
Gene Regulation and Systems Biology 2009:3 105–114

This article is available from http://www.la-press.com.

© the authors, licensee Libertas Academica Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License  
(http://www.creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution and reproduction  
provided the original work is properly cited.

Open Access
Full open access to this and 
thousands of other papers at 

http://www.la-press.com.

Gene Regulation and Systems Biology

O r i g i n al   R e s e arc   h

Gene Regulation and Systems Biology 2009:3	 105

Application of Petri Nets in Bone Remodeling

Lingxi Li1 and Hiroki Yokota2

1Departments of Electrical and Computer Engineering and 2Biomedical Engineering Indiana University—Purdue 
University Indianapolis, Indianapolis, IN 46202. Email: hyokota@iupui.edu

Abstract: Understanding a mechanism of bone remodeling is a challenging task for both life scientists and model builders, since this 
highly interactive and nonlinear process can seldom be grasped by simple intuition. A set of ordinary differential equations (ODEs) have 
been built for simulating bone formation as well as bone resorption. Although solving ODEs numerically can provide useful predictions 
for dynamical behaviors in a continuous time frame, an actual bone remodeling process in living tissues is driven by discrete events of 
molecular and cellular interactions. Thus, an event-driven tool such as Petri nets (PNs), which may dynamically and graphically mimic 
individual molecular collisions or cellular interactions, seems to augment the existing ODE-based systems analysis. Here, we applied 
PNs to expand the ODE-based approach and examined discrete, dynamical behaviors of key regulatory molecules and bone cells. PNs 
have been used in many engineering areas, but their application to biological systems needs to be explored. Our PN model was based 
on 8 ODEs that described an osteoprotegerin linked molecular pathway consisting of 4 types of bone cells. The models allowed us to 
conduct both qualitative and quantitative evaluations and evaluate homeostatic equilibrium states. The results support that application 
of PN models assists understanding of an event-driven bone remodeling mechanism using PN-specific procedures such as places, 
transitions, and firings.
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Introduction
Bone remodeling is a homeostatic process for 
maintenance of healthy bone through a removal of old 
bone by osteoclasts followed by deposition of new 
bone by osteoblasts.1 Since the process is a complex 
interplay among many molecules and varying types 
of cells, building a mathematical model is useful for 
developing therapeutic strategies for patients with 
metabolic disorders such as osteoporosis. Pioneering 
modeling works using a set of ordinary differential 
equations (ODEs) includes evaluation of the effects 
of parathyroid hormone (PTH) and the role of a 
signaling system composed of osteoprotegerin (OPG), 
receptor activator of nuclear factor κB (RANK), and 
RANK ligand (RANKL).2–4 Although describing a 
bone remodeling process using ODEs is a basis for 
quantitative analyses, numerical results often present a 
challenge in interpreting the role of discrete molecular 
and cellular events involved in bone remodeling.

Here, we applied Petri nets (PNs) as an alternative 
approach to simulate interactive events in bone 
remodeling. Compared to the approach with ODEs, 
PNs offer several advantages. First, PNs provide 
graphical representation of individual interactions in the 
system that seems appropriate for modeling, analysis 
and simulation of large-scale dynamic systems.5–7 
Second, since system behaviors in PNs are monitored 
by discrete events through the firing of transitions, 
PNs can offer a framework for implementing complex 
temporal inter-related events (both synchronous and 
asynchronous) as well as structural interactions. 
Third, since any events are generated and transformed 
in the network model, not only deterministic but also 
stochastic processes can easily be built in. Fourth, 
PNs enable us to conduct both qualitative systems 
analysis (structural characterization) and quantitative 
analysis (monitoring dynamic behaviors).

PNs have been extensively applied in 
many engineering areas such as manufacturing 
systems,8–10 transportation systems,11,12 and 
communication networks.13,14 Recently, PNs have 
been applied for modeling and analysis of metabolic 
pathways. For instance, qualitative analyses have 
been conducted focusing on place invariants and 
transitions invariants15,16 as well as steady states of 
metabolic pathways.17,18 Quantitative analyses have 
also been performed in calculation of the probability 
distribution of molecular species19–21 and molecular 

concentrations.22–24 Few studies, however, have been 
directed to both qualitative and quantitative analyses 
with reference to the ODE-based approach. Our 
particular interest herein is to evaluate ODE-driven 
equilibrium states using a PN model. This evaluation 
is especially important for physiological processes like 
bone remodeling, where variations from homeostatic 
equilibria may be linked to metabolic disorders.

In order to examine a potential capability of PNs in 
bone remodeling, it is neither feasible nor desirable to 
attempt to build models that include many unknown 
factors. We thus focused on one of the major signaling 
pathways (OPG-RANK-RANKL pathway) with four 
dominant bone cell types (two types of osteoblasts 
and two types of osteoclasts). Using PN models, our 
qualitative analysis was focused on identifying two 
properties (place invariants and transition invariants). 
Place invariants are for characterizing relationships 
among variables, while transition invariants are 
for identifying a set of sub-networks in the overall 
network. In the quantitative analysis, we evaluated 
the homeostatic equilibrium states based on PNs and 
compared them with the results obtained from ODEs.

Methods
Derivation of ODEs
The bone remodeling process was modeled using 
8 state variables (4 in the molecular level, and 4 in the 
cellular level) (Fig. 1). In the molecular level, 4 state 
variables focusing on OPG/RANK/RANKL pathway 
were xO(t), xL(t), xOL(t), xKL(t), which corresponded 
to the concentrations of OPG (O), RANKL (L), 
RANK (K), OPG-RANKL complex (OL), and 
RANK-RANKL complex (KL). The first-order ODEs 
were ( x = time derivative of state x; ki = rate constant; 
pi = synthesis rate; and di = degradation rate):

	 x.O(t) = pO – k1xO(t)xL(t) + k2xOL(t) – dOxO(t)� (1)

	 x t p k x t x t k x t

k x t x t k x t d x
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	 x t k x t x t k x tKL K L KL( ) ( ) ( ) ( )= −3 4 � (4)

In the cellular level, 4 state variables represented 
the numbers of 4 different types of cells (OBP = 
osteoblast precursors; AOB = active osteoblasts; 
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OCP = osteoclast precursors; and AOC = active 
osteoclasts). Amplification and differentiation of those 
cells were modeled:

	 N t N tOBP OBP( ) ( )= −α γ1 1 � (5)

	
N t N t x t N tAOB OBP OL AOB( ) ( ) ( ) ( )= + −α β γ2 2 2 �

(6)

	
N t x t N tOCP KL OCP( ) ( ) ( )= + −α β γ3 3 3 � (7)

	
N t N t N tAOC OCP AOC( ) ( ) ( )= −α γ4 4 � (8)

where N = number of cells; αi = synthesis rate; 
βi = interaction factor, and γi = degradation rate. The 
predicted values of the above parameters, employed 
in this study, are listed in Table 1.

Identification of equilibrium states
Although the equilibrium state values vary 
depending on the parameter values, there is only 

one equilibrium condition in Eqs. (1–8), where all 
time derivatives = 0. Their values were analytically 
derived: xO

EQU = 5.71 × 102 nM; xL
EQU = 2.86 × 100 nM; 

xOL
EQU = 1.63 × 103 nM; xKL

EQU  = 8.57 × 101 nM; 
NOBP
EQU = 80,000; NAOB

EQU  = 40; NOCP
EQU  = 9.0; and 

NAOC
EQU = 0.90. Note that the unit for the cell numbers 

was chosen arbitrary.

Modeling strategy with PNs
To illustrate our modeling strategy, a simplified version 
of PN models is shown (Fig. 2). PNs are weighted 
bipartite graphs with two types of nodes (places and 
transitions) and arcs. Places (circles in Fig. 2; e.g. 
molecules and cells) indicate the conditions under 
which transitions can occur, and transitions (bars in 
Fig. 2) mark events that alter states (e.g. synthesis, 
degradation, and chemical reaction). Arcs (arrows 
in Fig. 2) capture casual relationships as well as 
interactions among nodes, and they are associated 
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Figure 1. Schematic illustration of bone remodeling focusing on interactions among osteoblasts and osteoclasts through OPG/RANK/RANKL pathway.
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with integer weights that regulate events. The states 
of PNs are defined by tokens (black dots inside places 
in Fig. 2), which represent the number of resources 
(e.g. number of molecules). In the example in Fig. 2, 
two molecules A and one molecule B are required 
to synthesize two molecules C, and this event is 
regulated by the firing of the transition t1.

Qualitative PN analysis
In qualitative PN analysis, two behavioral properties 
(place invariants and transition invariants) were 
examined. Place invariants are a set of places 
where the number of tokens in those places remains 

constant during the evolution (dynamic behaviors) 
of the system. They identify the processes in which 
the numbers of molecules or cells stay unchanged. 
Transition invariants are a set of transitions where their 
sequences of firings can be reproduced in the specific 
states. They are useful to capture cyclic reaction 
processes and can be used to identify reversible sub-
networks in metabolic networks.

Quantitative PN analysis
PNs represent discrete state and event-driven systems, 
and quantitative PN analysis was conducted using 
numerical integration. In our analysis, the dynamic 

Table 1. Parameters and RANK concentration employed in equations (1–8).

Symbol Value Unit Symbol Value Unit
Chemical rates Cellular proliferation rate
k1 10 1/(nM•day) α1 80 1/day
k2 10 1/day α2 0.001 1/day
k3 0.6 1/(nM•day) α3 1 1/day
k4 0.02 1/day α4 0.2 1/day
Molecular synthesis rate Factors for molecular/cellular interactions
pO 200 nM/day β2 0 1/(nM•day)
pL 1 nM/day β3 0.02 1/(nM•day)
Molecular degradation rate Cellular degradation rate
dO 0.35 1/day γ1 0.001 1/day
dL 0.35 1/day γ2 2 1/day
RANK concentration γ3 0.3 1/day
xk 1 nM γ4 2 1/day

2A +1B        2C

Molecule C Molecule Ct1 fires
Molecule A

Molecule B

Molecule A
2

2

1
Molecule B

2

2

1
t1 t1

Figure 2. Simplified PN model for a molecule synthesis process from molecules A and B to molecule C.
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behaviors in PNs were characterized using a flow of 
tokens triggered by firings of transitions. The regulatory 
rules were derived for each firing of transitions from the 
parameters in ODEs, and tokens were added or removed 
based on the network structures. Note that since ODEs 
offer continuous quantities, those continuous quantities 
were discretized in the simulation step (in terms of 
the number of tokens in places). Using a set of initial 
conditions, we traced the numbers of tokens in the places 
and evaluated their temporal alterations with reference 
to the equilibrium states derived from ODEs. Although 
the time axis was defined in terms of the event-driven 
firing sequences, it was uniquely linked to real time.

Results and Discussion
PN model
The overall PN model for the selected bone remodeling 
process is illustrated (Fig. 3). In this model, 8 state 

variables were considered including 4 variables 
in the molecular sub-network (concentrations 
of OPG, RANKL, OPG-RANKL complex, and 
RANK-RANKL complex) and 4 variables in 
the cellular sub-network (numbers of osteoblast 
precursors, active osteoblasts, osteoclast precursors, 
and active osteoclasts). Eight places (circles) 
designated these state variables, and interactions 
and dependencies among them were represented by 
transitions (bars) derived from Equations (1–8). The 
entire PN network included 4 chemical rate constants 
(k1 – k4), 2 molecular synthesis rates (pO and pL ), 
2 molecular degradation rates (dO and dL ), 4 cellular 
synthesis rates (α1 – α4), 4 cellular degradation rates 
(γ1 – γ4), and 2 molecular/cellular interaction factor 
(β2, β3). The two sub-networks were connected 
through the arrows with (β2, β3), and xk(t) was set to 
constant as “a”.
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Figure 3. PN model for bone remodeling including a molecular network and a cellular network.
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Prior to qualitative and quantitative analyses, we 
evaluated the sensitivity of the equilibrium states to 
the selected parameters. We first obtain the equilibrium 
states analytically from the set of ODEs:

x p d x p d

x k k p d p d

x
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O O L
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Then a partial derivative of all equilibrium states was 
derived with respect to each of the chosen parameters 
such as ∂ ∂ ∂ ∂ ∂ ∂x p x d NO O O O A; , ,… OC γ . There 
were 144 derivatives corresponding to 8 state 
variables and 18 parameters, and 43 derivatives were 
non zero. Two parameters (pL and dL) were involved 
in the equilibrium states of 6 state variables, while 
5 parameters (α2, α4, β2, γ2, γ4) were linked to a single 
equilibrium state only. Among 6 state variables 
affected by pL, for instance, the most sensitive state 
to a variation of pL value was xOL.

Qualitative analysis
The structural PN model in Fig. 3 did not have 
any place invariants. This result implies that no 

conservation of molecules or cells that were involved 
in this metabolic process. However, 11 transition 
invariants were identified (Table 2). For instance, 
the invariant sub-network pO → p1 → k1 → β2 → γ2 
corresponds to a process of the synthesis of 
OPG-RANKL complexes from OPG and RANKL 
and its interaction with active osteoblasts, while 
the invariant sub-network p1 → ak3→ β3 → α4 → γ4 
corresponds to the interactions among RANKL, 
RANK-RANKL complex, osteoclast precursors, and 
active osteoclasts. Furthermore, the sub-networks 
k2 → k1 and ak3 → k4 corresponds to the reversible 
processes among OPG, RANKL and OPG-RANKL 
complexes, and between RANKL and RANK/RANL 
complexes, respectively.

Quantitative analysis
Simulation of a sub-network I
We first examined the transient responses of a 
simplified PN model (sub-network I) (Fig. 4). 
In this sub-network, the concentration of OPG, 
xO(t), assigned in place p1, was expressed in ODE: 
x t p d x tO O O O( ) ( )= − . In our numerical PN simulation, 
we set pO = 200 nM/day and dO = 0.35/day with two 
initial OPG concentrations at 5 nM and 1000 nM. 
The results revealed that regardless of the initial OPG 
concentration its steady-state concentration approached 
to the ODE predicted equilibrium (steady-state) value 
at pO /dO (200/0.35 = 571.4 nM).

Table 2. Summary of transition invariants in the PN model.

Transition invariants Remarks
p0 → p1 → k1 → β2 → γ2 Synthesis of OPG-RANKL from OPG and RANKL, and its interaction with active 

osteoblasts
pO → dO Synthesis and degradation of OPG
p1 → ak3 → β3 → γ3 Closed-loop interactions among RANKL, RANK-RANKL, and osteoclast precursors
p1 → ak3 → β3 → α4 → γ4 Interactions among RANKL, RANK-RANKL, osteoclast precursors, and active 

osteoclasts
ak3 → k4 Reversible process between RANKL and RANK-RANKL
k2 → k1 Reversible process among OPG, RANKL, and OPG-RANKL
p1 → dL Synthesis and degradation of RANKL
α1 → α2 → γ2 Interaction between osteoblast precursors and active osteoblasts
α1 → γ1 Synthesis and degradation of osteoblast precursors
α3 → γ3 Synthesis and degradation of osteoclast precursors
α3 → α4→ γ4 Interaction between osteoclast precursors and active osteoclasts
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Simulation of the sub-networks I and II
We next evaluated the interaction between two 
sub-networks, which were described in ODEs as: 
x t p d x t d x tO O O O( ) ( ) ( )= + −3 1  and x t p d x t1 3 3 1( ) ( ),= −  
where xO(t) = state variable denoted by place p1, and 
x1(t) = state variable denoted by place p2 (Fig. 5). The 
parameters for PN simulations were: pO = 200 nM/day, 
dO = 0.35/day, p3 = 100 nM/day, and d3 = 0.45/day. 
Starting with the initial concentrations of 1000 nM at 
both places p1 and p2, the transient responses (alterations 
in the numbers of tokens) in the places p1 and p2 are 
plotted. Because of the interactions between the two 
sub-networks I and II, the equilibrium states of  xO(t) 
was different from the result in the sub-network I 
alone. In concert to the ODE-based predictions 
[( ) /p p dO O+ 3  = (200 + 100)/0.35 = 857.1 nM for xO(t) 
and p3/d3 = 222.2 nM for x1(t)], our PN results offered 
859 and 223 for x0 and x1, respectively.

Evaluation of the equilibrium states 
using the entire PN model
The transient responses for the entire PN model were 
simulated using the initial conditions that deviated 

from the ODE predicted equilibrium states. Although 
time required for reaching steady states varied among 
8 state variables, all 8 variables returned closely to 
the ODE equilibrium states (Figs. 6 and 7). First, the 
results for the molecular network in Fig. 6 revealed 
that the steady state PN values were 571, 3, 1633, 
and 89 nM for xO, xL, xOL and xKL, respectively. The 
ODE predicted values were 571, 2.86, 1630, and 85.7 
nM in this order. Second, the steady state PN values 
for the cellular network in Figure 7 exhibited 79,975 
for NOBP, 40 for NAOB, 9 for NOCP, and 1 for NAOC, 
while the ODE predictions were 80,000, 40, 9.0, and 
0.9 respectively.

In the current study, we conducted both qualitative 
and quantitative analyses. Our qualitative analysis 
allowed us to identify reversible processes, and 
determine interactions and dependencies among 
molecules and cells. The quantitative analysis for 
equilibrium states enabled to establish a bridge 
between the ODE-based continuous responses and 
the event-driven discrete networks. The potential 
capability of PNs in investigating metabolic networks 
is multifold. First, unlike ODEs PN models can 
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easily incorporate non-differentiable functions. For 
instance, administration of therapeutic agents such 
as OPG can be given in an arbitrary form including 
a series of impulsive dosages. Second, the potential 
effect of individual molecules such as RANK can 
be monitored graphically in any sub-networks. 
Third, an effect of a single event (e.g. synthesis of 
one molecule) in the entire PNs can be evaluated. 
Fourth, differential transient responses and time 
constants can be determined through temporal 
evolutions among variables. Lastly, although the 
described bone remodeling model is much simpler 
than a true physiological phenomenon, the present 
PN model can be expanded by adding more places 
and transitions.

Since OPG can reduce bone resorption through 
interactions with RANK and RNAKL, it can be used 
as a therapeutic agent for patients with osteoporosis.25 
In order to achieve a suitable outcome without 
inducing potential side effects, the administration 

sequence (timing and dosage) needs to be evaluated. 
We believe that the PN model in the current study 
can be used to predict a safe, effective administration 
strategy. Bone is a complex organ, and biological and 
mechanical characters differ depending on locations. 
Although the current PN model does not include 
those local variations, it is possible to differentiate 
site-specific dynamics by considering additional state 
variables and parameters.

Conclusion
The study herein presented a unique PN model for 
evaluation of bone remodeling focusing on the OPG/
RANK/RANKL signaling pathway among precursor/
active osteoblasts and osteoclasts. The described PN 
model is able to characterize qualitative (structural) 
and quantitative (dynamic) properties of the complex 
homeostatic process. It identified transition invariants 
(closed-loops and reversible processes) and verified 
the equilibrium states derived from the associated set 
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of ODEs. Since PN’s discrete network modeling fits 
well to event-driven physiological responses, further 
application of PN models should contribute to the 
understanding of complex molecular and cellular 
interactions and development of therapeutic strategies 
in bone remodeling and other biological processes.
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