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A Second Function of Gamma Frequency Oscillations:
An E%-Max Winner-Take-All Mechanism Selects
Which Cells Fire

Licurgo de Almeida,' Marco Idiart,? and John E. Lisman?
'Neuroscience Program and 2Physics Institute, Universidade Federal do Rio Grande do Sul, CEP 90040-060, Porto Alegre, Brazil, and *Department of
Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454

The role of gamma oscillations in producing synchronized firing of groups of principal cells is well known. Here, we argue that gamma
oscillations have a second function: they select which principal cells fire. This selection process occurs through the interaction of
excitation with gamma frequency feedback inhibition. We sought to understand the rules that govern this process. One possibility is that
a constant fraction of cells fire. Our analysis shows, however, that the fraction is not robust because it depends on the distribution of
excitation to different cells. A robust description is termed E%-max: cells fire if they have suprathreshold excitation (E) within E% of the
cell that has maximum excitation. The value of E%-max is approximated by the ratio of the delay of feedback inhibition to the membrane
time constant. From measured values, we estimate that E%-max is 5-15%. Thus, an E%-max winner-take-all process can discriminate
between groups of cells that have only small differences in excitation. To test the utility of this framework, we analyzed the role of
oscillations in V1, one of the few systems in which both spiking and intracellular excitation have been directly measured. We show that an
E%-max winner-take-all process provides a simple explanation for why the orientation tuning of firing is narrower than that of the
excitatory input and why this difference is not affected by increasing excitation. Because gamma oscillations occur in many brain regions,

the framework we have developed for understanding the second function of gamma is likely to have wide applicability.

Introduction

Gamma frequency oscillations were originally discovered in the
field potential of visual cortex (Eckhorn et al., 1988; Gray and
Singer, 1989) and have subsequently been observed in most brain
regions (for review, see Jensen et al., 2007). Such oscillations are
thus likely to be a fundamental aspect of neural processing. Anal-
ysis of the function of gamma oscillations has focused on the role
of oscillations in synchronizing cell firing (Singer and Gray,
1995): rather than firing with a uniform probability over time,
networks that display gamma oscillations show clustered firing of
principal cells that tends to occur at a particular phase of each
gamma cycle (Bragin et al., 1995; Penttonen et al., 1998; Csicsvari
et al,, 2003). Such synchronization is likely to be functionally
important because it allows the detection of this group by coin-
cidence detection in target cells (Konig et al., 1996). Gamma
oscillations are thus thought to be an important aspect of neural
processing that provides a way for a group of cells that represents
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a particular percept or memory to be distinguished from other
groups.

Although neurons are synchronized by gamma oscillations,
they do not generally fire on every gamma cycle. For instance, in
the hippocampus, principal neurons fire during only 2-5% of the
gamma cycles [Senior et al. (2008), their Fig. 6]. It is thus impor-
tant to understand how excitation and inhibition interact to pro-
duce this selectivity. Importantly, inhibition itselfis modulated at
gamma frequency (Soltesz and Deschénes, 1993); indeed, gamma
oscillations appears to arise through a feedback process in which
principal cells excite interneurons, which then inhibit the princi-
pal cells (Miles, 1990; Fisahn et al., 1998; Bartos et al., 2007; Fries
et al,, 2007; Mann and Paulsen, 2007). This dynamic inhibition
not only synchronizes cells but, through interaction with excita-
tion, selects which cells fire.

We have sought to determine whether there are any simple
rules that describe this process. It has generally been thought that
inhibition selects the most excited cells by performing a type of
winner-take-all process. There is clearly more than one winner,
and thus a commonly used assumption is that that there are k
winners. We have examined this possibility and found that it is
not robust. An alternative description (E%-max winner-take-all)
is more robust: cells fire in a given gamma cycle if they have
excitation ( E) within E% of the cell that has maximal excitation.
We show that the value E% can be estimated from easily measur-
able properties. Given how widespread gamma oscillations are in
the nervous system, the role of these oscillations in determining
which cells fire is of fundamental importance. This E%-max pro-
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cessis notasingle-cell process, butrathera A
network process. In light of the present re-
sults, some standard ideas about what
causes cells to fire may need to be revised.

External
input
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Materials and Methods

The network we simulate is shown in Figure 1
and involves a group of identical principal cells
that converge onto an interneuron. The inter-
neuron provides feedback inhibition to all prin-
cipal cells. This inhibition occurs with a delay
(d), relative to the spike in the principal cell. In
most of the simulations, we adopted a delay pe-
riod of 3 ms. This feedback inhibition is strong
enough to prevent firing; firing can again occur
after partial decline of the inhibition. This sim-
ple network creates gamma frequency inhibi-
tion.

Different excitatory cells receive different ex-
citation from an external source. Principal cells
are modeled as simple integrate-and-fire neu-
rons, which have excitatory input current (exc),
inhibitory input current (GABA), and an after-
hyperpolarization (AHP) current. The voltage V; of neuron jis defined by
the following equation:

P1 P2

Figure1.

avi(1)
"o dt :_‘/j(t)+Vrest+Rm[Iexc(t)+IAHP(t)+IGABA(t)]‘ (1)

T

Here, we use as parameters the average input resistance of CA3 cells
(~R,, =33 MQ) (Turner and Schwartzkroin, 1983), the membrane time
constant (7, = 30 ms), and the threshold for firing (T = —50 mV). After
each spike, voltage is reset instantaneously to the resting potential (V.
= —65 mV). We use the following parameters: the steady excitatory

current I is constant (A, = 2 nA); the afterhyperpolarization current
(Inggp) has A pp = —2 nA and 7,yp = 17 ms (duration); the inhibitory
current I pa has Agapa= —20 nA and 75,54 = 3 ms (duration).

exc) constant
over time (see Results for rationale), whereas the other currents are mod-
eled as an instantaneous rise followed by a linear decrease (for consider-
ation of the case in which a component of excitation is rapid, see supple-
mental material, available at www.jneurosci.org).

For the simulation, we considered the excitatory input (I,

Icurrem( t) :Acurrent'H( t) [ 1- ] + (2)

Teurrent

H(x) is the Heaviside function, where H(x) = 1 if x > 0 and 0 otherwise,
and [...], = xH(x) is the clipped linear function.

In the simulation of orientation selectivity, we consider that the exci-
tatory current to a V1 neuron is given by the following:

chc:Iba\salJ'_Imax(G(60’6>0-)+g)’ (3)

where I, ., is an excitatory current strong enough to produce a suprath-
reshold potential in all neurons; I, is related to the image contrast, such

max
that the larger the contrast, the larger I ,.; G(6,,0,0) is the orientation

max’

selectivity function given by the following:

(6—60%)
G(60,0,0)=¢ 27, (4)

where 6, is the angle with the maximum response and o is the width of
the selectivity function. Finally, { is a Gaussian random variable with
SD = 0.3 and clipped in the interval —1 and 1. This represents the noise
in the system.

For these simulations, the width of the tuning curves is o = 32°, the
values of I, are 5 and 10 nA (as displayed in Fig. 6 A), and I, is 0.5 nA.

All simulations and analysis here were made using Matlab (Mathworks).
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A, Network structure showing interconnections of principal cells and an interneuron. Principal cells (P1 to Pn) receive
external excitatory input. Principal cells excite an inhibitory interneuron (1) that provides feedback inhibition to all principal cells.
B, An action potential (top trace) in a pyramidal neuron in the CA3 region of the hippocampus produces rapid disynaptic feedback
inhibition in a nearby pyramidal neuron (bottom; several traces superposed). The entire process is very rapid: there is only a 2-3
ms delay between the action potential in the principal cell and the feedback inhibition of principal cells. Note: feedback inhibition
probably also occurred in the cell that fired the action potential but is hard to detect because of the potassium conductances (and
resulting hyperpolarization) activated by the action potential in that cell. Reprinted with permission from Miles (1990).

Results

Our overall goal is to understand how networks with gamma
frequency inhibition select which cells fire based on their varying
excitatory drive. The simplified circuit that we consider here is
shown in Figure 1 A. Principal cells receive external input that is
purely excitatory. When these cells fire, they excite an interneu-
ron, which inhibits all the principal cells (feedback inhibition).
When this inhibition declines sufficiently, firing again occurs.
This process repeats indefinitely, thereby generating a gamma
frequency oscillation. Experimental results (Miles, 1990) show
that feedback inhibition is very rapid, as shown in Figure 1 B (we
use the value of 3 ms). The use of a single interneuron in our
simulations is a reasonable approximation because of several
properties of interneuron networks: there is enormous conver-
gence of principal cells onto these interneurons, enormous diver-
gence of the feedback connections from interneurons to principal
cells and electrical coupling among the interneurons (Buhl et al.,
1994; Cobb et al., 1995; Galarreta and Hestrin, 1999; Tamas et al.,
2000; Meyer et al., 2002). Furthermore, interneurons are sensitive
enough to fire in response to input from only a single principal
cell (Miles, 1990; Gulyas et al., 1993; Marshall et al., 2002; Silber-
bergand Markram, 2007). The circuit of Figure 1 A was simulated
as an integrate-and-fire network (see Materials and Methods).
The relevant currents are the excitatory input, the feedback inhi-
bition and a brief AHP after each action potential.

A common framework for describing networks with feedback
inhibition is as a winner-take-all process. Because it is clear that
there is more than one winner in biological networks, the term
k-winner-take-all is often used to denote that there are k winners.
Under a given set of conditions, this is certainly true, but to be a
robust description of the network computation, k should be in-
variant not only for multiple values of excitation and inhibition
but also for different distributions of input excitation (excitation
is considered here to be constant over time) (for a similar analysis
with time-varying excitation, see supplemental material, avail-
able at www.jneurosci.org). To examine whether this is the case,
we changed the ratio of excitation and inhibition in our integrate-
and-fire model; we also varied the distribution of inputs to dif-
ferent principal cells (Fig. 2A). We found that the number of
winners (k) is invariant over a large range of excitation but varies
strongly with the distribution of excitation (Fig. 2 B). Thus, the
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Figure 2.  Comparison of a k-winner-take-all description with an £%-max winner-take-all description. A, Graph of the input

excitation of 1000 different neurons in the network. The minimum excitation is always zero, and the values are relative to the cell
with maximal excitation (excitatory current). Neurons here are ranked in terms of increasing excitation. Several distributions are
plotted (same legend for A-(). B, The number of winners (k%) as excitation is scaled up. €, F%-max as excitation is scaled up. The
dotted line in Cindicates the theoretical value derived in Results.
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Figure3.  Events that govern the selection process in a network with feedback inhibition. One neuron (N2) receives 10% less

excitation than the other (N1). A, The component currents of N1and N2 (solid/dashed lines). At the left, there is onset of inhibition
because of the previous gamma cycle (details not shown). B, As inhibition decays, threshold is reached in N1, causing an action
potential. This s followed by an AHP in N1and feedbackinhibition in both cells (with a delay of 3 ms). During this delay, the decline
of inhibition in N2 is not sufficient for that cell to reach threshold. C, If the feedback inhibition is prevented, N2 fires. D, If the
excitation of N2 is only 5% less than N1, N2 fires.
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concept that a network can robustly select
a fixed number of winners is not correct.

To identify a more robust description
of the selection process, we considered two
cells, N1 and N2, that have only slightly
different (10%) excitatory input. The
traces in Figure 3B start with the inhibition
initiated during the previous gamma cycle.
As the IPSP decays with the membrane
time constant, N1 reaches threshold first
and fires (resulting immediately in an
AHP in N1). However, because the IPSP
continues to decline, other cells may fire
during the brief “vulnerable period” be-
fore feedback inhibition arrives. In the ex-
ample shown in Figure 3, N2, which has
only 10% less excitation than N1, contin-
ues to depolarize because of decay of the
IPSP and almost reaches threshold. How-
ever, before it does so, feedback inhibition
arrives and prevents N2 from reaching
threshold. If feedback inhibition had not
arrived, N2 would have fired after a short
additional delay (Fig. 3C). However, if ex-
citation of N2 was only 5% less than N1,
the depolarization during the vulnerable
period reaches threshold, and thus both
cells fire (Fig. 3D). This simple example
shows that the network can select which
cells fire based on small (10%) differences
in excitation and that understanding the
events during the vulnerable period is
crucial.

To quantify the processes during the
vulnerable period, we define the effective
excitation (E) of a given cell as the excess
of voltage above threshold (E =V, — T),
where V is the sum of the excitatory input
and intrinsic afterpotentials that result
from previous firing. If E < 0, a cell will
never fire; if E > 0, cells may fire if the
inhibition allows. The cell that fires first
during a gamma cycles has excitation E,
as inhibition declines during the gamma
cycle, thelast neuron to fire during the vul-
nerable period has lower excitation, E, ;..
E%-max is the percentage difference be-
tween this lower excitation and that of the
maximal excitation. To examine the ro-
bustness of E%-max in defining which
cells fire, we determined E%-max under
various conditions in our integrate-and-
fire network. Figure 2C shows that neither
scaling the excitation (>10-fold) nor
changing the distribution of excitation
strongly affected E%-max. Thus, the E%-
max description robustly captures a fun-
damental aspect of the computation.

Analytical estimation of E%-max and

its determinants

We next sought to determine what prop-
erties of the network determine E%-max.
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resting potential), the EPSP (V™) of the 62 25
cell, and the IPSP (Vgapa):

V™ 4+ Viapa(£)=T. (5) Figure 4.

Therefore, the condition to fire can be
written as follows:

E™=—Viapa(th), (6)

where we define suprathreshold excitation “E” as the difference
between the EPSP and threshold as follows:

(E=V,—T).

Our goal is to determine the minimal excitation (E™™) necessary
for a second cell to fire in the same gamma cycle. Consider that
the difference between excitations is

AE=E™>—E™", (7)

Since the feedback inhibition takes d seconds to occur, the second
cell will fire if at most

E™Mn=—Vapa(t*+d). (8)

Considering that the firing period #* is much larger than the delay
(d), we can make a linear approximation as follows:

dVGABA

Voasa(F*+d)~Vippa () +d- dt (). 9)
The inhibitory component of the potential is a consequence of
the integration of the fast I, 5, current across the membrane. We
consider that I,z (#) = 0 by the time the neurons are approach-
ing to their thresholds; therefore, V5,5, is decaying exponen-
tially with the membrane time constant 7, as follows:

dVGABA 1
T(t*):_?VGABA(t*)' (10)
Combining Equation 6 with Equations 7, 9, and 10 results in the
following:

AE d

max :7'
E Tm

E%-max= (11)
According to Equation 11, E%-max increases with d and de-
creases with the membrane time constant. Figure 2C, dotted line,
shows that Equation 11 correctly predicts the magnitude of E%-
max, as determined in our integrate-and-fire network. In Figure
4, the same network is used to verify that E% depends linearly on
the delay of feedback inhibition and inversely on the membrane
time constant, in accord with Equation 11.

3
delay (ms)

35 4 20 25 35 40

30
1 (ms)

The effect of the delay of feedback inhibition (4) and membrane time constant (B) on £%-max.

E%-max rule: application to excitation and firing tuning

in V1

The process by which gamma oscillations perform an E%-max
computation means that the selection of which cells fire is inher-
ently a network process and implies that there is not a direct
relationship between the excitatory input and cell firing. Rather,
whether a cell fires will depend on the excitation to other cells in
the network. In most brain regions, input excitation has not been
measured and so the above ideas cannot be related to experimen-
tal data. However, in the case of orientation cells of V1, both the
orientation tuning of excitation (measured intracellularly) and
the orientation tuning of spiking have been measured (Anderson
etal., 2000; Carandini and Ferster, 2000; Monier et al., 2003). The
results show that the tuning of firing is considerably narrower
than the tuning of excitation and that this difference is contrast
invariant (unaffected by the increased excitation produced by
enhancing the contrast of the stimulus). There has been consid-
erable interest in understanding the mechanism of this invari-
ance, and many models have been proposed (for review, see Fer-
ster and Miller, 2000; Teich and Qian, 2006). However, although
both intracellular and field recordings indicate the presence of
gamma oscillations (Gray and Singer, 1989; Konig et al., 1996;
Singer and Gray, 1995; Volgushev et al., 2003; Fries et al., 2007) in
V1, the specific role of the dynamic inhibition provided by
gamma has not previously been considered. It was thus of interest
to ask whether an E%-max computation can account for the
observed differences in the tuning of excitation and firing.

The tuning of excitation in V1 cells was studied by Carandini
and Ferster (2000) and is illustrated in Figures 5 and 6 A. Each cell
responds maximally to some degree of orientation (around 135°
for the graphs shown in Figs. 5, 6 A), but the same cell also shows
some level of excitation for a range of other orientations (between
45 and 225° for the examples here). Anderson et al. (2000)
showed that the tuning of spiking is sharper than the tuning of
excitation; specifically, the half-width at half-height of the tuning
of spiking was around 23° compared with 38° for the EPSP. Im-
portantly, this narrow tuning of spiking was not changed when
the contrast of the visual stimuli was increased. As discussed by
Carandini and Ferster (2000), feedforward models with fixed
threshold are unable to reproduce this independence of contrast;
in such models (Fig. 5), tuning can be sharpened because of a
threshold for firing, a phenomenon termed the “iceberg” effect.
However, an important property of this iceberg effect is that the
sharpening is reduced by increasing the overall level of excitation
(by increasing contrast).

To examine how gamma frequency inhibition affects orienta-
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Figure5. Tuning changes produced by the iceberg effect. The bottom curve shows orienta-

tion tuning of excitation relative to threshold (dashed line). As shown in the bottom curve, the
width of the tuning of firing (double arrow) can be quite narrow because only a few orientations
are above threshold (the iceberg effect). However, if the overall level of excitation is scaled up
(higher curve), as would occur if image contrast is enhanced, the tuning becomes broader,
contrary to experimental observations.

10 T T <

A 7 N\ [—overall excitation = 5nA
/ A i
sl 7 \ | —— overall excitation=10nA
E ol ]
c
g
5 4r T
(]
2F i
0
0 270
0.25 . . i
B o ®  firing probability (SnA)
02l . o firing probability (10nA)

probability of spike
per gamma

degree of orientation

Figure 6.  Orientation tuning of firing is unaffected by increasing excitation (contrast) in an
integrate-and-fire network with gamma frequency inhibition. 4, Tuning of excitatory input as a
function or orientation (same as in Fig. 5) at two different levels of contrast. B, Orientation
tuning of firing in simulations. Curve fits to data show no effect of enhancing contrast on tuning.
The responses were fit by

x—B
F(x)=Ae "¢,
where x is the degree of orientation. For the lower level of contrast (filled squares), A = 0.19,
B = 135, and C = 20.4; for higher contrast (open squares), A = 0.183,8 = 134.9,and ( =
19.74. The value of F%-max was 10%, based on results from hippocampus. The fact that the
calculated tuning of spikes (16.5°) is narrower than observed experimentally (23°) could be

because £%-max is higher in V1 or because noise levels are higher than we assumed (see
Materials and Methods).

tion selectivity, we modified our integrate-and-fire network to
have orientation-selective input to each principal cell. In these
simulations, the network was composed of 100 neurons, each
with slightly different optimal orientation (evenly spaced be-
tween 0 and 270°). E%-max was set at 10%. We ran the network
for many gamma cycles using two levels of contrast (Fig. 6A).
Figure 6 B shows that the probability of spiking per gamma de-
pended on stimulus orientation (300 trials). Similar to the exper-
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imental results (Anderson et al., 2000), the neurons in the simu-
lated network displayed a sharper orientation tuning for spikes
than for input excitation: the half-width at half-height of the
excitation tuning is 37° (Fig. 6 A), whereas the same measure for
spike tuning is 16.5° (this value would be slightly higher if more
noise was assumed). Importantly, the tuning of spikes was prac-
tically unchanged when the excitatory input was doubled (Fig.
6B). A selection process based on gamma frequency inhibition
can thus account for the contrast invariance of orientation
tuning.

We emphasize that we have kept this model as simple as pos-
sible to isolate the computational capabilities of feedback inhibi-
tion. Other forms of synaptic input (feedforward inhibition from
both “on” and “off” cells; recurrent excitation) are necessary to
account for the full complexities of the response of V1 cells, in-
cluding the response to moving stimuli (Ferster and Miller,
2000).

Discussion

Almost all work to date on the functional role of gamma oscilla-
tions has focused on the production of synchronized firing (Bra-
gin et al., 1995; Singer and Gray, 1995; Penttonen et al., 1998;
Csicsvari etal.,2003). We argue that a second function of gamma,
the selection of which cells fire, is equally important. It has been
experimentally shown that only a fraction of cells fire on each
gamma cycle (Senior et al., 2008), but the mechanism that deter-
mines which cells fire has been unclear. Our work indicates that
this selection is a type of winner-take-all process that follows
directly from the properties of the feedback inhibition that un-
derlies gamma frequency oscillations.

We have sought to find a simple quantitative description of
this winner-take-all process and have found that several descrip-
tions are not correct. There is no single winner, and so the
winner-take-all concept cannot be taken literally. Nor will a net-
work determine a fixed number of winners, independent of the
input distribution. We find, however, that a simple rule approx-
imates the selection process: cells will fire if their suprathreshold
excitation (E) is within E% of the cell that receives maximal
excitation. We term this an E%-max winner-take-all-process. As
shown in Figure 2C, E%-max holds over a considerable range as
the excitatory inputs to the network are scaled relative to inhibi-
tion. Furthermore, E%-max is not altered by changing the distri-
bution of excitation in the different cells (relative to the cell with
maximal excitation). Thus, the E%-max computation is robust.
Because E%-max rule does not depend on the exact ratio of ex-
citation to inhibition, it can be applied to cases in which this ratio
is not known. The companion study (de Almeida et al., 2009)
applies the rule to calculate properties of hippocampal place
fields. In contrast to previous work (Rolls et al., 2006), in which
the percentage of cells with place fields was used as a way to
arbitrarily set inhibition, the E%-max rule allows the calculation
of this percentage from theoretical considerations (without
knowing the exact value of inhibition), which can then be com-
pared with the observed value.

Determinants of E%-max

We have shown by simulation and theory that E%-max is deter-
mined by the ratio of the delay of feedback inhibition (d) to the
membrane time constant (7,,). This functional dependence can
be understood intuitively as follows (see also Fig. 3). When
gamma-mediated inhibition is maximal, cells will be below
threshold. The gradual decay of inhibition creates a ramp, which
can be view as “searching” for the neuron with maximal excita-
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tion; this will be the first cell to fire and trigger feedback inhibi-
tion (Miles, 1990; Gulyas et al., 1993; Marshall et al., 2002). This
inhibition occurs within 2—-3 ms, and it is this delay that creates a
vulnerable period during which cells with less than maximal ex-
citation can fire. The more inhibition declines during the vulner-
able period, the more likely it is that cells with less inhibition will
fire: thus selectivity decreases as the delay increases. Selectivity is
also decreased if the decay of inhibition (membrane time con-
stant) becomes faster. Based on experimental values for d and 7,,,
in the hippocampus, we estimate that E%-max is in the range of
5-15%. This is a small fraction of excitation and indicates that the
selection process can make fine discriminations.

We emphasize that the rules we have developed are meant
only as a first-order approximation and that the operation of
feedback networks will depend on additional factors that we have
not taken into consideration. These include the variability of de-
lays in feedback inhibition, the opening kinetics of inhibitory and
excitatory channels, and the limited spatial spread of feedback
inhibition in the network. Furthermore, the excitatory input to
inhibitory cells may often be enhanced by convergent inputs
from multiple principal cells, a summation process that we have
not modeled. In most of our calculations, we have assumed that
excitation varies slowly with respect to gamma. This assumption
may be valid when the stimulus is slowly changing, but may be in-
valid when a network receives a brief pulse of synchronized input. In
the supplemental material (available at www.jneurosci.org), we ex-
amine the case in which excitation has both steady and fast compo-
nents and show that the E%-max rule and Equation 11 still apply.
Another assumption in our calculations is the choice of a fast AHP.
Different cell types have different duration afterpotentials, often de-
pending on neuromodulatory state (Storm, 1987, 1989). Moreover,
in some cells, the afterpotential can be depolarizaing rather than
hyperpolarizing (Storm, 1989; Andrade, 1991; Araneda and An-
drade, 1991; Caeser etal., 1993). These afterpotentials will contribute
to the suprathreshold excitation of the cell. Under these conditions,
E%-max can still be usefully applied to determine which cells fire, so
long as it is understood that both internal and external processes
contribute to the effective excitation. Indeed, afterpotentials may
account for important properties of firing. For instance, a long AHP
would prevent a cell from firing on sequential gamma cycles, even if
the external excitatory drive stays constant. Alternatively, if there is
an afterdepolarization, a cell that fired once would be particularly
likely to fire again, a process that may underlie working memory
(Lisman and Idiart, 1995; Klink and Alonso, 1997).

Implications for neural computation

Because analysis of spiking in functional circuits is generally done
with extracellular recording, the tuning of the EPSP is usually not
known. However, in the case of orientation-selective cells of V1,
intracellular recordings have been achieved. Orientation selectiv-
ity appears to depend on two mechanisms: a process of connec-
tivity, which makes the input EPSP somewhat orientation selec-
tive (Reid and Alonso, 1995), and a second process dependent on
inhibition (Sillito, 1975; Troyer et al., 1998; Carandini and Fer-
ster, 2000). This second mechanism makes the orientation tuning
of spiking narrower than that of the EPSP. Moreover, this nar-
rowing is not affected by scaling up the excitation, a finding in-
consistent with models based on fixed inhibition. Consequently,
the narrowing of tuning cannot be explained by the iceberg effect
(Fig. 5). Intracellular recordings provide direct evidence for
gamma frequency inhibition in orientation-sensitive V1 cells
(Volgushev et al., 2003). We show here (Fig. 6) that an E%-max
computation produced by such oscillations can explain why the
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orientation tuning of spiking is narrower than that of the EPSP
and why this difference is contrast invariant. Thus, there will be
orientations in which a cell receives substantial excitation (suffi-
cient to make the cell fire in the absence of inhibition) but in
which firing is suppressed by feedback inhibition triggered by
cells that that are slightly more excited by the stimulus.

A second system in which the E%-max winner-take-all com-
putation is likely to be important is the formation of place cells in
the hippocampus (de Almeida et al., 2009). The input to place
cells is from grid cells of the entorhinal cortex, which are active
(with spatial periodicity), over broad regions of the environment.
Nevertheless, hippocampal cells are active only in very restricted
regions of the environment. We show in a companion study (de
Almeida et al., 2009) that, despite the broad excitation, the E%-
max mechanism can select winners that are only slightly more
excited than other cells in the network and that cells are winners
in a relatively small region of the environment, thereby account-
ing for their place cell properties.

More generally, the winner-take-all function (and the specific
E%-max form considered here) requires a change in the concep-
tual understanding of how firing is controlled. According to text-
book accounts, firing can be understood as a single-cell property;
firing rate is determined by how far the net excitation is above
threshold. Based on this, if excitation x causes firing, excitation
2x in another context should also cause firing. However, this is
not necessarily correct in networks with feedback inhibition. If,
for example there are other cells in the second context that have
3x excitation, the cell with 2x excitation may not be among the
winners. This simple example demonstrates that firing in net-
works with winner-take-all gamma-frequency inhibition cannot
be derived from the excitation of a given cell, but is rather a result
of a competitive network computation in which all cells must be
considered.

References

Anderson JS, Lampl I, Gillespie DC, Ferster D (2000) The contribution of
noise to contrast invariance of orientation tuning in cat visual cortex.
Science 290:1968—-1972.

Andrade R (1991) Cell excitation enhances muscarinic cholinergic re-
sponses in rat association cortex. Brain Res 548:81-93.

Araneda R, Andrade R (1991) 5-Hydroxytryptamine 2  and
5-hydroxytryptamine 1A receptors mediate opposing responses on mem-
brane excitability in rat association cortex. Neuroscience 40:399—412.

Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized
gamma oscillations in inhibitory interneuron networks. Nat Rev Neuro-
sci 8:45-56.

Bragin A, Jand6 G, Néadasdy Z, Hetke J, Wise K, Buzsédki G (1995) Gamma
(40—100 Hz) oscillation in the hippocampus of the behaving rat. ] Neu-
rosci 15:47-60.

Buhl EH, Halasy K, Somogyi P (1994) Diverse sources of hippocampal uni-
tary inhibitory postsynaptic potentials and the number of synaptic release
sites. Nature 368:823—828.

Caeser M, Brown DA, Gidhwiler BH, Knopfel T (1993) Characterization of a
calcium-dependent current generating a slow afterdepolarization of CA3
pyramidal cells in rat hippocampal slice cultures. Eur J Neurosci
5:560-569.

Carandini M, Ferster D (2000) Membrane potential and firing rate in cat
primary visual cortex. ] Neurosci 20:470-484.

Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization
of neuronal activity in hippocampus by individual GABAergic interneu-
rons. Nature 378:75-78.

Csicsvari J, Jamieson B, Wise KD, Buzsaki G (2003) Mechanisms of gamma
oscillations in the hippocampus of the behaving rat. Neuron 37:311-322.

de Almeida L, Idiart M, Lisman JE (2009) The input—output transformation
of the hippocampal granule cells: from grid cells to place fields. ] Neurosci
29:7504-7512.

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ



de Almeida et al. @ A Second Function of Gamma Frequency Oscillations

(1988) Coherent oscillations: a mechanism of feature linking in the visual
cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern
60:121-130.

Ferster D, Miller KD (2000) Neural mechanisms of orientation selectivity in
the visual cortex. Annu Rev Neurosci 23:441-471.

Fisahn A, Pike FG, Buhl EH, Paulsen O (1998) Cholinergic induction of
network oscillations at 40 Hz in the hippocampus in vitro. Nature
394:186-189.

Fries P, Nikoli¢ D, Singer W (2007) The gamma cycle. Trends Neurosci
30:309-316.

Galarreta M, Hestrin S (1999) A network of fast-spiking cells in the neocor-
tex connected by electrical synapses. Nature 402:72-75.

Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orien-
tation columns of cat visual cortex. Proc Natl Acad Sci USA
86:1698-1702.

Gulyés Al, Miles R, Sik A, T6th K, Tamamaki N, Freund TF (1993) Hip-
pocampal pyramidal cells excite inhibitory neurons through a single re-
lease site. Nature 366:683—687.

Jensen O, Kaiser J, Lachaux JP (2007) Human gamma-frequency oscilla-
tions associated with attention and memory. Trends Neurosci
30:317-324.

Klink R, Alonso A (1997) Muscarinic modulation of the oscillatory and re-
petitive firing properties of entorhinal cortex layer II neurons. ] Neuro-
physiol 77:1813-1828.

Konig P, Engel AK, Singer W (1996) Integrator or coincidence detector?
The role of the cortical neuron revisited. Trends Neurosci 19:130-137.

Lisman JE, Idiart MA (1995) Storage of 7 = 2 short-term memories in os-
cillatory subcycles. Science 267:1512-1515.

Mann EO, Paulsen O (2007) Role of GABAergic inhibition in hippocampal
network oscillations. Trends Neurosci 30:343-349.

Marshall L, Henze DA, Hirase H, Leinekugel X, Dragoi G, Buzsaki G (2002)
Hippocampal pyramidal cell-interneuron spike transmission is frequency
dependent and responsible for place modulation of interneuron dis-
charge. ] Neurosci 22:RC197(1-5).

Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) I vivo labeling
of parvalbumin-positive interneurons and analysis of electrical coupling
in identified neurons. ] Neurosci 22:7055-7064.

Miles R (1990) Synaptic excitation of inhibitory cells by single CA3 hip-
pocampal pyramidal cells of the guinea-pig in vitro. J Physiol 428:61-77.

Monier C, Chavane F, Baudot P, Graham LJ, Frégnac Y (2003) Orientation

J. Neurosci., June 10, 2009 - 29(23):7497-7503 + 7503

and direction selectivity of synaptic inputs in visual cortical neurons: a
diversity of combinations produces spike tuning. Neuron 37:663—680.

Penttonen M, Kamondi A, Acsddy L, Buzsaki G (1998) Gamma frequency
oscillation in the hippocampus of the rat: intracellular analysis in vivo.
Eur ] Neurosci 10:718-728.

Reid RC, Alonso JM (1995) Specificity of monosynaptic connections from
thalamus to visual cortex. Nature 378:281-284.

Rolls ET, Stringer SM, Elliot T (2006) Entorhinal cortex grid cells can map
to hippocampal place cells by competitive learning. Network 17:447—465.

Senior TJ, Huxter JR, Allen K, O’Neill J, Csicsvari] (2008) Gamma oscilla-
tory firing reveals distinct populations of pyramidal cells in the CA1 re-
gion of the hippocampus. ] Neurosci 28:2274-2286.

Silberberg G, Markram H (2007) Disynaptic inhibition between neocortical
pyramidal cells mediated by Martinotti cells. Neuron 53:735-746.

Sillito AM (1975) The contribution of inhibitory mechanisms to the recep-
tive field properties of neurones in the striate cortex of the cat. J Physiol
250:305-329.

Singer W, Gray CM  (1995) Visual feature integration and the temporal cor-
relation hypothesis. Annu Rev Neurosci 18:555-586.

Soltesz I, Deschénes M (1993) Low- and high-frequency membrane poten-
tial oscillations during theta activity in CA1 and CA3 pyramidal neurons
of the rat hippocampus under ketamine-xylazine anesthesia. ] Neuro-
physiol 70:97-116.

Storm JF (1987) Action potential repolarization and a fast after-
hyperpolarization in rat hippocampal pyramidal cells. ] Physiol 385:733—759.

Storm JF (1989) An after-hyperpolarization of medium duration in rat hip-
pocampal pyramidal cells. ] Physiol 409:171-190.

Taméds G, Buhl EH, Loérincz A, Somogyi P (2000) Proximally targeted
GABAergic synapses and gap junctions synchronize cortical interneu-
rons. Nat Neurosci 3:366-371.

Teich AF, Qian N (2006) Comparison among some models of orientation
selectivity. ] Neurophysiol 96:404-419.

Troyer TW, Krukowski AE, Priebe NJ, Miller KD (1998) Contrast-invariant
orientation tuning in cat visual cortex: thalamocortical input tuning and
correlation-based intracortical connectivity. ] Neurosci 18:5908 -5927.

Turner DA, Schwartzkroin PA (1983) Electrical characteristics of dendrites
and dendritic spines in intracellularly stained CA3 and dentate hipp-
ocampal neurons. ] Neurosci 3:2381-2394.

Volgushev M, Pernberg J, Eysel UT (2003) Gamma-frequency fluctuations
of the membrane potential and response selectivity in visual cortical neu-
rons. Eur ] Neurosci 17:1768—-1776.



