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Peripheral sensory perception is established through an elaborate network of specialized neurons that med-
iate the translation of extraorganismal stimuli through the use of a broad array of receptors and downstream
effector molecules. Studies of human genetic disorders, as well as mouse and other animal models, have
identified some of the key molecules necessary for peripheral innervation and function. These findings
have, in turn, yielded new insights into the developmental networks and homeostatic mechanisms necessary
for the transformation of external stimuli into interpretable electrical impulses. In this review, we will summar-
ize and discuss some of the genes/proteins implicated in two particular aspects of sensory perception, ther-
mosensation and mechanosensation, highlighting pathways whose perturbation leads to both isolated and

syndromic sensory deficits.

INTRODUCTION

Organisms perceive their surroundings primarily through five
sensory modalities: sight, smell, hearing, taste and touch.
Whereas the first four senses are detected by anatomically iso-
lated, highly specialized organs (retina, tongue epithelium,
cochlea and olfactory epithelium), the perception of touch is
anatomically complex and involves the largest mammalian
organ, the skin. In addition, an elaborate array of sensory
neurons extends from the cerebral cortex to the extremities,
where they hyper-specialize to convey discrete touch-based
sensory components, including thermosensation (temperature
perception), mechanosensation (mechanical perception such
as pressure, and hearing), nociception (pain perception) and
proprioception (perception of self-regulated spatial orien-
tation, movement and balance).

The network that comprises the somatosensory pathway,
including innervation at the periphery (extremities), neurons
in the spinal cord and the brain, is vulnerable to defects at
numerous anatomical sites. Perturbations of receptors at the
periphery, improper neurodevelopment or impaired acqui-
sition, transduction and translation of the sensory input can
all lead to the loss of proper thermo- or mechanosensation,
often as part of broader neurosensory defects. As a result,
defects in thermo- and/or mechanosensation are now

recognized as either a primary,
symptom in several clinical disorders.

Despite a relative dearth of information on the molecular
basis of thermal and/or mechanosensory deficits in humans,
work driven primarily from model organisms has led to the
identification of several key players in the somatosensory
pathway, most prominently the members of the transient
receptor potential (TRP) and degenerin/epithelial Na*
channel (DEG/ENaC) families (1-3). Here, we will review
the anatomy of the mechano- and thermosensory apparatus
in the context of genetic lesions that lead to clinical sensory
phenotypes. We will also survey known molecules whose
loss of function perturbs either the development of the
sensory apparatus or its homeostasis and discuss the broad,
emerging mechanistic themes.

secondary or tertiary

NEUROGENESIS AND THE ANATOMY OF THE
SENSORY APPARATUS: FROM SKIN TO CORTEX

Neurons that specialize in the somatosensory pathway are
located in groups that make up the dorsal root ganglia.
These pseudounipolar neurons are born at discrete time
points during embryonic development and are specified by
different neurogenins, transcription factors that allow for the
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establishment of an array of neuronal subtypes (reviewed in
4). The first neurons to develop are the large and medium
diameter A-type neurons (AR > 10 um; A8 = 2—6 wm) that
express either tyrosine kinase receptor C or B (TrkC+,
TrkB+), followed by small (<30 wm) diameter C-type
neurons that express tyrosine kinase receptor A (TrkA+) (4).

During mammalian embryonic development, two main
steps of neurogenesis give rise to the somatosensory
pathway. At E14 in the mouse, the somata of the first-order
sensory neurons, located at the periphery of the spinal cord,
begin peripheral fiber-branching and establish their targets.
The large-diameter fibers extend first to the periphery, fol-
lowed by thin-caliber fibers (4). These peripheral fibers termi-
nate in the skin or muscle either as free nerve endings (if they
function to detect temperature and in certain circumstances
pressure or pain) or as sensory receptors (if they acquire infor-
mation based on mechanosensation) and represent the primary
stimulus sensors. Subsequently, central fiber-branching takes
place, where the A-type and C-type fibers attach to the
second-order sensory neurons in the lumbar dorsal horn of
the spinal cord and penetrate the gray matter, allowing the
received information to be relayed to the central nervous
system (CNS), specifically the thalamus, to third-order
sensory neurons (5). In contrast to the peripheral branches,
central fiber endings are located in specific laminar regions
of the dorsal horn, depending on whether they function in
pain and temperature (lamina I-II) or pressure (lamina 11—
IV) (4) (Fig. 1).

Most temperature or mechanical stimuli are obtained at the
periphery where the somatic sensory receptors, like nocicep-
tors, are located, at the superficial layers of the epidermis.
These have been classified further into receptor types based
on the characteristics of the axons associated with them: (i)
polymodal free nerve endings (unmyelinated, nonpeptidergic
C-fibers and lightly myelinated A8-fibers) that are responsible
for sensing pain, temperature or harsh touch and (ii) mechan-
osensitive Merkel cells (slow adapting, myelinated Ap-fibers
responsive to touch) (6), Pacinian corpuscles (myelinated
AB-fibers receptive to vibration) or Meissner’s corpuscles
(myelinated AB-fibers; low threshold, rapid adapting mechano-
receptors that respond to low-frequency vibrations and
quivering) (7-9).

TRPS AND THERMOSENSORY DEFICITS

The study of genetic defects impacting touch have proven
challenging, in part because of the complex anatomy of this
sensory modality and its inherent difficulty in phenotyping
objectively in humans. Nonetheless, by studying the properties
and targets of hot chili peppers and mint, initiated by
expression-cloning experiments, some of the key receptors
involved in the somatosensory pathway have been identified,
most notably the TRP channels (10—13).

The TRP family of proteins is necessary for the initial
acquisition and subsequent transduction of sensory stimuli
(14). The TRP superfamily consists of seven subfamilies
that fall into two larger groups based on their sequence and
topology. Group 1 is composed of the TRPC, TRPV, TRPM,
TRPA and TRPN subfamilies, whereas group 2 contains the
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TRPP and TRPML subfamilies (1). Mammals have at least
six thermosensitive ion channels (TRPV1-4, TRPMS8 and
TRPA1) that belong to the TRP group 1 and have been
shown to be expressed in primary afferent sensory neurons.
Each of these thermosensitive TRPs (thermoTRPs) has differ-
ent temperature thresholds at which they are activated (TRPV1
at >43°C, TRPV2 at >53°C, TRPV3 at >33-39°C, TRPV4
at 25-34°C, TRPMS8 at 23-28°C or ANKTMI1/TRPA1 at
17°C), as well as different sensory neurons in which are pre-
dominately expressed (1,15).

In vitro studies focusing on the TRPV1 mRNA transcript
showed that it is expressed predominately in nociceptive
neurons of the dorsal root ganglia and in trigeminal ganglia
and exposure to not only capsaicin, but also to heat allows
for its excitation (11,16). In 1846, capsaicin was discovered
as the pungent component of peppers that caused the
‘burning’ sensation when eaten and since then, it has been dis-
covered to activate both nociceptive sensory neurons as well
as sodium and calcium cation channels (10,17). Elucidating
the function of the capsaicin receptor, TRPVI1, was a key
advance in our understanding of thermosensation; it was
observed in vivo that knock-out mice for most of the ther-
moTRPs have impaired responses to certain temperatures.
Differences among the phenotypes observed vary, depending
on which of the thermoTRPs are affected. By performing be-
havioral assays, such as tail immersion and the hot plate test to
record temperature response, or the von Frey assay to record
mechanical response (18), it was shown that TRPVI '~
mice have a decreased sensitivity to noxious heat, >48°C
(16), TRPV3~'~ mice have a preference for ambient tempera-
tures around 35°C (19), TRPV4~'~ mice are unable to dis-
tinguish between 30 and 34°C (20), whereas TRPMS ™'~
mice show an inefficient reaction to cold temperatures, 23—
30°C (21), and TRPAI™'~ have deficient responses to
noxious cold temperatures, <0°C (22).

These phenotypic differences can be partially attributed to
the different neuronal subtypes in which thermoTRPs are
expressed. TRPV1 and TRPA1l are expressed in small-
diameter neurons, TRPV2 in medium to large diameter cells,
TRPV3 and TRPV4 in keratinocytes and in small-diameter
C-fibers, whereas TRPMS is also expressed in small-diameter
neurons that are non-TRPV1, non-nociceptive (15). Interest-
ingly, TRPV2 and TRPV4 (which have been shown previously
to be expressed in cells that sense osmotic pressure) as well as
other mechanoreceptors (23) have also been reported to be
expressed in mechanosensitive nociceptors (24,25).

Since the TRPs are key players in the somatosensory
pathway, it is probable that thermoTRP-defective clinical phe-
notypes have been unappreciated due to the primary pheno-
types associated with the disease. To date, there is only one
thermoTRP that has been shown to result in human disease.
Mutations in TRPV4 have been shown to cause bone dyspla-
sias (brachyolma type 3, spondylometaphyseal dysplasia and
metatropic dysplasia) (26), whereas loss of the same protein
has also been proposed as a deafness candidate (27), as well
as being associated with human hyponatremia (28). It might
be important to ask whether patients with TRPV4 mutations
also manifest more subtle thermosensory phenotypes and
whether mutations in any of the other thermoTRPs also con-
tribute to the pathogenicity of disease.
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Figure 1. A broad overview of the anatomy of the sensory apparatus (thermo- and mechanosensory). Neurogenesis pertaining to the PNS in the developing
mouse begins when the first-order sensory neurons located at the periphery of the spine extend and branch towards the periphery. Diagramed here are large
and medium diameter neurons (in red) and small diameter neurons (in blue) terminating at the epidermis (in green are the mechanoreceptors and in tan are
the sweat glands). Once the stimulus is received at the periphery, transmission from the first-order sensory neurons to the second-order sensory neurons
(located in the dorsal horn of the spinal cord in gray) receive the information, which is then relayed to the brain (in pink), specifically the thalamus, to be trans-

lated by the third-order sensory neurons.

The human phenotypes most commonly associated with
thermo- and mechanosensory defects are those that result
from improper neuronal maintenance. For example, accumu-
lation of Ca®" can lead to neurodegeneration (29) and conse-
quently, thermosensation defects, as seen in the case of
Huntington (HD), Alzheimer (AD) and Parkinson (PD).
However, the primary site of sensory dysfunction, which can
vary from receptors at the periphery, the soma of the
sensory neuron and the brain itself, is still unclear.

TRPS, DEG/ENAC AND MECHANOSENSATION

Mechanosensitive receptors are present in most, if not all,
major organs. For instance, mechanical stimuli resulting
from fluid flow have been shown to be necessary for
kidney morphogenesis (30), bone development (31) as well
as proper vascular development (32). Mechanosensitive
receptors also play a vital role in sensory perception; mech-
anical stimulation of stereociliary bundles is essential for
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auditory function (33) as well for the sense of touch, for
which many of the mechanosensitive receptors localize to
the epidermis (9).

In the skin, the primary sites of low-threshold mechanosen-
sory receptors are thought to lie in Merkel cells, Pacinian cor-
puscles, Meissner corpuscles and in a small subset of
low-threshold C-fiber free nerve endings (6,8,9). Initial
screens in Caenorhabditis elegans, which have six different
touch receptors, has identified 17 ‘mechanosensory abnormal’
(MEC) genes, as well as four DEG/ENaC proteins (2), all
expressed in sensory neurons (3). The MEC genes, responsible
for the gentle sense of touch, are thought to form a Na* ion
channel complex that establishes a 15-protofilament microtu-
bule core, as well as its associated proteins, to allow for
proper touch-receptor function (2,34). The exact role of this
structure is unclear, although it has been suggested that it
may be essential for the expression of transduction machinery,
transport of channel subunits, mediating the adaption rate of
the channel or even play a role in the activation of the
channel (35). It is not surprising that the MEC genes have
human homologs that may also be involved in sensory percep-
tion, especially mechanosensation. In particular, we identify
two human homologs of MECs, mec-9, a NOTCH2
homolog, as well as mec-2, which is a stomatin homolog.
Notch is an essential developmental pathway, and conse-
quently, its disruption will lead to developmental deficits
including, but not limited to, defects in the proliferation and
differentiation of neural precursor populations, affecting a
broad range of tissues. Stomatin, the human mec-2 ortholog,
has been implicated in sensory sensation including thermo/
mechanosensation, as well as olfaction (36). These data
support the idea that genes and proteins that are involved in
sensory sensation are likely to have multiple roles and that
defects in any given sensory modality may also uncover defi-
cits in other senses.

Similar to the MECs, the degenerin family (DEG/ENaC)
proteins have homologs in various organisms, including C.
elegans, Drosophila and mammals (2), which are essential
for proper postnatal neuronal maintenance (37) and can also
form Na' ion channels in which a subset of them play a
role in mechanosensation. Interestingly, at least two
members of the MEC family, mec-4 and mec-10, are also
members of the DEG/ENaC family (2), and they also have
ENaC homologs in humans. Unlike C. elegans or Drosophila,
which have discrete sensory neurons or organs, the mechan-
ism(s) of mammalian mechanosensation is still largely
unknown; only a small number of genes contributing to
mechanosensation have been identified by studying orthologs
in invertebrate systems. These include two members of the
DEG/ENaC ion channel (y-ENaC and BCNI1), ASIC3 and
TRPV4 (2), both of which are thought to be components of
ion channels that assist in transducing mechanical stimuli or
sensing changes in cell volume (34).

Although TRPs, MECs and DEG/ENaC channels have been
studied extensively, the transduction process by which temp-
erature and mechanical stimuli are perceived is still largely
unknown, especially in the context of other clinical findings.
We will therefore focus on mammalian systems and human
diseases to understand the potential underlying causes of
their thermal and mechanosensory deficits.
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Table 1. Diseases with a thermosensory and/or mechanosensory phenotype

Disease Thermosensory/ Reference
mechanosensory phenotype
Stiive—Wiedemann syndrome/  Temperature instability, (46,47)
neonatal Schwartz—Jampel excessive sweating, reduced
syndrome type 2 pain sensation
Tangier disease Widespread loss of pain and (63-69)
temperature sensation
Charcot—Marie—Tooth disease  Decreased sensation of pain (70)
and vibration in feet
Neuropathy type I/HSAN1 Loss of pain and temperature (71-76)
sensation in thighs and
hands; sensory dysfunction
Neuropathy type III/HSAN3/ Indifference to pain and (77,78)
Riley—Day syndrome/ temperature
familial dysautonomia
Spinocerebellar ataxia 6 Impaired temperature (79-81)
discrimination
Machado—Joseph disease/ Impaired temperature (82)
spinocerebellar ataxia 3 discrimination
Neuropathy, hereditary sensory Loss of pain sensation, (83-87)
and autonomic type 2/ diminished touch and
HSAN2/Morvan disease temperature sense
Insensitivity to pain, High pain threshold and heat (88-92)
congenital, with anhidrosis/ intolerance
HSAN4
Neuropathy, hereditary sensory Loss of pain and thermal (93,94)
and autonomic/HSANS/ sensation in extremities
insensitivity to pain,
congenital
Spinocerebellar ataxia Decreased vibration sensation  (81,82)
Charcot—Marie—Tooth disease  Decreased sensation of pain (70)
and vibration in feet
Spastic paraplegia 27 Decrease of vibration sensation  (95)
in feet
Neuropathy Distal sensory loss; loss of (71,72)
pain, touch, heat and cold
sensation in feet
Freidreich ataxia 1 Impaired vibration sense (96)
Fabry disease Decreased vibration sense 97)
Masa syndrome Less sensitive to touch and pain ~ (98)
(mice)
Kanzaki disease Impairment of all sensory 99)
modalities in the distal
extremities
BBS Decreased thermo- and (18)
mechanosensation
PWS High pain threshold (43)

HUMAN GENETIC DISORDERS OF THERMO- AND
MECHANOSENSORY PERCEPTION

Although there are no human genetic disorders characterized
exclusively by thermo- or mechanosensory deficits, a compre-
hensive survey of phenotyping studies and clinical case reports
reveals a wide spectrum of pleiotropic disorders with a
thermo- and/or mechanosensory phenotypic component.
Associated phenotypes include, but are not limited to, skeletal
abnormalities, muscle wasting, fevers, ataxia, self-mutilation,
lack of or excessive sweating, mental retardation, loss of
axons or axonal myelination, death of neuronal ganglia and/
or other neuropathic defects (Table 1). Moreover, mouse
models of either human genetic disease (Table 2) or simply
ablation of molecules of biochemical interest have also
unearthed a plethora of proteins whose loss of function
yields thermo- and mechanosensory phenotypes.
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Table 2. Mouse models of human disease with thermo/mechanosensory

defects

Gene  Phenotype Disease model Reference

Apoe  Abnormal thermal Alzheimer disease (AD; (100)
nociception OMIM ID 104300)

Clcn6  Increased thermal Ceroid lipofuscinosis, (101)
threshold neuronal, 3 (CLN3;

OMIM ID 204200)

Ctsc  Increased thermal Schizophrenia (SCZD; (102)
threshold OMIM ID 181500)

Ndn Decreased thermal Prader—Willi syndrome (44)
threshold (PWS; OMIM ID

176270)

Ntrkl  Increased thermal Insensitivity to pain, (103)
threshold; congenital, with
unresponsive to tactile anhidrosis (CIPA;
stimuli OMIM ID 256800)

Prx Decreased thermal Hypertrophic neuropathy of  (104)
threshold,; Dejerine—Sottas (OMIM
Hyporesponsive to ID 145900)
tactile stimuli

Bbs2  Hyporesponsive to tactile ~ Bardet—Bied] syndrome (105)
stimuli (BBS; OMIM ID

209900)

Bbs4  Hyporesponsive to tactile  Bardet—Biedl syndrome (18)

stimuli (BBS; OMIM ID
209900)
Kiflb  Unresponsive to tactile Charcot—Marie—Tooth (106)
stimuli disease, axonal, type 2al
(CMT2A1; OMIM ID
118210)
Trpv4  Abnormal response to Deafness, autosomal (102,107)

tactile stimuli dominant nonsyndromic
sensorineural 25
(DFNA25; OMIM ID

605583)

Not surprisingly, the majority of clinical disorders with sec-
ondary or tertiary thermo- and mechanosensory defects are
generalized disorders of the nervous system. Neurodegenera-
tion, cerebral atrophy, deficits in myelination as well as
axonal loss (38) can all affect the somatosensory pathway
and result in motor and/or sensory impairments. However,
the notion that thermo- and mechanosensory defects are exclu-
sively the outcome of generalized neurological dysfunction or
degeneration might be overly simplistic, not least because
such a model cannot fully explain the range and type of
thermo- and/or mechanosensory phenotypes observed. One
example is hereditary sensory and autonomic neuropathy 4
(HSAN4), in which patients have been reported to lack
afferent neurons. HSAN4 is caused by mutations in TRKA,
a neurotrophic tyrosine kinase receptor, that in the presence
of neurotrophins, specifically nerve growth factor (NGF), is
autophosphorylated, allowing for the activation of signal trans-
duction cascades that are essential for proper development of
NGF-dependent sensory neurons (39). However, TrkA also
has a specialized role in the development of small-diameter
C-fibers, which are responsible for pain, temperature or
harsh touch sensation. More recently, it was discovered that
mutations in a sodium ion channel, SCN9A, resulting in the
functional loss channel activity, can also lead to congenital
insensitivity to pain (HSAN4 and HSANS) (40,41). It is there-
fore possible that the sensory phenotypes in HSAN4 patients
might be due to the loss of the sensory neuron-specific func-
tions of this molecule. In addition, it is interesting to note

that ion channel function is implicated in the sensory pheno-
types observed in some HSAN patients since the majority of
molecules that have been identified as thermo- or mechanosen-
sory receptors are ion channels.

The importance of factors such as neurogenins in thermo-
and mechanosensation is also highlighted in other diseases.
Prader—Willi syndrome (PWS), for example, is a pleiotropic
disease in which defective thermo- and mechanosensory phe-
notypes have also been reported (43). Necdin, a candidate
gene for PWS (42), is a protein that belongs to the type Il mel-
anoma antigen gene expression family. Patients with PWS
exhibit increased mechanosensory deficits; the necdin knock
out mouse has abnormal thermal thresholds (43). Interestingly,
necdin has an anti-apoptotic role (44), and necdin-deficient
mice exhibit increased caspase 3-dependent apoptosis of
TrkA and TrkC in peripheral sensory neurons (44,45) which
are essential factors for neurodevelopment.

It is also important to note that even within the group of
broad neurological disorders, the sensory phenotype is not
necessarily one of loss of thermo- and/or mechanosensory
functions (as might be expected). Rather, both hyposensitivity
and hypersensitivity have been reported. The identification of
what factors result in this distinction may help contribute to
our understanding of the molecular basis of the disease,
especially since, on several cases, such studies have uncovered
novel components of the sensory molecular apparatus. One
example is Stiive—Wiedemann syndrome (STWS; OMIM
601559) (46,47). STWS is a pleiotropic disorder identified
predominately as a bent-bone dysplasia, often associated
with other skeletal abnormalities, as well as improper
thermal regulation and reduced nociception. STWS is caused
by mutations in the gene encoding the leukemia inhibitory
factor receptor (LIFR). LIFR directly affects and alters LIF-
mediated JAK-STAT3 (JAK, Janus kinase; STAT3, signal
transducer and activator of transcription 3—a transcription
factor) signaling by binding LIF. This interaction allows for
JAK to phosphorylate STAT3, which is required for proper
development of sympathetic neurons (48). This LIFR—-LIF
interaction is especially important for motor neuron mainten-
ance and though the function of LIFR in the CNS cannot be
excluded, given that LIFR has been shown to be expressed
in the hindbrain and in the glia limitans as well as the fact
that LIFR-deficient mice have a reduced number of astrocytes
in the brain stem and spinal cord, LIFR mutations may also
affect sensory neurons (49,50). Similar to STWS, Bardet—
Biedl syndrome (BBS), a pleiotropic disease which results
from dysfunctional cilia (51), is another disorder that mani-
fests thermal and mechanosensory deficits as a secondary
and largely underappreciated feature (18). In a recent study,
it was observed that mice, worms and humans deficient for
some BBS proteins presented abnormal responses to thermal
and mechanical stimuli. These were not likely caused by
defective cortical processing but were attributed to perturbed
sensory innervation at the periphery as well as defective local-
ization of TRPV1 in the somata of sensory neurons (18).

MOLECULAR LESSONS FROM GENES
IMPLICATED IN THERMO/MECHANOSENSATION

A compilation of the known proteins whose dysfunction leads
to either increased or decreased sensory function highlights the
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complexity of the peripheral sensory neuronal architecture and
function. Despite such complexity, an examination of the
known functions of these molecules reveals three major func-
tional modules: neurogenesis, cell signaling and metabolism.
There are at least 171 proteins shown to be involved in pain
and specifically have a nociceptive phenotype (http://www.
jbldesign.com/jmogil/enter.html) (52). Within this set, there
are 54 proteins whose perturbation leads to increased sensi-
tivity to nociception, versus 117 with decreased sensitivity.
Interestingly, some 79% of the proteins associated with
nociceptive phenotypes have also been implicated in cell sig-
naling, whereas the other ~21% have roles in metabolism
(~11%), cell structure (~6%), gene regulation (~3%) and
cell division (~1%). It is important to recognize that only
approximately 20 genes from this list have associated pheno-
types in humans, potentially reflecting insufficient clinical
phenotyping. Nonetheless, from a mechanistic perspective,
some major lessons emerge, which might also offer thera-
peutic benefits.

As stated earlier, some neurodegenerative disorders have
also been associated with thermo- and/or mechanosensory
deficit. However, in most instances, the molecular basis of
the phenotype is unclear. A basic analysis of the genes associ-
ated with thermo and mechano defects highlights the breadth
of processes. By using the Gene Set Enrichment Analysis
Database (GSEA: http://www.broadinstitute.org/gsea/) (53),
we observe enrichment in three major functional categories:
(i) proteins involved in neuroactive ligand—receptor inter-
actions; (ii) G-protein-coupled receptors (GPCRs) related to
rhodopsin and (iii) the calcium signaling pathway. Neuroac-
tive ligand—receptor interactions can function in modulating
neuronal activity and are therefore obviously essential in
maintaining and developing neuronal function. Similarly, the
rhodopsin-type GPCRs have been reported to act as chemo-
sensory receptors in the sea urchin (54). In addition, GPCRs
function in multiple sensory pathways involved in, for
example, odorant and gustatory functions, predominately by
regulating and specifying channel activity as well as modulat-
ing the activity of other channels such as G-protein-coupled
inwardly rectifying K+ channels that are essential for regulat-
ing membrane potential (55); it is plausible that the proteins
implicated in defective nociceptive phenotypes that belong
to this pathway act in a similar manner. Finally, the over-
representation of calcium signaling is not surprising. Proper
ion permeability is important in maintaining cellular,
especially neuronal health (17), and in particular, deficits in
Ca”" that lead to its accumulation can lead to neurodegenera-
tion (29).

In addition to highlighting the importance of the aforemen-
tioned functional modules, the study of patients and animal
models with thermo- and mechanosensory phenotypes has
also highlighted the importance of the primary cilium for
proper sensory sensation. Though the role of this organelle
is well documented in other sensory modalities, most promi-
nently vision, smell and hearing (33,56,57), the presence of
cilia in the somata of peripheral sensory neurons had not
been recognized until recently. However, recent studies have
shown that the somata of sensory neurons possess a likely
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Table 3. Ciliary genes associated with thermo/mechanosensory deficits

Ciliary Phenotype Associated disorder ~ Reference
genes
Gabrb3 Increased nociception Autism (108,109)
Gabbrl Increased nociception Epilepsy (110,111)
(hyporesponsive
mechanosensation)
Dbh Increased nociception ADHD (112)
Anxal Increased nociception
Uchll Increased nociception PD (102)
Ncaml Increased nociception Bipolar disorder (113)
Kenk2 Increased nociception
Kcnal Decreased nociception
Htrlb Increased nociception
Gria2 Increased nociception
Gnaol Decreased nociception
Syn2 Decreased nociception Susceptibility to (102,114)
schizophrenia
Slcbal Decreased nociception
Slc12a5  Decreased nociception
Slel2a2 Decreased nociception Deafness (115)
Scn9a Increased nociception Erythermalgia/ (116—
paroxysmal 118)
extreme pain
disorder
Scnl0a Decreased nociception
Prkarlb  Decreased nociception
Plcb4 Decreased nociception
Npepps Increased nociception
Kifla Decreased nociception
Hmox2 Decreased nociception
Gucylb3  Decreased nociception
Fmrl Decreased nociception Fragile X mental (119-
retardation 121)
Faah Decreased nociception Obesity (122)
Dig2 Decreased nociception
Camk2a  Decreased nociception
Cacnalh  Decreased nociception Epilepsy (123—
125)
Cacnalb  Decreased nociception
Bbs4 Decreased nociception BBS (18)
Bbsl Decreased nociception BBS (18)
Fxr2 Increased thermosensation
Gria3 Increased thermosensation
Atpla2 Unresponsive Familial hemiplegic ~ (126)
mechanosensation migraine
Bbs2 Hyporesponsive BBS (105)
mechanosensation
Cacnala  Hyporesponsive SCA6 (79-81)
mechanosensation
Flnc Hyporesponsive
mechanosensation
Gnall Hyporesponsive
mechanosensation
Gnagq Hyporesponsive
mechanosensation
Madd Hyporesponsive
mechanosensation
Snap25 Unresponsive ADHD (127)
mechanosensation
Nesl Thermosensationtaxis
Unc97 Abnormal
mechanosensation
Spticl Decreased nociception Neuropathy type I/ (71-76)
HSAN1
Tkbkap Decreased nociception Neuropathy type IIl/  (77,78)
HSAN3
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primary cilium. More importantly, loss of ciliary/basal body
proteins through the genetic ablation of BBS proteins in
various model organisms, as well as in humans, leads to
thermo- and mechanosensory defects that are not due to corti-
cal interpretation defects (18). These findings are not unique to
the BBS protein group; TRPP2, a ciliary protein implicated in
polycystic kidney disease, acts as a thermo- and mechanosen-
sor in concert with TRPV4 (18,58), and genetic ablation of this
molecule in the mouse largely phenocopies the thermosensory
phenotypes of the Bbs mouse mutants (58). A torrent of
studies have shown the cilium to be essential for various sig-
naling processes, most prominently calcium sensing, Wnt and
Hh signaling (59). We therefore asked what the representation
of bona fide nociceptive proteins might be in the ciliary pro-
teome database, a meta-analysis of 11 proteomic, transcrip-
tomic and comparative genomic studies that enrich for likely
ciliary and basal body proteins (www.ciliaproteome.org) (60).
This collection contains approximately 1000 genes or ~5%
of the annotated human transcriptome. However, parsing the
known genes with nociceptive phenotypes against the ciliary
proteome identified 45/171 transcripts, or 26% of the nocicep-
tive gene collection (Table 3). Even though this analysis is but
an approximation and is certain to contain both false positives
and false negatives, the five-fold enrichment of ciliary proteins
in the thermo- and mechanodefective mutant set is a signifi-
cant enrichment that suggests a potentially major role for
this organelle in the transmission of sensory stimuli in the per-
ipheral nervous system.

CONCLUDING REMARKS

Much progress has been made in understanding the develop-
mental and homeostatic processes that control thermo- and
mechanosensation and, more broadly, the sense of touch.
Nonetheless, the field appears to lag behind other senses.
One possible explanation might be that, in contrast to other
sensory disorders (most prominently of vision and hearing),
which are readily diagnosable and of acute importance to
the patient, defects in skin sensation are presently confined
to secondary or tertiary characteristics of either generalized
neuropathies or complex syndromes. The plethora of mouse
(and other model organisms) mutants with such phenotypes
argues against a dearth of defects in humans. More likely,
we speculate that such defects might be underappreciated
and might warrant a more careful evaluation in the clinical
setting. The relatively modest information available to us
argues against a model wherein defective peripheral sensation
is persistently a side effect of generalized neuropathy.
However, the challenge remains on how to (i) phenotype
patients objectively, especially for a subjective sensory
modality; and (ii) separate cortical interpretation defects
from peripheral dysfunction. In contrast to other sensory
organs, the sense of touch is not anatomically isolated and
involves both neuronal circuitry and the skin itself, further
hampering our efforts to dissect the relative contribution of
each component of this system. Despite these difficulties,
understanding how we interact with our environment
through the skin is of critical importance, not only in the
context of genetic disorders, but also in the continuous and

Human Molecular Genetics, 2009, Vol. 18, Review Issue 2

acute need for pain management. Several studies have targeted
TRPV1 as a candidate for developing analgesics (61), whereas
knockout 7rpvl mice were desensitized to pain after surgical
or inflamed states (62). There is every reason to believe that
the identification of further nociceptive molecules will
expand our targetable repertoire while informing the physi-
ology of the most anatomically complex of our sensory
organs.
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