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Abstract Residual dipolar couplings provide comple-

mentary information to the nuclear Overhauser effect

measurements that are traditionally used in biomolecular

structure determination by NMR. In a de novo structure

determination, however, lack of knowledge about the

degree and orientation of molecular alignment compli-

cates the analysis of dipolar coupling data. We present a

probabilistic framework for analyzing residual dipolar

couplings and demonstrate that it is possible to estimate

the atomic coordinates, the complete molecular alignment

tensor, and the error of the couplings simultaneously. As a

by-product, we also obtain estimates of the uncertainty in

the coordinates and the alignment tensor. We show that

our approach encompasses existing methods for deter-

mining the alignment tensor as special cases, including

least squares estimation, histogram fitting, and elimination

of an explicit alignment tensor in the restraint energy.

Keywords: Protein structure � NMR structure

determination � Residual dipolar couplings � Inferential

structure determination � Markov chain Monte Carlo

Introduction

Residual dipolar coupling (RDC) measurements provide

long-range orientational information for biomolecular

structure determination by NMR (Prestegard 1998; Bax

et al. 2001; Bax 2003; Lipsitz and Tjandra 2004; Bax and

Grishaev 2005). Hence, dipolar couplings complement the

nuclear Overhauser effect (NOE) data that are most com-

monly used in NMR structure determination. In favorable

cases, orientational information may even be sufficient to

determine the backbone conformation of a protein without

any additional data. Using molecular fragment replacement,

Delaglio et al. determined the backbone conformation of

the protein ubiquitin to high accuracy from RDCs alone

(2000).

In isotropic solution, dipolar couplings average to zero.

Therefore, to observe dipolar couplings it is necessary to

weakly align the molecule. This can be achieved by ori-

enting the molecule in an external field (Tolman et al.

1995) or through interactions with an appropriate solvent

medium such as liquid crystals (Tjandra and Bax 1997).

The magnitude of a dipolar coupling depends on the degree

of molecular alignment and on the average orientation of

the internuclear vector relative to the external magnetic

field. To calculate a dipolar coupling, knowledge of the

degree of alignment and of the average orientation of the

molecule is therefore required. This poses a problem in a

de novo structure determination because the alignment

tensor is a priori unknown. As a consequence the structure

calculation requires estimates of the axial and rhombic
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component of the alignment tensor, in addition to the

observed dipolar couplings.

Several ways of obtaining such estimates have been

proposed. Losonczi et al. used singular value decomposi-

tion to calculate the alignment tensor from a known

structure (1999). Clore et al. introduced a method which is

based on an analysis of the histogram of all measured

dipolar couplings and does not require any structural

knowledge (1998b). Estimates of the axial and rhombic

component are obtained by fitting the distribution of

observed dipolar couplings with the analytical curve

describing a chemical shift powder pattern. Once such

estimates are available, the unknown orientation of the

molecule relative to the alignment tensor is determined

during the structure calculation (Tjandra et al. 1997). It has

further been demonstrated that the axial and rhombic

component can be optimized using a grid search (Clore

et al. 1998a). Grzesiek and coworkers developed a restraint

energy function that does not explicitly involve the align-

ment tensor (Moltke and Grzesiek 1999; Sass et al. 2001).

Each of these methods has its limitations. Tensor fitting

by singular value decomposition requires a known structure

and is therefore not applicable in a de novo structure

determination. The histogram method provides only

approximate estimates of the axial and rhombic compo-

nents. These estimates very much depend on the smallest

and the largest observed dipolar coupling and are therefore

sensitive to noise. Furthermore, as the average orientation

of the molecule cannot be derived by this method, it needs

to be optimized during the structure calculation. Direct

optimization of the axial and rhombic component by a grid

search is calculation intensive. The tensor-free restraint

energy is inflexible when it comes to the incorporation of

a priori knowledge or the estimation of errors for individual

data sets. A fundamental limitation common to all these

methods is that they cannot assess the uncertainty in the

alignment tensor and do not provide a generic way to take

a priori knowledge into account.

Here we introduce a probabilistic model and estimation

procedure for analyzing dipolar coupling data. Both

integrate seamlessly with a probabilistic structure determi-

nation framework. Our approach builds on related work for

three-bond scalar coupling constants (Habeck et al. 2005a).

In this previous work, we showed that, using the Inferential

Structure Determination (ISD) framework (Rieping et al.

2005a; Habeck et al. 2005b), it is straightforward to

simultaneously estimate the molecular structure and the

unknown coefficients of the Karplus curve. The same model

can be applied to dipolar couplings, where the elements of

the unknown alignment tensor play a role analogous to the

Karplus parameters. By applying Bayes’ theorem we derive

a joint posterior distribution for the atomic coordinates, the

tensor elements, and the errors of the data sets. This

probability distribution is uniquely determined by the

observed dipolar couplings and the few basic assumptions

required to model them. It quantifies the interdependence of

the different groups of parameters and tells us how to

simultaneously estimate all parameters from the data: All

we need to do is find and explore the regions of high pos-

terior probability by means of statistical sampling methods;

additional heuristics are not required. A consequence of the

probabilistic treatment is that we obtain precision estimates

for all unknown parameters, most importantly for the tensor

elements and the three-dimensional coordinates of the

structure. A further advantage is that we can incorporate

different kinds of a priori knowledge. We find that our

probabilistic formulation contains the histogram method,

singular value decomposition and a tensor-free restraint

energy function as special cases and thus unifies these

methods in a consistent way.

Theory

In the secular approximation, a dipolar coupling Dkl

between two nuclear spins k and l with distance vector rkl

has a magnitude of

Dkl ¼ lklr
T
klSrkl=r5

kl ð1Þ

where S is the Saupe order matrix and lkl ¼ �l0ckclh=8p3

(Saupe and Englert 1963). This relation is strictly valid

only if the molecule is rigid and undergoes rotational

diffusion, which we will assume in the following. The

Saupe tensor describes the average orientation of the

molecule as well as the degree of alignment. It is

determined by several factors such as the solvent

medium, its concentration, the molecule’s shape and

electrostatic properties (Zweckstetter and Bax 2000;

Zweckstetter et al. 2004; Zweckstetter 2006). The

alignment tensor is symmetric and traceless and can be

parameterized with five independent elements s1,..., s5:

S ¼
s1 � s2 s3 s4

s3 �s1 � s2 s5

s4 s5 2s2

0
@

1
A ð2Þ

Using this parameterization, a dipolar coupling can be

written as the scalar product between two five-dimensional

vectors:

Dkl ¼ lkls
T aðrklÞ ð3Þ

where

sT ¼ ðs1; s2; s3; s4; s5Þ;
aðrÞT ¼ ðx2 � y2; 3z2 � r2; 2xy; 2xz; 2yzÞ=r5;

ð4Þ

for an internuclear vector r with Cartesian coordinates x, y,

z and length r. Equation (3) reveals that dipolar couplings
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depend linearly on the tensor elements, which allows us to

treat them similarly to the Karplus parameters which also

enter linearly into the Karplus relation (Karplus 1963).

In analogy to our treatment of scalar coupling constants

(Habeck et al. 2005a), we model the observation of a single

dipolar coupling with a Gaussian error distribution with an

unknown error r. The likelihood function, i.e. the proba-

bility of a data set comprising n measurements, is (Habeck

et al. 2006)

Lðh; s; rÞ ¼ ð2pr2Þ�n=2
exp � 1

2r2
v2ðh; sÞ

� �
ð5Þ

where h are the conformational degrees of freedom of the

molecule. The residual of the fit between observed and

calculated dipolar couplings resulting from a Gaussian

likelihood is

v2ðh; sÞ ¼
X
ðk;lÞ

Dkl � lkls
T aðrklÞ

� �2 ð6Þ

where the sum runs over all pairs of atoms for which a

dipolar coupling has been measured. The likelihood func-

tion (5) is not a probability for h, s, and r in a strict sense,

because it is normalized with respect to the data. However,

similar to a probability the likelihood function quantifies

how consistent settings for h, s, and r are with the obser-

vations and therefore ranks parameter values according to

their ability to explain the data.

Most of the existing methods for structure calculation

from dipolar couplings minimize the residual defined in

Eq. (6) with respect to the conformational degrees of

freedom; during this minimization, the alignment tensor

remains fixed to some empirical estimate. Using our

probabilistic framework, we are able to determine all

unknowns simultaneously, including the conformational

degrees of freedom, the five elements of the alignment

tensor, and the error of the couplings. The estimation is

based on the joint posterior probability distribution

pðh; s; rÞ / Lðh; s; rÞ pðh; s; rÞ ð7Þ

obtained from Bayes’ theorem (Jaynes 2003). Bayes’ the-

orem requires a prior probability p(h,s,r) that quantifies our

background knowledge about the unknown parameters. In

most situations we dispose of little a priori information

about the tensor elements and therefore choose a uniform

prior distribution for them.1 We also have little knowledge

about the error, except that it is a scale parameter (Habeck

et al. 2006) leading to p(r) = 1/r (Jeffreys 1946). The

prior probability for the atomic coordinates is a canonical

ensemble at inverse temperature b and is based on a

standard molecular force field E(h) (Rieping et al. 2005a;

Habeck et al. 2005b).

Application of Bayes’ theorem results in the posterior

distribution

pðh; s; rÞ / r�ðnþ1Þ exp � 1

2r2
v2ðh; sÞ � bEðhÞ

� �
ð8Þ

This distribution is a joint probability for all unknown

parameters. We make practical use of the posterior

distribution by generating a sequence of statistical

samples from it. These samples approximate the posterior

distribution and can be utilized to estimate h, s, and r or to

compute an integral such as an expected value.

It is possible to eliminate uninteresting parameters by

integrating them out (marginalization (Jaynes 2003;

Habeck et al. 2005b)). If, for example, we are not inter-

ested in the alignment tensor we can use the marginal

posterior distribution

pðh; rÞ ¼
Z

ds pðh; s; rÞ ð9Þ

to determine the conformational degrees of freedom and

the error of the measurements without explicit knowledge

of the alignment tensor. In some cases it is possible to solve

marginalization integrals analytically. In general, however,

we need to integrate numerically using statistical sampling

techniques.

A parameterization of the Saupe tensor in terms of five

independent matrix elements exhibits several invariances

that may complicate the parameter estimation. For exam-

ple, a reflection of the coordinates along the x-axis can be

compensated by changing the signs of s3 and s4. We can

reparameterize the alignment tensor using its spectral

decomposition

S ¼ UKUT ð10Þ

where U is a rotation matrix and K the diagonal matrix of

eigenvalues ki which are numbered such that |k1| \ |k2|

\ |k3|; because S is traceless, k1 + k2 + k3 = 0. The

rotation matrix U describes the average orientation of the

molecule. We define the magnitude A and the rhombicity R

of the alignment tensor as

A ¼ k3 � ðk1 þ k2Þ=2 ¼ k3=2; R ¼ 2ðk1 � k2Þ=3k3

ð11Þ

That is, A is related to the size of the largest principal

axis and R measures the asymmetry of the alignment tensor

along this axis. The strength of a dipolar coupling in the

molecular reference frame defined by U is:

1 Because the tensor elements Sij ¼ 3
2

cos bi cos bj

� �
� 1

2
dij are

directly related to the variance and correlation of the direction

cosines, cos bi; between the axes of the molecular reference frame and

the static magnetic field (Bax et al. 2001), they are in principle

restricted to certain physically reasonable ranges � 1
2
� Sii� 1;

� 3
4
� Sij� 3

4
: However, mainly for mathematical convenience we

will work with an (improper) uniform prior for the tensor elements

defined over the entire real axis.
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Dkl ¼ lklA 3 cos2 hkl � 1þ 3R sin2 hkl cosð2uklÞ=2
� �

ð12Þ

where ukl and hkl are the azimuthal and the polar angle of

the internuclear vector rkl in the principal axis system.

If we describe U with Euler angles a, b, c and replace

the tensor elements s1,..., s5 with the new parameters A, R,

a, b, c, we obtain posterior probabilities for the new

parameters. The new parameterization has the advantage

that it is less degenerate, but the reparameterized posterior

distributions become more complicated: R is confined to

values between 0 and 2/3, the distribution of the Euler

angles is not of a standard form. We therefore use the

parametrization based on s1,..., s5.

Results

We applied the outlined formalism to data measured on the

protein ubiquitin (Cornilescu et al. 1998). The data com-

prise 11 RDC sets that were recorded in two different liquid

crystalline phases. For both phases, five different coupling

types defining the orientation of the peptide planes (N–H,

C0–N, C0–H, Ca–C0, Ca–Ha) are available; for the first

phase, an additional set of Ca–Cb couplings was also mea-

sured. To describe dipolar coupling data that were recorded

in the same liquid crystalline phase, we use a single align-

ment tensor. However, each data set has its own error

parameter r. Thus the total number of unknowns describing

the dipolar couplings is 21: 10 parameters for the two

alignment tensors and 11 errors. In addition, we use the 2727

NOE-based distances that are also listed in the restraint file

(PDB code 1D3Z). The likelihood function of the distance

measurements is described in Rieping et al. (2005b).

Simultaneous estimation of structure and alignment

tensor

In a de novo structure determination, all parameters, h, s

and r, are unknown and need to be estimated from the data.

The calculations were carried out with the software ISD

(Rieping, Nilges, and Habeck submitted; the software can

be downloaded from http://www.bioc.cam.ac.uk/isd and

comes with a free academic license). ISD uses Gibbs

sampling to break down the task of sampling from a high

dimensional probability distribution into less complex

steps that update a single parameter set at a time only

(Geman and Geman 1984; Rieping et al. 2005a). The

conditional posterior probabilities required for this are a

five-dimensional Gaussian distribution for the tensor ele-

ments [cf. Eq. (16) below] and a gamma distribution for

the inverse quadratic error (Habeck et al. 2006). The Gibbs

sampler is embedded in a replica-exchange Monte Carlo

scheme as described in (Habeck et al. 2005b, c).

Figure 1 shows the posterior histograms for the tensor

elements obtained with our sampling algorithm. As a

matter of principle, the tensors can be determined to a

certain precision only. The precision is reflected in the

width of the histograms and depends on various factors

such as the availability of additional data (e.g. NOE data),

the quality of the dipolar coupling measurements, the

consistency of the data sets, and caveats in the relation used

to calculate the dipolar couplings [(Eq. 1)]. The distribu-

tion of the tensor elements also reflects the uncertainty in

the coordinates, because the joint posterior probability (8)

couples all parameters and quantifies their degree of cor-

relation. The distributions obtained from the Monte Carlo

samples are marginal posterior distributions for the tensor

elements, i.e. the variability in the coordinates is fully

taken into account; the quantification of the influence of

structural uncertainty on the precision of the alignment

tensor (Losonczi et al. 1999; Zweckstetter and Bax 2002)

is built-in to our framework.

Conditional and marginal posterior probabilities

The relationship between protein structure and alignment

tensor can be further elucidated on the basis of the

conditional and marginal posterior probabilities. To derive

Fig. 1 Posterior histograms of

the tensor elements. Upper

panels show the elements si

describing the alignment in the

first liquid crystal phase. Lower

panels show the si histograms

for the second phase
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marginal posterior probabilities as, for example, Eq. (9),

we rewrite the least squares residual, Eq. (6), in matrix

notation:

v2ðh; sÞ ¼ d � AðhÞs½ �T d � AðhÞs½ � ð13Þ

The n dimensional data vector d comprises the dipolar

couplings; A is a conformation dependent n 9 5 matrix

whose rows are the vectors a(rkl) defined in Eq. (4). The

residual can be written as the sum of two other strictly

nonnegative residuals: v2ðh; sÞ ¼ v2
1ðhÞ þ v2

2ðh; sÞ. The first

residual depends only on the conformational degrees of

freedom:

v2
1ðhÞ ¼ dT I � AðhÞAþðhÞ½ �d ð14Þ

This term is minimal if the structure fully explains the

data, i.e. if the data vector lies in the space spanned by the

columns of A(h). The second residual depends both on

the structure and on the tensor elements:

v2
2ðh; sÞ ¼ s� ŝðhÞ½ �T C s� ŝðhÞ½ � ð15Þ

For any given structure, this term has its minimum at

s ¼ ŝðhÞ. In the above expressions, we introduced the

5 9 5 matrix C ¼ AT A and the vector ŝ ¼ Aþd where

Aþ ¼ C�1AT is the generalized inverse (Press et al.

1989) of A. If the same tensor describes multiple data

sets, each having its own error, these expressions become

more complicated but still only involve standard linear

algebra.

Distribution of tensor elements for a given structure

Consider now the case that the protein structure is known.

For example, a crystal structure of the molecule may be

available or the structure of a homologuous protein. Min-

imization of the least squares residual v2ðh; sÞ with respect

to the tensor elements, while fixing the conformational

degrees of freedom to the known structure, then yields an

estimate of the Saupe tensor. Using the decomposition of

the residual, Eqs. (14) and (15), this minimum can be

calculated analytically. Only the second term, v2
2ðh; sÞ,

depends on the tensor elements. Therefore, the optimal

tensor for a given structure is the least squares solution

ŝðhÞ ¼ AðhÞþd.

A convenient way to calculate the generalized inverse

Aþ is singular value decomposition (Press et al. 1989),

which in the context of dipolar coupling analysis has been

proposed first by Losonczi et al. (1999).

This rule follows directly from our model. If we fix the

coordinates and the error in the joint posterior distribution

(8), we obtain a five-dimensional Gaussian distribution for

the tensor elements:

pðsjh;rÞ¼ jCðhÞj
1=2

ð2pr2Þ5=2
exp � 1

2r2
½s� ŝðhÞ�T CðhÞ ½s� ŝðhÞ�

� �

ð16Þ

The conditional posterior probability, Eq. (16), is cen-

tered at the least squares estimate ŝ with covariance matrix

r2C�1. It reaches its maximum at the least squares solution

ŝðhÞ of Losonczi et al. In addition, we are able to make

statements about the precision and correlation of the tensor

elements, whereas methods without a firm probabilistic

basis have to rely on some heuristic to compute an error

estimate. Losonczi et al. proposed to add Gaussian noise to

the measurements and then estimate the tensor elements by

applying singular value decomposition to many realiza-

tions of such simulated data sets (1999). In this way, a

distribution of possible tensor elements is obtained. How-

ever, it is not clear how much noise should be added, nor is

there a sound theoretical basis for this procedure. In con-

trast, the conditional posterior distribution of the tensor

elements in Eq. (16) follows unambiguously from the basic

rules of probability theory.

We generated alignment tensors from the conditional

posterior probability (16) with coordinates set to those of

the NMR structure 1D3Z (Cornilescu et al. 1998) and to

those of the crystal structure 1UBQ (Vijay-Kumar et al.

1987). Figure 2 shows the distribution of the tensors. The

finite widths of the posterior distributions again indicate

that also for fixed coordinates the alignment tensor will

remain imprecise to a degree depending on the quality of

the data, their number and consistency, as well as the

validity of the theoretical model (1).

Figure 3 illustrates the variability in the tensor ele-

ments in a different way. The molecular reference frames

where reconstructed by spectral decomposition from the

sampled alignment tensors (shown in Figs. 1 and 2).

Structure ensembles were constructed by orienting the

average structures into the sampled reference frames. The

superposition of structures is not obtained by minimizing

the coordinate RMSD; in this case the ensembles would

be much tighter (cf. Fig. 7). The ensembles reflect the

overall orientational ambiguity due to limitations of the

dipolar coupling data. As already apparent from the

posterior distributions of the tensor elements (Figs. 1

and 2), the variability is largest for the full simulation and

smallest for 1D3Z, which is evident since 1D3Z was

directly refined against the dipolar coupling data. Figure 4

shows a representation of the alignment tensors in the

principal axis system. The agreement in the rhombic

component is quite high, especially for the first phase.

Whereas the distributions of the axial component show

some differences, which is in accord with the observation

that in the presence of ‘‘structural noise’’ the estimation of
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A

B

1UBQ

1D3Z

Fig. 2 Posterior histograms for

the elements calculated from the

X-ray structure 1UBQ (panel A)

and from the NMR structure

1D3Z (panel B). In both panels,

the upper row shows the tensor

elements describing the first

liquid crystal phase. The lower

row shows the corresponding

histograms for the second phase.

The distribution of the tensor

elements estimated along with

the molecular coordinates

(shown in Fig. 1 are plotted in

grey for comparison)

Fig. 3 Ensembles generated by

applying the sampled rotations

to the average structure of the

full simulation (A), the crystal

structure 1UBQ (B) and the

NMR structure 1D3Z (C). The

last three residues are poorly

structured and therefore not

shown for clarity

A B C D

Fig. 4 Distributions of the axial and rhombic component for both

liquid crystal phases. a, b: A and R distributions for the first phase, c,

d: A and R distributions for the second phase. The filled histograms

result from sampling the joint posterior probability and correspond to

the distributions shown in Fig. 1. Distributions obtained from the

crystal structure 1UBQ and from the NMR structure 1D3Z are shown

as dashed and solid lines, respectively

140 J Biomol NMR (2008) 40:135–144

123



the axial component becomes problematic (Zweckstetter

and Bax 2002).

Histogram method

Maximization of the conditional posterior probability of the

Saupe tensor requires approximate knowledge of the coor-

dinates and is therefore not applicable to a de novo structure

determination. A way to deal with this situation is provided

by the histogram method (Clore et al. 1998b) or its variants

(Warren and Moore 2001). The histogram method estimates

the axial and rhombic component of the Saupe tensor from

dipolar couplings alone, without knowledge of a structure.

The histogram method builds on the fact that for isotropi-

cally oriented bond vectors, the expected distribution of

dipolar couplings has the same analytical form as a chem-

ical shift powder pattern. The extrema and the maximum of

the histogram of measured dipolar couplings therefore

provide estimates of the axial and rhombic component.

Considering the powder pattern as the probability for

observing a dipolar coupling, Warren and Moore (2001)

proposed a maximum likelihood version of this approach.

The maximum likelihood version of the histogram

method follows from our model. The powder pattern is the

distribution of dipolar couplings if the conformational

degrees of freedom are averaged out. The assumption that

the internuclear vectors are isotropically distributed is

necessary to keep the averaging over conformational

degrees of freedom analytically tractable. The Bayesian

analog is the marginal posterior distribution

pðs; rÞ ¼
Z

dh pðh; s; rÞ ð17Þ

in which we integrate out the unknown conformational

degrees of freedom. It can be proved that for the special

case of neglected structural prior knowledge (b = 0 in

Eq. 8) and perfect data (r = 0) the marginal posterior is

identical to the powder pattern. For real data, however, one

would want to account for measurement errors as well as

incorporate prior structural knowledge. The integration

above is then no longer analytically tractable. A major

advantage of Monte Carlo sampling over analytical mar-

ginalization is that we can relax the assumptions made by

the histogram method.

This is illustrated in Fig. 5 showing the distribution of

dipolar couplings for different combinations of prior

knowledge and data. Also shown are the histogram of

observed normalized dipolar couplings and the powder

pattern obtained by maximum likelihood analysis. In the

latter case, the axial and rhombic component are adapted

such that the powder pattern exactly covers the observed

range. Therefore, effectively only two data points, the

extrema of the empirical histogram, determine the estimates

of R and A. This can lead to unstable estimates in case of

sparse and/or noisy data. The estimates calculated by Monte

Carlo sampling are stable and capture the empirical RDC

distribution better. The algorithm adapts the tensors and the

data errors such that the simulated histogram maximally

overlaps with the empirical distribution. The Bayesian

histograms are smeared out at the limits and therefore not so

much dependent on the exact values of the minimum and

maximum observed coupling, because errors in the

observed couplings are directly taken into account.

Figure 6 shows the posterior probability of the axial and

rhombic component for the different scenarios. The posi-

tion of the posterior mode mainly changes in the axial

component. This again is consistent with the observation

that the axial component tends to be underestimated if

variations in the coordinates are taken into account

(Zweckstetter and Bax 2002). The rhombicity estimates are

quite similar for the different settings and agree well with

the estimates obtained from the crystal and the NMR

structure. The shape of the posterior ellipsoids shows that

with increasing number of data and prior knowledge also

the tensor estimates become more precise. In almost all

cases, the Bayesian posterior probabilities locate their main

bulk of probability mass in the vicinity of the estimate

obtained from the crystal structure 1UBQ. Only when

NOEs are also taken into account, the posterior modes

move towards the estimate obtained from the NMR struc-

ture 1D3Z. Maximum likelihood yields A = 11.7 Hz and

R = 0.20 for all couplings in the first liquid crystal phase

and A = 8.5 Hz and R = 0.26, which differs significantly

from the values for the NMR and the crystal structure.

Elimination of the alignment tensor

It is possible to eliminate the alignment tensor in the

restraint energy and refine protein structures directly

against observed dipolar couplings without any preanalysis

(Moltke and Grzesiek 1999; Sass et al. 2001). To derive

such a restraint energy, one minimizes the full residual,

v2ðh; sÞ [Eq. (6)], with respect to both the conformational

degrees of freedom and the tensor elements. The latter

minimization can be done analytically, because v2ðh; sÞ is

quadratic in the tensor elements. The optimal conforma-

tion-dependent tensor is: ŝðhÞ ¼ AðhÞþd. After substituting

this tensor into the full residual, one obtains the target

function, v2ðh; ŝðhÞÞ, which is equal to the residual v2
1ðhÞ,

Eq. (13), because v2
2ðh; ŝðhÞÞ ¼ 0. That is, minimization of

v2
1ðhÞ in conformation space will give the same results as

minimization of v2ðh; sÞ in joint structure-tensor space. The

tensor-free target function has the advantage that it does

not require knowledge of the Saupe tensor. The downside
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A B C

FD

G H I

E

Fig. 5 Comparison between the analytical powder pattern optimized

via maximum likelihood (dashed line), the histogram of the normal-

ized observed data (grey), and dipolar coupling distributions

calculated by averaging over the conformational degrees of freedom

using Monte Carlo sampling (solid line). Top row (a–c): analysis of

the N–H couplings, only the distributions of these couplings are

shown, middle (d–f): analysis of all couplings in the first liquid crystal

phase, bottom row (g–i): analysis based on couplings from both

phases, both data and histogram are shown for the first phase only.

From left to right the following additional information is used in the

simulation: left column (a, d, g): no additional data, no force field

taken into account, middle column (b, e, h): force field used in the

simulation, right column (c, f, i): force field and NOEs taken into

account

A B C

D E F

G H I

Fig. 6 1r-Ellipsoids of the

posterior distributions for the

axial and rhombic component in

the first liquid crystal phase.

The panels correspond to those

shown in Fig. 5 The black

ellipsoids indicate the 1r-region

of a two-dimensional Gaussian

distribution that was fitted to the

samples. Also shown as big grey

dots are the axial and rhombic

component obtained by

maximum likelihood for all

couplings observed in the first

phase (ML) and for the N–H

couplings only (ML) and by

fitting the couplings to the NMR

(1D3Z) and to the crystal

structure (1UBQ)
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is that the calculation of the restraint energy and its gra-

dient is quite involved and that analytical elimination of the

alignment tensor may be impossible when additional prior

knowledge is included. We point out that direct minimi-

zation of v2
1ðhÞ and iterative minimization of v2ðh; sÞ by

repeated structure calculation and tensor fitting is equiva-

lent—our Gibbs sampling algorithm is a probabilistic

version of such an iterative scheme.

The probabilistic counterpart of Moltke’s and Grze-

siek’s argument (1999) is to eliminate the tensor elements

by integrating them out in the joint posterior probability.

This integration can be done analytically, because the

posterior probability is Gaussian in the tensor elements.

The marginal posterior probability is

pðh; rÞ / r�ðn�5þ1Þ exp � 1

2r2
v2

1ðhÞ � bEðhÞ
� �

ð18Þ

Note that the implicit estimation of the tensor elements

consumes five data points, which is reflected in the reduced

number of data in the exponent of r when compared to

Eq. (8). The maximum posterior estimate for h is obtained

by minimizing the negative logarithm of (18), which is

identical to the target function proposed in (Moltke and

Grzesiek 1999).

To demonstrate that both the full and the marginal

posterior distribution [Eqs. (8) and (18)] convey the same

information with regard to the protein structure, we also

generated structures from p(h,r). Figure 7 displays struc-

ture ensembles from both simulations. The ensembles are

virtually identical, and there is a high agreement in terms of

accuracy, precision and quality.

Conclusions

We introduced a Bayesian probabilistic model to analyze

RDC measurements. From a Bayesian perspective, existing

heuristics to determine the alignment tensor, such as tensor

fitting, the histogram method and tensor elimination all

come under the same umbrella as special cases and

approximations of a fully probabilistic treatment.

A fully probabilistic approach has the advantage of

allowing for the incorporation of prior information (such

as, for example, models described in Almond and Axelsen

(2002) and Azurmendi and Bush (2002)), and the estima-

tion of the reliability of the measured dipolar couplings as

well as the assessment of the uncertainty of the alignment

tensor and the coordinates. This is made possible through

the simultaneous estimation of the protein structure and

‘‘nuisance parameters’’, which in the present context are

the tensor elements and the errors of the data sets.

Although it is possible to eliminate these parameters ana-

lytically, we advice against doing so for several reasons:

First, full flexibility with regard to the incorporation of

prior knowledge is only maintained when the parameters

are not eliminated analytically. For more advanced models,

the marginalization integral may even not be analytically

solvable. Second, to our experience, the joint posterior

probability has better convergence properties. Third, the

additional cost of estimating the nuisance parameters is

negligible in comparison with updating the conformational

degrees of freedom.

To apply our probabilistic model, it is not necessary to

calculate structures by posterior sampling if the main

interest is not so much the quantification of uncertainties.

Hence, traditional structure determination based on

restraint energy minimization can benefit from the insights

presented here. A direct analog of the Gibbs sampling

scheme would be an iterative maximization of the joint

posterior probability (8). The individual updates maximize

the conditional posterior probabilities, which can often be

done analytically: The method of Losonczi et al. (1999)

provides an update rule if the coordinates and the data error

are given, how to estimate the error from a structural model

is discussed in Habeck et al. (2006). Except for the treat-

ment of the error parameters, such an iterative algorithm

would be similar to the SCULPTOR approach (Hus et al.

2000).

Simultaneous optimization of all tensor elements is not

routinely done during structure calculation. Often either the

axial and rhombic components or the orientation of the

alignment tensor is updated. Computationally, it is much

simpler to estimate the full alignment tensor. But also in

terms of quality, the structures seem to improve if the

tensor is estimated during the structure calculation (Hus

et al. 2000, 2001). Hus and Blackledge showed that the

effects on the quality of the structure can be dramatic in the

case of few measurements. A probabilistic approach has

the additional advantage of providing error estimates and

allowing for adaptive weighting of the RDC sets. We

Fig. 7 Structure ensembles calculated by statistical sampling from

the full posterior distribution (left) and from the marginal posterior

distribution (right)
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expect that, as in the case of NOE data (Rieping et al.

2005a), these features will help to improve structures

calculated from sparse RDC data.
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