. 2008). Although
the immunoprecipitated proteins, cell type and embry-
onic stage are different in each case, common themes
arose. First of all, not all genes on X are bound by the
MSL complex and also there are a few autosomal sites
that are clearly bound. The MSL complex members are
mostly found on genes rather than intergenic sequences
and when the binding profiles are averaged, a clear
enrichment in the body and towards the end of the
genes are observed (Gilfillan et al. 2006; Alekseyenko
et al. 2006) (Fig. 3). Most target genes seem to be
actively expressed however there is no significant
correlation between the expression level and MSL
abundance (Legube et al. 2006; Alekseyenko et al.
2006). Although most MSL target genes are actively
transcribed, transcription per se is not sufficient to
explain MSL binding because many genes that are
bound by elongating form of RNAPII and canonical
elongation factors are devoid of the MSL complex
(Gilfillan et al. 2006; Legube et al. 2006). Also, MSL1
binding profiles of 4-6 embryos and third instar larvae
salivary gland are fairly similar (Legube et al. 2006),
supporting the notion that most compensated genes are
selected early during development and bind irrespec-
tive of developmental changes (Kotlikova et al. 2006).
Remarkably, MOF seems to have a unique status in the
complex (Kind et al. 2008). Promoter binding of MOF
is distributed throughout the whole genome in both
males and females in an MSL independent manner
whereas 3’ enrichment is restricted to the X chromo-
some in males and is MSL dependent (Kind et al.
2008). This led to the hypothesis that MOF plays an
important role on the promoters of both sexes, and the
MSL complex members binds this HAT to skew its
location towards the end of the genes for specific
acetylation and up-regulation of male X chromosome
(Kind et al. 2008). Realization of 3" enrichment of the
MSL complex members stimulated investigation of
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Fig. 3 Global profiles of
MSL components and asso-
ciated histone marks aver-
aged on a single
transcriptional unit. In male
cells, MSL components are
enriched in the body of the
genes peaking at the end
along with the H3K36me3
mark. MOF shows a distri-
bution peaking at promoters
and at the 3'end of the
genes. MOF peaks at the
promoters are independent
of MSL complex and also
found in female cells and
autosomal genes in males.
H4K16 acetylation distribu-
tion tends to be broader in
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associations to other well-known 3’ enriched epigenetic
marks. Genome wide histone modifications from yeast
and humans showed that Set2 dependent H3K36me3 is
a conserved 3’ bias epigenetic mark associated with
active genes (Barski et al. 2007; Pokholok et al. 2005).
Mapping of H3K36me3 on X chromosome revealed
that more than 90% of MSL targets are also enriched
with this mark and there is a high correlation of MSL
and H3K36me3 position on the gene (Larschan et al.
2007; Bell et al. 2008b). Interestingly, there seems to
be a context dependent crosstalk between H3K36me3
and H4K16ac because reduction of Hypb, the enzyme
required for final methylation state of H3K36 in
Drosophila, causes a reduction of H4K16 acetylation
mark on X-linked genes but not on autosomes (Bell et
al. 2008b).

High affinity sites

One of the most obvious questions of dosage
compensation is how the MSL complex recognizes
the X chromosome specifically. An intriguing feature
of the MSL complex is that partial complexes of
MSL1 and MSL2 are able to bind 30-40 bands in
polytene squashes in the absence of other MSL3,

MOF or MLE, which have been named as Chromatin
Entry Sites (CES) (Palmer et al. 1994; Lyman et al.
1997). MSL1 and MSL2 behave as the core of the
complex because they are strictly dependent on each
other for stability and they can localize to X without
the other partners (Lyman et al. 1997; Kelley et al.
1995; Zhou et al. 1995). Surprisingly, roX1 and roX2
sites were the first CES to be mapped, due to their
ability to recruit MSL components upon translocation
to an autosomal site (Meller et al. 2000; Kelley et al.
1999). This feature of roX genes does not depend on
their transcription but on a DNAse hypersensitive site
(DHS) that can bind the MSL complex (Park et al.
2003; Kageyama et al. 2001). Initially, CES were
thought to be the only sites for early MSL binding
however, investigation of large X to autosome trans-
locations showed that any segment of X was able to
recruit MSL complexes even if they do not possess a
previously mapped CES (Fagegaltier and Baker 2004;
Oh et al. 2004). Moreover, translocated genomic
segments from autosomes to X were devoid of MSL
complexes (Oh et al. 2004). Identification of other
MSL1 binding fragments by ChIP showed that only a
subset of these fragments are able to recruit MSL1/2
when moved to autosomes, and the rest can do so
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only in the presence of over expressed MSL1/2
(Dahlsveen et al. 2006). Therefore, X chromosome
seems to have a gradient of potential to recruit the
MSL complex, named as the “affinity model”
(Fagegaltier and Baker 2004). Some sequences can
recruit MSL independent of any apparent targeting
determinant, called High Affinity Sites and other
sequences, Low Affinity Sites, can only do so by the
help of other mechanisms. The cipher of high affinity
sites had remained a mystery due to absence of
advance sequence algorithms and low number of
mapped sites. But high throughput experiments
discovered important clues about this mystery. High-
resolution binding profiles of MSL1 and MSL2 in the
absence of other MSL components revealed more
than 130 Chromatin Entry sites (CES) or High
Affinity sites (HAS) and a GA rich motif named as
MRE motif (MSL Recognition) in these sites (Straub et
al. 2008; Alekseyenko et al. 2008). Remarkably, this
motif is slightly enriched on X chromosome and
autosomal transposition of a minimal CES, containing
as few as three MRE elements was able to recruit
MSL, and up-regulate the upstream reporter gene
(Alekseyenko et al. 2008). Since there are thousands
of similar motifs scattered around the Drosophila
genome, the choice of X chromosome still remains an
unsolved issue. However, H3 depletion around the CES
site indicates that accessibility could be an important
player (Straub et al. 2008; Alekseyenko et al. 2008).
The importance of roX RNAs for the initial
targeting have been shown in a number of cases (Ilik
and Akhtar 2009). MSL protein complex per se have
a weak affinity towards the chromatin but this is
greatly enhanced with the presence and/or integration
of roX RNAs (Li et al. 2008; Oh et al. 2003; Meller
and Rattner 2002). In the absence of both roX RNAs,
partial MSL complex can be located on a few X
chromosome loci, autosomal loci and chromocenter
(Li et al. 2008; Oh et al. 2003; Park et al. 2002;
Meller and Rattner 2002). These sites have the intact
complexes because all MSL proteins and H4K16
acetylation are seen coincidently (Meller and Rattner
2002; Oh et al. 2003). Moreover, overexpression of
MSL1 and MSL2 can rescue male lethality to some
extent (Oh et al. 2003). Nevertheless, there are
opposing reports claiming that even though roX mutants
are so severe that allows no detection by any means,
they may still contribute to targeting and dosage
compensation (Deng and Meller 2009; Deng et al.
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2005). Therefore the role of roX RNAs in targeting is
still an open issue.

Is the presence of entry sites on roX genes a
coincidence? Compelling evidence suggest that the
complex forms on the site of roX transcription in a
co-transcriptional manner (Kelley et al. 2008; Oh et al.
2003). It is plausible that roX genes have acquired an
entry site to establish the complex formation more
efficiently. On the other hand, roX1 DHS was shown to
play a role in roX1 transcription activation in males and
MSL2 was shown to be important for this role as an
independent task from the MSL complex (Bai et al.
2004; Rattner and Meller 2004). Similarly roX2 gene
was found to have elements that bind MLE and
regulates its transcription (Lee et al. 2004). Therefore,
a complex regulatory network that contains components
of the MSL complex may fine tune roX transcription
and eventually formation of the MSL complex.

Beyond the high affinity sites

How is the complex located further from the high
affinity sites? An intriguing observation upon roX gene
translocation to autosomes was the spreading of the
complex from the site of insertion in cis (Meller et al.
2000; Kelley et al. 1999). This spreading depends on
the site of insertion, amount of the MSL complex, and
presence of the competing roX transgene (Park et al.
2002). Because other large X to autosome trans-
locations did not show any cis spreading, roX situation
was pointed to be a unique feature of roX genes due to
their function as the site of complex formation.
(Fagegaltier and Baker 2004). MOF enzymatic activity
is required for localization to low affinity sites but it is
not known if this is due to its canonical histone
acetylation activity or another protein acetylation event
that may help maturation of the MSL complex
(Buscaino et al. 2003; Gu et al. 2000). MLE helicase
activity is also found to be important for LAS
localization (Morra et al. 2008). Since MLE is required
for the roX association into the complex (Meller et al.
2000), the phenotype can be a downstream result of an
incomplete complex that is not able to spread further.
Enrichment of H3K36 methylation on actively
transcribed genes prompted investigation of MSL3 as
it contains a chromo related domain that could be a good
candidate that can bind to this mark. By ChIP-chip
analysis, it was seen that MSL3 chromodomain mutants,
including the deletion mutant were enriched around the
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high affinity sites suggesting the requirement of intact
chromo domain for spreading (Sural et al. 2008). In
view of these results, Sural et al, proposes a two-step
model, in which sequence dependent initial targeting to
X chromosome is established on MRE containing
chromatin entry sites and is followed by H3K36me3-
chromodomain mediated spreading, analogous to het-
erochromatin spreading (Sural et al. 2008). Surprisingly,
transgenic flies carrying the chromodomain mutants
have a range of phenotypes ranging from fully viable
to developmentally delayed to severely affecting male
viability (Sural et al. 2008; Buscaino et al. 2006). This
already suggests that chromodomain mediated spread-
ing from high affinity sites cannot be the sole
mechanism for the MSL binding pattern throughout
the X chromosome. Transcription was noticed as a
good candidate inferred from the high correlation
between active transcriptional state and MSL binding.
Indeed when MOF gene, a low affinity site, is
translocated to an autosomal site, it can recruit MSL1
only in the presence of an endogenous or an exogenous
promoter (Kind and Akhtar 2007). When the promoter
is absent, blocked or reversed, MSL1 cannot bind.
Effect of transcription extends beyond the MOF gene
because blocking of RNA polymerase II by alpha
amanitin decreases the occupancy MSL components
on X-linked genes (Kind and Akhtar 2007). Binding of
MSLI after a strong activation of X linked genes by a
Gal4 induced promoter had also been observed before
(Sass et al. 2003). The passage of RNA Polymerase 11
may either expose targeting sequences that are normally
hidden or it can change the chromatin marks such that
the gene becomes a better target for the MSL complex.
All these models are not mutually exclusive and genes
may have evolved different strategies to recruit MSL
depending on their need to compensate, their inherent
affinity towards MSL or their plasticity during the
development. One attractive possibility could be that
transcription in combination with MSL proteins that
recognize chromatin marks on active genes could
facilitate spreading along the X chromosome.

Evolutionary considerations

Dosage compensation arises as an inevitable conse-
quence of sex chromosome evolution. In Drosophila
species, the dose problem begins with the evolution of
Y chromosome (Carvalho 2002). Although the exact

nature of Y chromosome formation is under debate
(Carvalho 2002) the current model predicts the random
acquisition of a male determining gene on an ancient
autosome and prevention of recombination of that locus
(Steinemann and Steinemann 2005). This leads to a
strong tendency to accumulate degenerative mutations
like transposition, duplication and finally the hetero-
chromatinization of the whole chromosome (Steinemann
and Steinemann 2005). Therefore the male cell nucleus
is forced to balance this hemizygocity by formation of a
novel complex acting on the X chromosome. There are
plethora of evidence that once the MSL complex
evolved, it was co-opted in other Drosophila species,
which have a different sex chromosome history (Marin
et al. 1996). In D. pseudoobscura, a fusion event
between an autosomal chromosome (Muller D ele-
ment) and original X chromosome (Muller A element)
led to formation of a metacentric X chromosome and
the similarization of both arms in terms of sequence
identity (Gallach et al. 2007). Interestingly, the
autosomal homolog of D element is lost in males and
the newly translocated hemizygous arm is bound by
MSL complex and acetylated on H4K16 (Bone and
Kuroda 1996). On the contrary, in D. americana
americana, a similar fusion event occurred but the
males kept the autosomal homologue (Neo-Y) chro-
mosome (Charlesworth et al. 1997). Since the two
homologues can still recombine, there is no sign of
degeneration on the neo-Y and no MSL binding on the
X chromosome (Bone and Kuroda 1996).

Perhaps the best tool to study the evolution of
sex chromosomes and dosage compensation is the
neo-sex chromosomes of D.miranda. D.miranda is
closely related to D. Pseudoobscura and has the
same metacentric X chromosome, which is fully
dosage compensated. But in addition, a Robertsonian
translocation of an autosome (Muller C element) to
the Y chromosome generated a neo-Y chromosome
(Macknight 1939). The fusion event is thought to
occur about 2 million years ago and the homologue
pair is kept in the male cells (neo-X chromosome)
(Norman and Doane 1990). After the fusion event,
neo-Y chromosome had undergone extensive ran-
dom degeneration, including retrotransposition,
duplication and nonsense mutations but most loci
are still intact (Bachtrog 2006). Amazingly, the neo-X
chromosome recruits MSL complex and acetylates
H4K16 to the loci that are degenerating in the neo-Y
homologue (Fig. 4) (Marin et al. 1996, Bone and

@ Springer



612

E. Hallacli, A. Akhtar

X neo-sex chromosomes

Miiller D neo-Y neo-X
(X2)

Miiller A proto-Y

L

~

A
@

o
®

=0

.z
i
@

i
-1

®@®
(NN NN NN NN

S

Fig. 4 Dosage compensation in Drosophila miranda. In male
cells the proto X chromosome, (which is indicated by Muller A
+Muller D) is compensated normally as in D.melanogaster. A
translocation event of an autosomal arm onto the proto-Y
chromosome created a neo-Y chromosome, which is in the
process of degeneration. The degenerated loci are indicated as
light colored bars. The autosomal homolog of neo-Y, also
called neo-X or X2, shows upregulation at the loci in which

Kuroda 1996). Interestingly, the core promoters of the
lecpl1-4 genes that are upregulated in the neo-X in
response to degeneration in neo-Y show no apparent
significant sequence alteration that could lead to two-
fold upregulation (Steinemann and Steinemann 2007).
Moreover, significant sequence variation of the neo-X
chromosome from the old X shows that multiple
selective sweeps of cis-acting regulatory regions did
not occur (Yietal. 2003). These results show that MSL
complex recruitment may not require a strict gene-
by-gene basis cis-acting sequence evolution.

Since dosage compensation in Drosophila is an old
problem and various subgroups use the same complex
to cover up hemizygousity, MSL components are
expected to be under stabilizing (purifying) selection.
But recent experiments show that even two closely
related Drosophila species, D. melanogaster and D.
simulans that diverged 2.5 million years ago have
highly asymmetric rapid evolution of MSL genes
(Rodriguez et al. 2007). Interestingly the MOF
acetylation site on MSL3 in D.melanogaster is unique
in the Drosophila species (Kelley 2004). It is possible
that there are other selective forces that are acting on
the MSL complex of D.melanogaster like the male
killing bacteria S.poulsonii (Veneti et al. 2005). MSL
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there is degeneration on neo-Y. The upregulated loci are
indicated in orange color and they correspond to similar loci
as in the neo-Y. A hypothetical magnifier to one of these loci is
shown. The degenerated loci on the neo-Y go under hetero-
chromatinization due to retrotransposition and/or other means
of molecular events leading to hemizygosity. In the homolo-
gous region on neo-X chromosome, the MSL complexes are
recruited and upregulate the genes for dosage compensation

proteins could be evolving away from recognition by
these bacteria. Nevertheless since the protein complexes
tend to coevolve; the whole complex could be trying to
fine tune to escape from selection while also trying to do
its essential function. Curiously, MOF has been shown to
bind LTR retrotransposons in D.melanogaster and inhibit
their transposition (Matyunina et al. 2008). Inhibition of
retrotransposition could also be a strong selective force
on this subgroup. These recent findings can provide an
explanation why it is difficult to find a consensus
sequence for the MSL binding among other species.

MSL-like proteins in other organisms

The protein components of the MSL complex of D.
melanogaster have clear homologues from yeast to
mammals, except that MSL1 and MSL2 are not found
in yeast (Marin 2003). Yeast NuA4 HAT complex
contains Esal and Eaf3, homologues of MOF and
MSL3 respectively (Eisen et al. 2001). However,
stringent sequence analysis showed that yeast NuA4
complex is not the direct ancestor of compensasome
in Drosophila, rather a novel complex arose with the
concomitant evolution of MSL1 and MSL2 (Marin
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2003). Although humans have entirely different
strategy for the dosage compensation problem, the
MSL complex is kept in mammals as well (Mendjan
et al. 2006a; Smith et al. 2005; Taipale et al. 2005).
However it seems that human MSL complex has
evolved other functions in DNA damage response
pathway and inhibition of tumor genesis (Gupta et al.
2005; Taipale et al. 2005; Smith et al. 2005). Recently
it was shown that hMSL2 is responsible for the mono-
ubiquitination of p53 and subsequent extra nuclear
localization (Kruse and Gu 2008). Even though mam-
mals shows X-inactivation in female nucleus, the active
homologue of X is two-fold up regulated to reach the
stoichiometry of autosomal gene expression level
(Nguyen and Disteche 2006). The role of the MSL
complex in this upregulation is a tempting hypothesis.

How general factors may impinge
on the mechanism

One of the first issues addressed by high throughput
experiments was the global regulation of expression
on X by the MSL complex. A significant amount of
earlier data proposed an alternative mechanism named
inverse dose model for the X versus autosome balance
(Bhadra et al. 2005; Bhadra et al. 2000; Bhadra et al.
1999). This model suggests that X chromosome
inherently possesses sequences that recruit transcription
factors for a roughly two fold up-regulation and the MSL
complex functions to titrate MOF from autosomes to X
to inhibit over-expression of autosomes by overriding
the effects of hyper-upregulation of X (Birchler et al.
2003). RNAIi against the components of the MSL
complex and stringent normalization analysis of expres-
sion arrays showed that the MSL complex was indeed
acting to up-regulate X-linked genes to the autosomal
levels arguing against the inverse dosage model (Straub
et al. 2005; Hamada et al. 2005). Moreover artificial
recruitment of the MSL complex upstream of a reporter
gene can cause its up regulation and roX autosomal
transgenes can overcome silent heterochromatin (Henry
et al. 2001; Kelley and Kuroda 2003).

Specific enrichment of X chromosome by H4K16
acetylation led to the belief that this canonical activation
mark could be largely responsible for the up regulation.
Indeed MOF can activate transcription in vivo and in
vitro (Akhtar and Becker 2000). Moreover H4K16
acetylation can decondense 30 nm chromatin fiber in

vitro (Shogren-Knaak et al. 2006). A simple prediction
was that opening the chromatin might enable loading
more polymerase RNA Polymerase II onto compen-
sated genes. However, polymerase profiles show that
there are not more polymerases on compensated genes
than non-compensated ones (Gilfillan et al. 20006).
Recent findings of new components related to dosage
compensation tell us that the story may be much more
complicated.

Identification of nuclear pore components, Nup153
and Mtor, in MSL purifications, and their effect on X
linked gene expression suggest a link between dosage
compensation and nuclear architecture (Mendjan et al.
2006b). Numerous findings indicate that position of a
gene in the nuclear volume could affect its transcrip-
tional status (Deniaud and Bickmore 2009; Branco
and Pombo 2007; Akhtar and Gasser 2007). Although
nuclear periphery was long known accepted as a
repressive zone and a host for heterochromatin, nuclear
pore complexes (NPC) can be a docking site for an
induced gene (K&hler and Hurt 2007; Brown and Silver
2007). Close approximation of the X-linked genes to
NPC may create a transcription competent domain/
environment and may even provide up regulation of
genes that are not bound by MSL but still dosage
compensated. Interestingly, human interphase chromo-
somes are found to be associated with lamins in
domains that are clearly demarcated by insulators
showing that the genome can indeed be organized in
discrete structures under the nuclear envelope (Guelen
et al. 2008).

Another protein found to be associated with MSL
is the JIL-1 kinase. JIL-1 can co-immunoprecipitate
with MSL components and it is enriched on male X
chromosome, although it is also distributed on other
chromosomes (Jin et al. 2000). JIL-1 is the main
kinase that is responsible for H3S10 phosphorylation
(Wang et al. 2001). Although this mark was known to
be a mitotic marker, it is also enriched in euchromatic
regions and can antagonize heterochromatin spread-
ing (Zhang et al. 2006b; Wang et al. 2001). Recently
JIL-1 was shown to be an important activator in many
genes in Drosophila and can relieve the promoter
proximal pausing of RNAPII, which is thought to be a
checkpoint after the initiation of transcription (Ivaldi
et al. 2007; Saunders et al. 2006). Conceptually,
selective recruitment of JIL-1 kinase by MSL to the
X-linked genes may relieve this pausing more than
autosomes and female X; helping twice as much
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transcription on male X. Albeit this attractive hypoth-
esis, an opposing experiment demonstrated that RNA
Polymerase II mediated transcription is independent
of H3S10 phosphorylation and JIL-1 kinase affects
transcription through maintaining the structural integ-
rity of the chromosomes (Cai et al. 2008).

It seems that the male X chromosome is generally
more sensitive to perturbations related to proteins that
are responsible for general chromatin morphology.
Two of these proteins are NURF, a chromatin
remodeler, and Su(var)3—7, a protein responsible for
heterochromatin formation by the help of HPI
(Spierer et al. 2005; Deuring et al. 2000). NURF is
the founding member of ISWI family of remodelers
and it contains ISWI protein as the catalytic subunit
that enables sliding of nucleosomes (Bouazoune and
Brehm 2006). Normally ISWI is not enriched on the
male X chromosome or its mutations do not cause
mislocalization of the MSL proteins, or the acetyla-
tion. Nevertheless, the male X chromosome looks
much decondensed and broader in its absence and a
functional MSL 1is required for this phenotype
(Corona et al. 2002; Deuring et al. 2000). ISWI
protein is also found in other complexes however this
effect is related to NURF remodeler because aberrant
phenotype of male X is repeated in NURF301
mutations, the main scaffold in NURF complex
(Badenhorst et al. 2002). Recently it was found that
roX null mutation could suppress the puffy appear-
ance coming from the NURF mutations. Additionally,
NUREF can repress roX2 transcription in females (Bai
et al. 2007). Similar to ISWI, Su(var)3—7 mutation
causes male X chromosome decondensation, which
can be suppressed by null MLE mutation (Spierer et
al. 2008; Spierer et al. 2005). These antagonistic
relations suggest that chromatin opening is not
unchecked but is actually scrutinized by various
complexes to maintain a sufficiently open—not more
than necessary—state of chromatin. Actually, an
analog system can be seen in a smaller scale on
actively transcribing genes. Active genes have an
increasing H3K36 di and trimethylation on the body
of their genes and this mark is recognized by an
HDAC complex, Rpd3S, which inhibits spurious
transcription that may come from cryptic promoters
(Carrozza et al. 2005). Interestingly, Rpd3S, the
histone deacetylase and Set2, the enzyme required
for H3K36 methylation play a role in dosage
compensation (Buscaino et al. 2003; Bell et al.
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2008a; Sural et al. 2008). Curiously, the components
of the exosome, Dis3 and Rrp6, also copurify with
MSL proteins (Mendjan et al. 2006b) suggesting that
RNA degradation may be also be coupled to the
system. In this sense exosome may degrade, antisense
or cryptic transcripts that were generated uncontrolled
due to open chromatin structure. Another fail-safe
mechanism could be mediated by Supercoiling factor,
of which genetic interaction with MSL has been
shown (Furuhashi et al. 2006). Supercoilig Factor
(SCF) was hypothesized to help decreasing the helical
torsion that may have generated during chromatin
remodeling however its role in dosage compensation
is not determined yet (Furuhashi et al. 2000).

All these observations suggest that capabilities of
MSL reach far beyond than expected before. Not only
it behaves as a HAT complex but also acts as a
mediator that fine tunes two fold upregulation by
approaching to nuclear pore, cross talking with
chromatin remodelers, heterochromatin proteins, and
RNA degradation machines. Although the dazzling
discoveries brought by powerful genetics, biochemis-
try and high throughput approaches, the new findings
bring about their own mysteries the near future will be
full of surprising discoveries.
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