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Comparative proteomics is a powerful analytical method
for learning about the responses of biological systems to
changes in growth parameters. To make confident infer-
ences about biological responses, proteomics ap-
proaches must incorporate appropriate statistical meas-
ures of quantitative data. In the present work we applied
microarray-based normalization and statistical analysis
(significance testing) methods to analyze quantitative pro-
teomics data generated from the metabolic labeling of a
marine bacterium (Sphingopyxis alaskensis). Quantitative
data were generated for 1,172 proteins, representing
1,736 high confidence protein identifications (54% ge-
nome coverage). To test approaches for normalization,
cells were grown at a single temperature, metabolically
labeled with 14N or 15N, and combined in different ratios to
give an artificially skewed data set. Inspection of ratio
versus average (MA) plots determined that a fixed value
median normalization was most suitable for the data. To
determine an appropriate statistical method for assessing
differential abundance, a -fold change approach, Stu-
dent’s t test, unmoderated t test, and empirical Bayes
moderated t test were applied to proteomics data from
cells grown at two temperatures. Inverse metabolic label-
ing was used with multiple technical and biological repli-
cates, and proteomics was performed on cells that were
combined based on equal optical density of cultures (pro-
viding skewed data) or on cell extracts that were com-
bined to give equal amounts of protein (no skew). To
account for arbitrarily complex experiment-specific pa-
rameters, a linear modeling approach was used to analyze
the data using the limma package in R/Bioconductor. A
high quality list of statistically significant differentially
abundant proteins was obtained by using lowess normal-
ization (after inspection of MA plots) and applying the
empirical Bayes moderated t test. The approach also ef-
fectively controlled for the number of false discoveries
and corrected for the multiple testing problem using the
Storey-Tibshirani false discovery rate (Storey, J. D., and
Tibshirani, R. (2003) Statistical significance for genome-

wide studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–
9445). The approach we have developed is generally ap-
plicable to quantitative proteomics analyses of diverse
biological systems. Molecular & Cellular Proteomics 8:
2227–2242, 2009.

Quantitative proteomics experiments hold the promise of
being able to interrogate entire proteomes and ultimately to
identify those proteins that differ in their abundance between
two or more experimental states. Metabolic labeling, such as
14N:15N labeling is a popular approach used to compare the
ratios of observed peptides in two proteomes in a single
LC-MS run. Despite the popularity of this approach, consid-
erable issues remain with how experiments are designed,
including the evaluation of the statistical significance of the
proteomics data.

These issues include but are not limited to experimental
design including the choice of biological and technical repli-
cates (1, 2), sample pooling and preparation (2), peptide iden-
tification (3, 4) and quantitation (5), accounting for intersample
variation via normalization within and between experiments
(6–9), the “missing data problem” (1, 10–12), selecting a
robust statistical analysis with often very few replicates, and
the “multiple testing problem” (13). Many of these issues are
not unique to proteomics, and the microarray literature has
made a great number of advances in areas such as experi-
mental design, normalization, statistical analysis, and multiple
testing adjustments. In fact, there are many parallels between
proteomics and transcriptomics for which robust methods
already exist, the most pertinent of which is that two-color
microarrays, which utilize red and green fluorescent labels,
has strong similarities with 14N and 15N metabolic labeling of
proteins. In contrast, there are also a number of issues that
are unique to proteomics, such as peptide identification and
quantitation and incomplete proteome coverage (the missing
data problem) where each experimental run will inevitably
differ in the peptides that are identified.

Although some of these issues have been discussed in the
literature, a number of important issues have been ne-
glected or not comprehensively addressed. Here we focus
on four key areas in metabolically labeled quantitative pro-
teomics: normalization, experimental design and linear
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models, empirical Bayes moderated t test, and adjustments
for multiple testing.

The raw data obtained from proteomics experiments must
be normalized to produce more accurate estimates of the
underlying biological effects being measured. Normalization
removes aberrant signals resulting from interexperimental
variation possibly due to inevitable differences in sample
processing and experimental runs that may be separated by
days or weeks. In the field of microarray analysis, there have
been considerable advances in methods to detect biases in
experimental data and for removing such biases with a range
of sophistication from simple scaling (14) to non-parametric
quantile normalization (15). Despite these advances, normal-
ization of two-dimensional PAGE-MS- (7, 10, 16–18) and
LC-MS-based (6, 8, 19–21) proteomics data tends to be
simple, global normalization where ratios are multiplied by a
fixed constant to ensure that the medians or means are
similar.

To address this, we inspected ratio versus average (MA)1

plots (14, 22) and identified a strong non-linear bias (i.e. a
curved skew) that affected the 14N:15N ratios to a different but
predictable extent dependent upon protein signal:noise ratio
(S/N) values. We applied lowess normalization, a popular
method from the -omics literature, that determines a factor by
which to adjust the ratios using a sliding window across a
range of S/N levels. In this way, a curved line is fitted through
the data, thereby adjusting the 14N:15N ratios so that they are
symmetrically distributed throughout the range of S/N inten-
sities. Taking this approach, the size of the skew could be
evaluated enabling a judgment to be made as to whether
leaving it uncorrected would lead to a bias in the types of
proteins that are identified as differentially abundant.

Following normalization, the data can be used for determin-
ing the magnitude of effect due to the treatment. In the current
literature this has typically been achieved by applying a Stu-
dent’s t test to the ratios from each protein. A number of
disadvantages, unique to proteomics experiments, arise as a
result of using a Student’s t test. First, many proteins have
missing observations, thereby decreasing the number of de-
grees of freedom (df) that causes the t test to have low power.
Subsequently fewer observations lead to difficulties in accu-
rately determining the measurement error, making the de-
nominator of the t test unreliable. Second, more complex
experimental designs, such as using two different extraction
buffers, cannot be appropriately represented by the t test.
Third, an underlying assumption of the t test is that each
observation is independent. However, this assumption is vio-
lated by having technical replicates and thus causes the t test
to underestimate the true measurement variance and there-
fore overestimate the strength of the statistic.

We adopted, from microarray analysis, the widely used
method of linear models to construct a statistical representa-
tion that mirrors the experimental design. Linear models are a
mathematical framework that break down the observed ex-
pression ratios from one protein from each individual to an
effect that is shared across samples due to each experimental
parameter (e.g. growth temperature, extraction buffer, or bi-
ological replicate) and incorporate an error term unique to
each individual. Linear models are simple to construct using
design matrices that describe the treatment applied to each
sample coupled with a robust mathematical framework to
estimate the unknown effect sizes for each protein. It is im-
portant to understand that the linear model that represents a
“simple” experiment consisting of a number of replicate
measurements of the same treatment corresponds to an av-
eraging of all observed ratios and is thus identical to the
numerator from the Student’s t test. However, as the experi-
mental design becomes more complex, the linear model can
accommodate these demands. The linear model can be used
to estimate the biological effect of interest after accounting for
the effects due to differing extraction buffers and importantly
adjust for the non-independence between technical repli-
cates. To demonstrate the use of a linear model in a typical
experiment, the results from fitting an appropriately specified
linear model are compared and contrasted to a Student’s t
test.

In addition to estimating the magnitude of the effect size
using linear models, an empirical Bayes moderated t test (39)
was used to perform statistical analysis. Instead of testing
each protein in isolation from all others, the moderated t test
“borrows strength” from all other proteins, improving the error
estimates of each individual protein. The error estimate from
each protein is replaced by a pooled estimate, i.e. one that is
adjusted toward the population estimate. This shrinks or
expands the error estimates for proteins with high or low
variance, respectively. Although not immediately obvious,
this prevents proteins that, by random chance, have tiny
variance from becoming those proteins with the strongest
statistical evidence for differential abundance. In addition,
the moderated t test augments the degrees of freedom for
each protein dependent on how variable the entire set of
proteins is, thereby allowing for the statistical estimates
of differential abundance for proteins with large numbers of
missing observations.

Applied to proteomics, the multiple testing problem de-
scribes the repeated application of a statistical test to a set of
protein (identification or abundance) measurements. This may
result in 5% of all measurements having p values less than
0.05 due purely to chance, thereby producing many false
positives (13). Our overall goal was to identify the largest
number of differentially abundant proteins with robust statis-
tical evidence, taking care to avoid an unacceptable level of
false positives. To achieve this we applied the positive false
discovery rate (FDR) procedure (23) by adopting an approach

1 The abbreviations used are: MA, ratio versus average; ASW, arti-
ficial sea water; FC, -fold change; FDR, false discovery rate; S/N,
signal:noise ratio; LTQ, linear quadrupole ion trap.
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from the microarray field that is described by Käll et al. (4). In
this approach, if a list of proteins is selected, all with an FDR
�5%, then at most 5% of these proteins are false discoveries;
the same is not true for a set of proteins that all have a p value
�0.05. To compare with other methods for correcting for
multiple testing, proteins were identified using either an FDR,
Bonferroni correction (13), or no adjustment.

Commercially produced software packages for processing
quantitative proteomics data tend to be high quality and rel-
atively easily used (e.g. Refs. 9 and 24) but can be expensive
and limited in their applicability (supplemental Table S1). Al-
ternatively publicly available solutions incur no cost but tend
to require the end user to assemble a large number of inter-
acting components (e.g. a relational database and scripts for
importing and manipulating the data) that are typically written
in a number of programming languages (e.g. Ref. 25) (supple-
mental Table S1). To overcome these obstacles we developed
a logical analytical pipeline by implementing a single, free,
widely supported and used software environment (R). All
steps of the analysis from data import to visualization and
generation of results were integrated by extending the widely
used limma library from the Bioconductor suite of packages.

To develop and test our methods, 14N and 15N metaboli-
cally labeled cultures of the marine bacterium Sphingopyxis
alaskensis were grown at the same temperature and com-
pared after being combined in different ratios. Comparisons
of metabolically labeled cultures grown at two different tem-
peratures were also performed. A total of 1,736 high confi-
dence protein identifications representing 54% of the coding
capacity of the genome were made, and 1,172 proteins with
high quality data were quantified. Following the application of
lowess normalization, linear models to each protein, an em-
pirical Bayes moderated t test, and the Storey-Tibshirani pos-
itive FDR correction for multiple testing (23), we identified 217
differentially abundant proteins with an FDR �5%. The ap-
proach we have developed is applicable to quantitative pro-
teomics in many biological systems.

EXPERIMENTAL PROCEDURES

Microbial Growth and Physiological Characterization

S. alaskensis was grown in artificial sea water (ASW) medium (26) at
10 and 30 °C with rotary shaking at 100 rpm as described previously
(27). Colony-forming units were measured by the drop plate method
on Väätänen nine-salt solution as described previously (26, 27). Pro-
tein yields were measured using a Bradford assay with BSA as a
standard (28). Scanning electron microscopy was performed with
cells grown at 10 or 30 °C to midlogarithmic phase. Cells were fixed
with 2% (w/v) glutaraldehyde for 2 h and filtered through a 0.2-�m
membrane filter. The filters were washed with 75, 50, and 25% ASW
that contained 0.04% (w/v) MOPS for 3 min in each washing step.
Cells were dehydrated in a graded series of 30, 50, 70, 80, 90, and
95% ethanol for 10 min in each step. The final dehydration step was
performed three times with 100% ethanol for 10 min each. Samples
were critical point-dried with carbon dioxide using a BAL-TEC CPD
030 critical point dryer and were sputter-coated with chromium to
�0.5-nm thickness using a K575X Peltier cooled high resolution

sputter coater (Emitech). Coated samples were viewed under vacuum
at an accelerating voltage of 15 kV and magnifications from 2,500� to
35,000� on a Hitachi S-3400N automated vacuum pump scanning
electron microscope. From the electron micrographs of each growth
temperature, 100 cells were selected using a 36-point sampling grid
used in unbiased stereology to visually compare and measure cell
biovolume (V) using the equation V � �/4 � W2 � (L � W/3) where W
is width and L is length of the cell (29).

Metabolic Labeling

Cells grown at 10 and 30 °C were metabolically labeled during
growth in unlabeled (14NH4Cl) and labeled (99% enriched 15NH4Cl)
media where all other sources of nitrogen had been eliminated. Cells
grown in 15NH4Cl ASW were labeled to 99% 15N incorporation in 10
generations of growth. 14N and 15N cells were combined after cell
harvest at midlogarithmic growth phase of OD 0.3 (� � 433 nm) (27).

30 Versus 30 °C Experiment—To assess the ability of our methods
to identify subtle changes in protein abundance, cells were grown at
30 °C with 14N or 15N, and cell pellets were combined at OD 0.3 (� �
433 nm) in 0.8:1, 1:1, and 1.2:1 ratios in triplicate (total of nine
experiments).

10 Versus 30 °C Experiment—To assess differential abundance
due to temperature, cells were grown at 10 or 30 °C comprising six
biological replicates and a total of 20 experiments. Four biological
replicates (A–D) with two experimental replicates and two MS instru-
mental replicates per sample, representing 16 experiments of 14N:15N
and inverse 15N:14N, 10 and 30 °C cell pellets, were combined 1:1
from cultures harvested at OD 0.3 (� � 433 nm) (supplemental Fig.
S1). An additional two biological replicates (E and F) with two MS
instrumental replicates per sample, providing four experiments, were
cultured as above; proteins were extracted separately from the 14N
and 15N, 10 and 30 °C samples; and protein extracts were combined
1:1 (14N:15N and inverse 15N:14N, 10 and 30 °C) based on protein
concentration (supplemental Fig. S2).

Protein Extraction and Gel-based Fractionation

To enhance proteome coverage, two different extraction buffers
were used to extract proteins. Proteins from experiments A, B, E, and
F were extracted in a 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, and 1 mM

PMSF buffer by sonication on ice as described previously (30). Pro-
teins from experiments C and D were extracted in 8 M urea, 1 mM

EDTA, and 1 mM PMSF buffer by sonication on ice. One-dimensional
PAGE protein separation followed by nanocapillary LC-MS/MS was
used to separate 1 mg of whole cell lysate by 12% SDS-PAGE as
described previously (31, 32). Briefly the entire lane was excised into
22 slices and cut into 1-mm3 pieces, and proteins were reduced in 10
mM DTT at 37 °C for 1 h, alkylated with 25 mM iodoacetamide at 37 °C
for 1 h in the dark, washed twice with deionized water and once with
10 mM NH4HCO3, dehydrated with ACN, and dried in vacuo. The gel
pieces were rehydrated with 10 mM NH4HCO3 and 20 ng �l�1 trypsin,
incubated at 4 °C for 1 h, and then digested overnight at 37 °C.
Peptides were extracted with two changes of ACN and dried in vacuo.

LC-MS/MS

Digests were rehydrated in 0.1% formic acid and 0.05% heptaflu-
orobutyric acid. The digested peptides from each fraction for the 30
versus 30 °C experiments were separated by on-line nano-LC using
an Applied Biosciences microgradient system. Samples (2.5 �l) were
concentrated and desalted on a micro-C18 precolumn with H2O:ACN
(98:2, 0.1% (v/v) formic acid) at 20 �l min�1. After a 4-min wash, the
column was switched in line with a fritless nanocolumn (75 �m � �10
cm) containing C18 medium (5-�m, 200-Å Magic, Michrom Biore-
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sources, Inc., Auburn, CA) (33). Peptides were eluted using a linear
gradient of 98:2 H2O:ACN (with 0.1% (v/v) formic acid) to 38:62
H2O:ACN (with 0.1% (v/v) formic acid) at �300 nl min�1 over 75 min
and electrosprayed directly using high voltage (1.8 kV) into a three-
dimensional ion trap (Thermo Electron, LCQ Deca XP�) mass spec-
trometer. A survey scan of 350–1800 (m/z) was collected followed by
data-dependent acquisition of MS/MS spectra at 35% normalized
collision energy of the most intense parent ion from the MS scan.
Activation was set at q � 0.25 with an activation time of 30 ms, and
a minimum of 5 � 106 counts for MS was required. Dynamic exclusion
was enabled where after a maximum of three repeated MS/MS scans
the parent ion was excluded for 1.5 min. Highly abundant singly
charged ions of 391.25, 445.6, and 463.50 � 1.5 m/z were excluded.

Peptides from cultures grown for the 10 versus 30 °C experiments
were separated using nano-LC on an Ultimate 3000 HPLC and au-
tosampler system (Dionex). Samples (2 �l) were concentrated and
desalted onto a micro-C18 precolumn (500 �m � 2 mm; Michrom
Bioresources, Inc.) with H2O:ACN (98:2, 0.05% (v/v) heptafluorobu-
tyric acid) at 20 �l min�1. After a 4-min wash, the precolumn was
switched (Valco 10-port valve, Dionex) in line with a fritless nanocol-
umn (75 �m � �10 cm) containing C18 medium (5-�m, 200-Å Magic,
Michrom Bioresources, Inc.) (33). Peptides were eluted using a linear
gradient of 98:2 H2O:ACN (with 0.1% (v/v) formic acid) to 55:45
H2O:ACN (with 0.1% (v/v) formic acid) at 250 nl min�1 over 75 min.
High voltage (1.8 kV) was applied to a low volume tee (Upchurch
Scientific, Oak Harbor, WA), and the column tip positioned �0.5 cm
from the heated capillary (T � 200 °C) of an LTQ (Thermo Electron)
mass spectrometer. Positive ions were generated by electrospray,
and the LTQ was operated in data-dependent acquisition mode. A
survey scan of 350–1750 (m/z) was collected followed by two MS/MS
scans where the first and second most intense precursor ions from
the MS trace were sequentially isolated and fragmented using CID at
35% normalized collision energy with an activation set at q � 0.25
and activation time of 30 ms with a minimum signal required at 2,000
counts. Dynamic exclusion was enabled where after a maximum of
two repeated MS/MS scans the parent ion was excluded for 3 min.

Protein Identification and Quantitation

MS/MS spectra were interrogated against the completed S.
alaskensis genome database (containing 3,208 proteins) for protein
identification using the SEQUEST search algorithm in the Bioworks
BioBrowser (version 3.3) software package. The search parameters
used were as follows: monoisotopic precursor and fragment mass
type; fully enzymatic trypsin (KR) enzyme with allowance for one
missed cleavage; and variable acrylamide, carbamidomethyl, and
oxidation modifications. For data files from the LCQ Deca XP� a
1.2-Da peptide tolerance and 0.6-Da fragment ion tolerance were
used, whereas for LTQ data files a 0.8-Da peptide tolerance and
0.6-Da fragment ion tolerance were used. Identifications were filtered
using DTASelect (34) based on the following parameters: �CN of at
least 0.08 and a minimum XCorr of 2.1 for �1, 2.7 for �2, and 3.2 for
�3 charged peptides. The MS/MS spectra were also interrogated
against a decoy database (randomized S. alaskensis) with �1% false
positive identification rate in DTASelect (35). Ambiguous peptides
mapping to more than one protein were removed. To determine
relative protein abundances, MS survey scans were analyzed for each
experiment using RelEx software (version 0.92) (36). The quantitation
parameters used were as follows: four scans before peak, four scans
after peak, 0.15 threshold factor, apply Savitsky-Golay filter with
seven points, apply S/N filter at 5, apply regression filter with 0.8
minimum correlation at 1 and 0.7 minimum correlation at 10, and 99%
incorporation of 15N. In cases where there were multiple identifica-
tions of the same peptide the retention time (or scan number) of the
highest scoring peptide identification (determined by DTASelect) was

used by RelEx to determine the extracted ion chromatogram m/z and
elution time of the precursor ions and also the extracted ion chromat-
ogram of the labeled ions. The software then extracts ion intensities
over a range of MS scans (100) so even if the identification occurred
before or after the maximum the software would still likely integrate
over the entire elution profile. RelEx chooses the peak closest to the
time of the MS/MS spectrum (if more than one integration peak
appears above the threshold) (34, 36). Only proteins with two or more
unique peptides were considered for quantitation.

Data Processing

Raw data produced by RelEx were imported into R (version 2.5.1)
(37), an open source statistical analysis program, using custom code.
Because there was no R software for analyzing proteomics data, we
developed a library of computer code that extends the limma (version
2.1) library (38) in R/Bioconductor (39) (see “Statistical Analysis of
Differential Abundance”). This code is available from M. J. C. upon
request. Peptide ratios were log2-transformed, S/N values were log10-
transformed, and values were averaged to obtain the average ratio of
14N:15N and the average S/N for each protein. Because RelEx does
not output absolute abundance estimates for each metabolically la-
beled sample, we used S/N as a proxy for the amount of abundance
(22).

Intraexperimental Normalization

For the 30 versus 30 °C experiments that were combined in differ-
ent ratios, the distribution of protein ratios was graphed for data
obtained from each LC-MS run to determine whether protein ratios
were symmetrically distributed about the expected ratio of either 1.0,
0.8, or 1.2 for the 1:1, 0.8:1, and 1.2:1 data sets, respectively. In
addition, an MA plot (Ref. 14) was used to detect any non-linear skew
in the ratios over a range of S/N values. For the 30 versus 30 °C
experiments, median normalization was performed at the protein level
according to Yang et al. (14) to ensure all medians were 0. For the 10
versus 30 °C experiments, lowess normalization (40) was performed.
Normalization was performed at the protein level because if normal-
ization was performed at the peptide level first followed by averaging
then the non-linear skew in the 10 versus 30 °C data sets was not
completely removed.

Interexperiment Normalization

Following intraexperiment normalization, protein ratios from all
LC-MS runs from either the 30 versus 30 °C or 10 versus 30 °C
experiments were visualized using box-and-whisker plots (box plots)
and overlaid density plots to reveal the shapes and extents of the
distributions.

Linear Modeling

To estimate the magnitude of the effect of changing temperature
on protein abundance in the 10 versus 30 °C experiments, we
adopted a linear modeling approach, which is widely used in DNA
microarray experiments (39). The effect size due to changing temper-
ature and extraction buffer was determined by fitting the following
linear model to the abundance ratios for each protein (Equation 1),

yi � �temp � Itemp � �buffer � Ibuffer � �i (Eq. 1)

where yi is the normalized 14N:15N log2 ratio for a protein from exper-
iment i, 1 	 i � 20; �temp is an unknown coefficient representing the
average log2 -fold change (FC) between 10 versus 30 °C; Itemp is an
indicator variable of �1 when the 10 °C sample was labeled with 14N
and the 30 °C sample was labeled with 15N or �1 in the inverse
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labeled condition; �buffer is an unknown coefficient estimating the
average log2 FC due to different extraction buffers; Itemp is an indica-
tor variable that is 0 when a Tris extraction buffer was used or 1 when
a urea buffer was used; and 
i is the residual error for experiment i.
Thus the observed 14N:15N ratio (yi) of each protein is a combination
of the 10 versus 30 °C effect (�temp), the buffer effect (�buffer), and a
residual error (
i). In practice, the two indicator variables are repre-
sented as a design matrix (supplemental Table S2).

Prior to fitting the linear model (Equation 1), the magnitude of
correlation between technical replicates from within the same biolog-
ical replicate was determined according to Smyth (39). The values of
the coefficients �temp and �buffer were estimated by least squares
regression (39), accounting for the replicate correlation calculated
above, in addition to determining the standard error of each protein
and the residual df.

To demonstrate the advantages of using a fully specified linear
model (Equation 1), we also fitted a linear model, which is identical to
the Student’s t test (Equation 2),

yi � �temp � Itemp � �i (Eq. 2)

that only corrects for the 14N:15N label reversal and treats all obser-
vations as independent where any observed variation is due to the
effect of changing temperature.

Statistical Analysis of Differential Abundance

Following the estimation of the average FC, standard error, and df
of each protein by Equation 1 or 2, we calculated a one-sample,
two-tailed t statistic for each protein from Equation 1 (hereafter the
unmoderated t test) and from Equation 2 (hereafter the Student’s t
test). p values were calculated using standard lookup tables and the
residual df obtained from the linear model fit.

Using the estimates obtained from Equation 1, we calculated an
empirical Bayes moderated t statistic (hereafter the moderated t test)
for each protein (39). p values were calculated using the moderated t
statistic and df obtained following the empirical Bayes procedure. To
demonstrate the benefits of the moderated t statistic, we compared
the moderated t test to the unmoderated t test, both of which were
calculated using estimates from Equation 1.

Multiple Testing Correction

p values from each of the three methods were adjusted for multiple
testing by both the Bonferroni correction and the Storey-Tibshirani
FDR (23). The posterior error probability of each individual protein (4)
was not assessed. The assumptions underlying the FDR method (23)
were tested by plotting histograms of unadjusted p values and by
confirming that the proportion of truly null hypotheses (�0) was ac-
curately estimated (see Figs. 1 and 3 from Ref. 23).

RESULTS

A Technical Replicate Data Set—To assess whether mi-
croarray-based analysis methods would be suitable for the
analysis of LC-MS data and whether our system was sensitive
enough to detect subtle differences in protein abundance, S.
alaskensis cultures were grown at 30 °C, labeled with either
14N or 15N, and then combined in known ratios of 0.8:1, 1:1,
and 1.2:1, in triplicate. Following averaging of the peptide
ratios from each LC-MS run, we observed the distributions of
protein ratios (Fig. 1, solid lines) and found that the non-log-
transformed medians were 0.88 � 0.1, 1.04 � 0.13, and
1.21 � 0.15 for experiments mixed 0.8:1, 1:1, and 1.2:1,

respectively (Table I). This demonstrates the ability of our
experimental methods to detect relatively subtle differences in
protein abundance.

We compared the observed distributions of protein ratios
(Fig. 1, solid lines) with normal distributions with either the
observed mean and S.D. (Fig. 1, dotted lines) or the observed
S.D. and the expected mean (Fig. 1, dashed lines). In all but
one case, the observed protein ratios overlap the normal
distributions centered upon the expected protein ratio where
one of the 0.8:1 samples was centered closer to 1:1. Further-
more we compared the distribution of observed ratios against
expected ratios under a normal distribution using quantile-
quantile plots (supplemental Fig. S3). These revealed that the
majority of proteins are consistent with a normal distribution;
however, they are heavy tailed. These heavy tails most likely
reflect proteins that are naturally variable in their abundance.
This pattern of protein abundance is similar to two-color mi-
croarray analysis of RNA abundance, suggesting that mi-
croarray normalization approaches are likely to be applicable
to quantitative proteomics data.

Inspecting MA plots prior to normalization helps to deter-
mine whether a relationship or trend exists between the pro-
tein ratio and abundance levels. We did not detect such a
trend in any of the 30 versus 30 °C data sets (Fig. 2A and
supplemental Fig. S4) because the ratios were symmetrically
distributed throughout the range of S/N. Box plots of unnor-
malized protein ratios are presented (Fig. 3A), confirming the
observations from Fig. 1 that the median of each distribution
is close to the expected ratios. We performed median nor-
malization to remove the bias that we had introduced, thereby
forcing the medians of each distribution of protein ratios to a
log2 FC � 0, corresponding to a ratio of 1:1 (Figs. 2A and 3B).
Because the distributions of median-normalized protein ratios
had similar shapes (Fig. 1) and similar extents (Fig. 3B), any
additional interexperiment normalization was not performed.

A Biological Data Set—Over 400,000 tandem mass spectra
were generated, resulting in 1,736 unique and high confi-
dence protein identifications (p � 0.01, S/N 	 5) with at least
two peptides, giving a 54% genome coverage of S. alasken-
sis. An additional 399 proteins were detected by a single
peptide (data not presented). From the list of 1,736 protein
identifications, 1,172 proteins with �2 peptides were quanti-
fied (37% genome coverage) (supplemental Tables S3 and
S4). Approximately 230 proteins were identified in only one
experiment, and 65 of the most abundant proteins were de-
tected in all 20 experiments (Fig. 4).

In four biological replicates (A–D) of 10 versus 30 °C cul-
tures (representing 16 MS runs), the 14N- and 15N-labeled
cells were combined based on equal OD, which unexpectedly
produced a 2–16-fold non-linear skew. At low S/N values, the
skew was less pronounced, becoming more extreme at higher
S/N, always in favor of the 30 °C sample, both in the 14N:15N
and 15N:14N inverse labeling conditions (Fig. 2, B and C, and
supplemental Fig. S5). Venable et al. (22) reported a similar
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non-linear bias that was partly attributed to the signal intensity
of some peptides that fell below the limit of quantitation. In
contrast, we used a S/N 	 5 cutoff to avoid measurements
below the limit of quantitation. To determine whether the skew
was due to combining samples based on OD, we performed
two additional biological replicates (E and F) in duplicate that
were combined 1:1 by protein concentration, and we ob-
served no non-linear skew nor a deviation from the expected
ratio of 1:1 (Fig. 2D and supplemental Fig. S6).

To examine the biological reason for the observed skew in
the samples combined 1:1 based on OD, morphological ex-
aminations were performed on S. alaskensis cells grown at 10
and 30 °C. Scanning electron micrographs show that at 10 °C
cells appear primarily as individuals, whereas at 30 °C cells
tend to be clumped together connected by an extracellular
matrix (Fig. 5). The biovolume of cells grown at 10 °C was

0.13 � 0.03 �m3, whereas the cells were �1.4-fold larger
(0.18 � 0.03 �m3) at 30 °C. Spectrophotometric measure-
ment of cells (OD) is based on the light-absorbing quality of
the cells in solution and can be affected by cell size, the
properties of the plasma membrane, the internal structure of
the cell, and the presence of materials that absorb light (41).
Cell clumping may cause inconsistent OD measurements and
may result in OD not providing a true reflection of culture
turbidity (42).

Differences in cell clumping and light absorption do not
explain why there was a curved skew and not a simple shift in
the distribution such as when 14N and 15N 30 °C samples
were combined at 0.8:1 or 1.2:1. The skew may be caused by
the inherent sampling bias in LC-MS where higher abundance
peptides are preferentially selected. As a result, for the high
abundance peptides, the probability of detecting a peptide

FIG. 1. Unnormalized density distribution of the 30 versus 30 °C data set. Three 1:1 14N:15N experiments (A), three 0.8:1 experiments (B),
and three 1.2:1 experiments (C) were plotted using 14N:15N ratio (x axis, log2 scale) and probability density (y axis). Experimentally observed
distribution of the 14N:15N ratios, solid line; normal distribution with the mean and S.D. of the observed data, dotted line; normal distribution
with the expected mean and observed S.D., dashed line.
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from a 30 °C sample is higher than a peptide from 10 °C,
thereby exaggerating the skew at higher abundance. At lower
S/N, the lower abundance proteins from either the 10 or 30 °C
samples have a similar chance of being sampled, thus mini-
mizing the extent of the skew. It is in these situations that we
must rely on normalization to attempt to correct the skew and
recover the true difference in protein abundance due to
temperature.

Normalization—In two-color microarrays, the different
spectral properties of red and green cyanine dyes causes
non-linear skews, which are usually removed using lowess
normalization (14). The main assumption is that the majority of
genes/proteins are not differentially expressed and should be
centered about the 1:1 ratio throughout the range of abun-
dance. Applying lowess normalization to 10 versus 30 °C data
sets removed the non-linear trend and produced protein ra-
tios with a median of 0 (Fig. 2, B and C, and supplemental
Figs. S5 and S6). The distributions of lowess-normalized pro-
tein ratios were very similar across experiments; thus we did
not perform any additional interexperiment normalization.

Although the lowess normalization appeared to effectively
remove the systematic bias in protein ratios, we further eval-
uated whether the large skew compromised the ability to
score relative protein abundance. Four samples that had been
combined based on equal OD (A1_1, A2_1, B1_1, and B2_1)
were compared with the samples that had been combined
based on equal protein concentration (E_1, E_2, F_1, and
F_2). The 607 proteins that were shared between these eight
data sets were sorted into five groups by examining their
average FC values (Table II). The majority (groups 1–3 repre-
senting 67.5%) of normalized protein abundances were pos-
itively correlated (i.e. equivalent trends with growth tempera-

ture in both data sets). An additional 23.9% (group 4) had
opposing trends but with small FCs (�1.5) and could repre-
sent proteins with “normal” levels of variation. Only 8.6%
(group 5) were judged poorly correlated as their normalized
quantities were opposing and above a 1.5-FC. The overall
agreement between the two data sets is a strong indication
that the normalization effectively removed skew in the data
while preserving the biological effect due to temperature.

Identifying Differentially Abundant Proteins—Initial pro-
teomics studies focused on identifying those proteins with the
largest -fold change, citing cutoffs of 1.5- or 2-fold changes
as being significant. More recently, studies have used simple
statistical tests such as the Student’s t test to identify proteins
with p � 0.05. We compared these two methods with a more
robust framework for statistical analysis, the linear model. In
addition, we demonstrate that the empirical Bayes moderated
t test, a more powerful test for differential abundance, can be
successfully interfaced with the linear model.

-Fold Change Approach—Using an FC approach, 278 and
84 proteins with FC 	 1.5 and 2, respectively, were differen-
tially abundant (Table III).

Linear Models as a Framework for Statistical Analysis—All
10 versus 30 °C experiments were each subjected to different
combinations of experimental parameters, including whether
the 30 °C sample was labeled with 14N or 15N, the extraction
buffer that was used, and from which biological replicate the
sample originated (A–F). To accurately represent this experi-
mental design, a linear model that precisely described each
sample was constructed (Equation 1). To account for the
correlation due to technical replicates from the same biolog-
ical replicate, the correlation between technical replicates was
estimated to be 0.672 on average (see “Experimental Proce-

TABLE I
Protein quantitation for artificially biased data

The mean 14N:15N ratios were within 0.02 of the median in all cases (data not shown). Bold values are averages.

14N:15N ratio No. of proteins � 1 peptidea No. of proteins � 2 peptidesb Medianc Mind Maxe S.D.f

0.8:1 147 106 0.86 0.63 1.31 0.11
399 225 0.94 0.70 1.36 0.10
469 264 0.79 0.55 1.30 0.09

0.86 0.63 1.33 0.10

1:1 133 84 1.01 0.72 1.49 0.15
333 192 1.02 0.68 1.46 0.13
368 212 1.04 0.67 1.68 0.12

1.02 0.69 1.54 0.13

1.2:1 122 62 1.28 0.92 1.63 0.16
363 189 1.14 0.83 1.76 0.13
585 379 1.20 0.68 1.74 0.16

1.21 0.81 1.71 0.15
a The number of proteins identified in each experiment with at least one peptide.
b The number of proteins identified in each experiment with at least two peptides.
c The median of 14N:15N ratios.
d The minimum of 14N:15N ratios.
e The maximum of 14N:15N ratios.
f The S.D. of 14N:15N ratios.
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dures”). We note that such a large amount of correlation will
undoubtedly cause the Student’s t test to overestimate the
statistical significance of many proteins, and thus we expect
to obtain smaller but more accurate t statistics using Equation
1. Using this value and the experiment label (A–F) as a block-
ing variable (supplemental Table S2), the ratios from each
protein were fitted to the linear model (Equation 1), and the
coefficients for the effect of temperature (�temp) and the ex-
traction buffer (�buffer) on protein abundance were estimated
by least squares regression (see “Experimental Procedures”).
The coefficient estimates can be directly interpreted as the
average 14N:15N FC (log2) due to their respective experimental
parameter; thus, proteins with ��temp� 	 0.585 (log2) or 	1.0
(log2) represent proteins with a 1.5- or 2-FC due to growth
temperature, respectively. Finally because this model has two
parameters, only proteins with n � 2 from the same extraction
buffer can be fitted.

Evaluating the Utility of Linear Modeling Using an Unmod-
erated Student’s t Test—From the 1,172 quantified proteins,
954 were detected at least twice and could be analyzed by the

Student’s t test with the data fitted to the simple linear model
(Equation 2) (Table III). This approach tested the null hypoth-
esis that the average abundance ratio due to the effect of
temperature is 0 with (n � 1) df where n is the number of
observations for each protein. Using p � 0.05, 325 proteins had
significant changes in abundance due to temperature (Table III).
Similarly 830 proteins detected at least three times or only two
times from the same extraction buffer (i.e. no estimate for �buffer

but a valid estimate for �temp) could be fitted to the full linear
model (Equation 1) (Table IV). Using p � 0.05, the Student’s t
test estimated 144 significantly changed proteins.

The Empirical Bayes Moderated t Test—We calculated a
moderated t statistic for each protein using the same initial
estimates of FC, residual error, and df parameters from fitting
the linear model (Equation 1) that the unmoderated t test
used. Because the moderated t test provides improved error
estimates and an increase in the number of residual df, it can
be applied to proteins with even one observation (39, 43).
From the 1,172 quantified proteins, we identified 214 proteins
with q � 0.2 (Table IV and supplemental Table S4).

FIG. 2. MA plots of peptides and proteins pre- and postnormalization. Unnormalized peptides (column 1) and proteins (column 2) and
normalized proteins (column 3) were plotted in MA plots using the log2

14N:15N ratio of abundance (y axis), log10 S/N (x axis), and a non-linear,
locally weighted regression (lowess) line (pink line). A, artificially biased 1.2:1 14N:15N experiment where the absence of a systematic trend in
ratio versus S/N validated a median normalization of proteins across the experiment. B, a representative skewed data set created by combining
1:1 based on OD 10 °C 14N and 30 °C 15N. C, as for B but inversely labeled (10 °C 15N and 30 °C 14N). D, a representative non-skewed data
set generated by combining 1:1 based on protein concentration 10 °C 14N and 30 °C 15N. Normalized protein ratios from B–D were derived
from using lowess normalization.

FIG. 3. Box and whisker plots of un- and median-normalized data from the 30 versus 30 °C data set. The median ratio from each experiment
is shown as a thick black line surrounded by a box representing the interquartile range, which contains the median � 25% of the data with whiskers
that extend at most two standard deviations from the median and outlying observations shown as open circles. The horizontal width of each box
is proportional to the number of proteins in each experiment. The distribution of protein ratios in the 30 versus 30 °C data set before (A) and after
(B) median normalization shows that the expected shift (0.8:1 and 1.2:1) can be successfully removed by median normalization.
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Comparing the Moderated t Test with an Unmoderated t
Test—Given that the moderated t test was capable of analyz-
ing 342 (41%) more proteins than the unmoderated t test

(Table IV) and that there were an additional 70 (49%) differ-
entially abundant proteins in the moderated t test relative to
the unmoderated t test, the observed increase in the number

FIG. 4. Protein detection frequency. The frequency of occurrence of 1,172 proteins obtained from six biological replicates and a total of
20 MS runs from the 10 versus 30 °C experiments is shown.

FIG. 5. Scanning electron microscope images of S. alaskensis. Cells grown at 10 °C (A–C) and 30 °C (D–F) are shown. Scale bars in A
and D, 10 �m; in B and E, 2 �m; and in C and F, 1 �m.

TABLE II
Comparing postnormalization protein quantities for experiments that that were combined by optical density (A and B) or protein concentration

(E and F)

Category Condition No. of proteins Correlation

1 Both proteins FCa 	 1.5 in the same directionb 37 Positive
2 One protein FC 	 1.5 and FC � 1.5 in the

other protein, both in the same direction
101 Positive

3 Both proteins FC � 1.5 in the same direction 272 Positive
4 Both proteins FC � 1.5 in different directions 145 Uncertain
5 Both proteins FC 	 1.5 in different directions 52 Negative

a FC is expressed as a 14N:15N value.
b Direction refers to the relative increased abundance of proteins toward either the 14N or 15N label.
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of differentially abundant proteins may be expected by
chance. To perform an unbiased comparison between the
unmoderated and the moderated t tests, the moderated t test
was restricted to the same 830 proteins tested in the unmod-
erated t test. Accordingly 168 proteins were determined to be
significantly differentially abundant, 24 more than the unmod-
erated t test (data not shown).

Comparing Multiple Hypothesis Testing Approaches—To
correct for multiple hypothesis testing, the popular yet con-
servative method of Bonferroni correction was compared with
the FDR proposed by Storey and Tibshirani (23) using data
from all three t tests (Table IV). The model-based assumptions
of the Storey-Tibshirani FDR procedure (23) are that the p
values are derived from two distributions: those from the null
hypothesis, which are uniformly distributed, and those from
the alternative hypothesis that have p values closer to 0.
Accordingly histograms of unadjusted p values (supplemental
Fig. S7) were plotted, and as expected, an accumulation of
small p values with a uniform distribution of p values from p 	

0.5 was observed. The shapes of the distributions were com-
patible with the assumptions required for using the Storey-
Tibshirani FDR (23). Thus for each protein, a q value was

calculated (supplemental Table S4). The resulting list of pro-
teins with q � 0.05 have at most 5% false positives within that
list, whereas the list of proteins with p � 0.05 have a false
positive rate of 5% from within the entire set of proteins (23).
The q value is in fact a measure of what many think the p value
represents.

From the moderated t test, 214, 11, and 45 proteins were
identified with unadjusted p � 0.05, Bonferroni p value
correction, or FDR q � 0.2, respectively (Table II). The
expected number of false positive proteins is 59, 0, and 2,
respectively (Table III). Given the distribution of p values
(supplemental Fig. S7) we found that the FDR gives the
most realistic impression of the true number of differentially
expressed proteins.

DISCUSSION

The objective of this work was to examine approaches for
normalization and select an appropriate significance test
that maximized the final list of protein candidates from
quantitative proteomics analyses balanced with acceptable
and interpretable levels of false discoveries. Ultimately this
will enable effective biological interpretation of the data. We
tested our methods in two experimental systems with either
very little biological variation (30 versus 30 °C) or large
amounts of variation (10 versus 30 °C) and described a strat-
egy for determining an appropriate set of normalizations, sta-
tistical analysis, and multiple testing adjustments. We con-
cluded that linear modeling of the data coupled with an
empirical Bayes, moderated t test, and FDR correction for
multiple testing was a beneficial strategy for this experiment.
We expect this approach will be of use for a wide range of
metabolically labeled and indeed other types of quantitative
proteomics experiments.

TABLE III
-Fold change approach outcomes

1.5-fold change 2-fold change

Na 280 84
Rb 892 1,088
E(FP)c — —

a The number of proteins with 14N:15N ratios greater than the FC
threshold.

b The number of rejected proteins below the FC threshold.
c The expected number of false positives (FP), which by using an

FC threshold approach cannot be determined (—).

TABLE IV
Comparing methods of significance testing with the 10 versus 30 °C data set

Three methods for estimating differential protein abundance were compared.

Student’s t testa Unmoderated t testb Moderated t testc

pd Bonfe FDRf p Bonf FDR p Bonf FDR

Ng 954 954 954 830 830 830 1,172 1,172 1,172
�0.05h 325 56 272 144 14 58 214 11 45
E(FP)i 48 0.05 14 42 0.05 3 59 0.05 2
FDR (%)j 15 0.1 5 29 0.4 5 28 0.5 5

a Student’s t test where each protein abundance measurement was treated as independent using a simple linear model accounting for 14N
and 15N label reversal only.

b Unmoderated t test with the full linear model.
c Empirical Bayes moderated t test with the full linear model.
d p, the number of differentially abundant proteins with statistic �0.05 for unadjusted p values.
e Bonf, the number of differentially abundant proteins with statistic �0.05 for Bonferroni method-corrected p values.
f FDR, the number of differentially abundant proteins with statistic �0.05 for FDR-corrected q values.
g The number of proteins analyzed from the 1,172 quantified proteins; proteins analyzed by the Student’s t test had at least two observations,

the unmoderated t test had at least three observations or two observations from the same extraction buffer, and the moderated t test had at
least one observation.

h Number of differentially abundant proteins with statistic �0.05.
i Expected false positives.
j FDR was calculated by dividing E(FP) by the number of differentially abundant proteins with statistic �0.05.
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Normalization

Normalization of quantitative proteomics data or indeed of
high throughput biological data in general greatly assists in
reducing differences between data sets caused by experi-
mental artifacts, revealing the true underlying biological dif-
ferences. Experimental artifacts that may contribute to differ-
ences in 14N:15N ratios include pipetting errors at various
stages of sample processing, sample quality, and various
unpredictable or potentially uncontrollable factors. For mi-
croarrays, normalization is typically performed to control for
intraexperiment variation and subsequently for interexperi-
ment variation (14). Determining which normalization proce-
dures to use requires careful assessment of the data that are
generated.

We showed that density plots and box plots were useful
for determining whether data are centered about the ex-
pected 1:1 ratio and that MA plots were useful for identifying
non-linear relationships that then warrant removal by nor-
malization. Fixed value median normalization was suitable
for the 30 versus 30 °C data sets because of the absence of
systematic non-linear trends (Table I and Fig. 3). Lowess
normalization was useful for the OD-based 10 versus 30 °C
proteomics data sets because there was a strong system-
atic non-linear trend associated with the 2–16-fold skew
(Fig. 2). Additional interexperimental normalization was not
required. However, we caution the need to inspect box plots
or overlaid density plots to ensure that the ratio distributions
do indeed have a similar shape and extent. As illustrated by
the use of these two specific approaches, normalization
needs to be considered on a case-by-case basis. The point
should also be made that to avoid overmanipulation of data
normalization should be kept to a minimum and only used
when there is good evidence that it is required (e.g. from MA
plots). Furthermore determining the reason for any skewing
of data can lead to additional insight into cell biology.

Linear Models as a Framework for Statistical
Analysis

As the future of proteomics is likely to involve increasingly
sophisticated experimental designs that incorporate multiple
experimental parameters and combinations of biological and
technical replicates, we anticipate that a more flexible frame-
work for data analysis, such as linear models, will become of
increasing importance and value. We stress that even simple
experimental designs can be effectively represented by a
linear model; indeed our implementation of the Student’s t
test used a simple linear model that considered all samples as
independent observations. Although we were not interested in
the experimental parameter of extraction buffer per se, includ-
ing it in the linear model allowed for additional variance to be
assigned to this parameter, thereby reducing the residual
variance and increasing our power to detect the effect that
was truly of interest, temperature.

Comparing the results from the linear model (Equation 1)
using the unmoderated t statistic with the Student’s t statistic
(Equation 2) revealed a striking difference in the number of
differentially expressed proteins (Table IV). Despite just a 15%
increase in the number of proteins able to be analyzed by the
Student’s t test, there were an additional 185 (129%) differ-
entially abundant proteins from the Student’s t test. This
marked enrichment exists over a number of different p value
thresholds and is due to ignoring the correlation between
technical replicates; i.e. values obtained from technical repli-
cates will have lower variance than those from independent
samples. This artificially decreases the overall measurement
variance and causes overestimation of statistical significance
in the Student’s t test. Furthermore the increased number of
apparently “significant” proteins is likely to adversely affect
biological conclusions drawn from the data. Accounting for
the correlation between arbitrary experimental effects is
therefore critical.

Significance Testing

Significance testing was absent in the early development
and publication of quantitative proteomics studies. Its pur-
pose is to create a list of confident protein abundances to
enable robust biological interpretations based on the ob-
served changes between test samples. An appropriate test
should maximize the number of proteins with significant
changes in abundance while balancing the number of false
discoveries and false negatives. The four significance testing
approaches (FC, Student’s t test, unmoderated t test, and
moderated t test) combined with three multiple testing cor-
rection approaches (none, Bonferroni, and Storey-Tibshirani
FDR (23)) provided markedly different outcomes, highlighting
(as for normalization) the need to adopt a considered ap-
proach to data treatment.

-Fold Change—A commonly used method for identifying
differentially abundant proteins is FC. By this approach, pro-
teins with an FC larger than a defined cutoff (e.g. 1.5- or
2-fold) are classified as differentially abundant. Although this
is an intuitively simple approach, there are a number of limi-
tations that have been widely discussed for microarray work
(44) that are relevant to quantitative proteomics. The FC ap-
proach assumes that all proteins have the same variance (or
standard error of measurement). However, for many reasons
this may not be the case. Proteins with low abundance that
are close to the detection limit of the mass spectrometer tend
to have higher variability than those with higher cellular abun-
dances. In addition, if a highly abundant protein (e.g. 10,000
copies per cell) such as a ribosomal or cell structure protein
increases 1.4-fold, this represents a large increase in the
balance of protein synthesis and has implications for nutrient
and energy utilization. Whereas an equivalent 1.4-fold in-
crease for a protein (e.g. gene regulatory protein) with 10
copies per cell may have negligible impact on energy balance.

Normalization and Statistical Analysis in Proteomics

2238 Molecular & Cellular Proteomics 8.10



It is clear that the biological roles of individual proteins must
be considered when judging protein abundance differences
(see “Statistical Versus Biological Significance” below). An-
other factor that is not effectively dealt with by only consid-
ering FC is the number of observations. Clearly a single meas-
urement is not as reliable as an FC for a protein that is
quantified in 20 of 20 experiments.

One of the most important limitations of basing assess-
ments on FC is the lack of statistical confidence defining the
probability of differential abundance. Taking this approach,
the risk of making false biological conclusions is therefore
high.

Comparing the Empirical Bayes Moderated t Test with an
Unmoderated t Test—The empirical Bayes moderated t test is
superior to the Student’s t test for high throughput studies
where typically there are thousands of measurements made
with only a few replicates (the “large p, small n” paradigm) that
is compounded by the inherent missing data problem in pro-
teomics. The empirical Bayes moderated t statistic esti-
mates prior parameters from the observed protein ratios
and consequently improves the error estimate for each in-
dividual protein by borrowing information from the other
proteins (39, 43). The benefit of this approach is largest for
proteins with few observations and even allows the estima-
tion of p values for proteins with a single measurement (39,
43), although users may still wish to filter out proteins with
few observations because the numerator of the t statistic
may be poorly estimated.

In the unbiased comparison of the moderated versus the
unmoderated t statistic where the protein ratios were both
fitted to the same 830 proteins using the same fully specified
linear model the moderated t test generated 24 extra signifi-
cant proteins. This suggests that the moderated t test has
more power to detect differential protein abundance than the
unmoderated t test. The moderated t statistic is, in many
cases, more conservative than the unmoderated t statistic:
for example, the protein Sala_1422 had a small FC of 1.38,
only two observations, and an unmoderated t statistic of
39.3 (p � 0.016) due to a small standard error estimate,
whereas the moderation of standard errors resulted in a far
more conservative moderated t statistic of 1.057 (p � 0.327)
(supplemental Table S4). Taken together, these data dem-
onstrate that compared with an unmoderated t test the
moderated t test has more power to detect significant
changes in protein abundance while being more conserva-
tive in estimating significance.

False Discovery Rates and Correcting for Multiple Test-
ing—A goal was to identify the largest number of differentially
expressed proteins in a statistically rigorous fashion; thus we
adopted the q value of Storey and Tibshirani (23). Using a q
value provides a more direct way of interpreting significance
than a p value. In the context of quantitative proteomics, p
values control the rate at which proteins with no change in
abundance are deemed significant, whereas q values control

the rate of significantly changed proteins being false. For
example, if the FDR threshold has been set at 5% (q value of
0.05), then from a list of 100 proteins with significant differ-
ential abundance, there will be a tolerated error of five false
positive proteins. The same cannot be said for a set of 100
significant proteins that have a maximum p value of 0.05; this
is because the number of false positives is calculated from the
entire data set of proteins tested. However, choosing a list of
proteins with p � 0.05 without correcting for multiple testing
may produce a large number of false positives (13, 23, 45).
The importance of FDRs for protein identification (3, 4) and
quantitative proteomics analyses (5, 10, 17, 19) has recently
been addressed.

Determining a suitable statistical threshold is a trade-off
between the false positive and false negative rates. Using the
moderated t test, we compared the use of no correction to the
Bonferroni and FDR methods. The Bonferroni method clearly
demonstrated a strong control over the false positive rate at
the expense of identifying very few differentially abundant
proteins (Table IV), and as has been found previously (13), we
found the Bonferroni method to be far too conservative for
proteomic applications. We note that instead of the FDR of
each individual protein that we adopted a local FDR can also
be used (4, 46). The FDR method (q � 0.05) identified 4 times
as many differentially abundant proteins as the Bonferroni
method with just two false positives expected from a list of 45
proteins. Using FDR thresholds that are frequently used in
microarray studies, 90, 138, and 217 differentially abundant
proteins were identified with q � 0.1, 0.15, or 0.2, respectively
(Fig. 6). Lastly it is important to note that the proteins with p �

0.05 had an FDR of 28%. This serves to highlight that using a

FIG. 6. Number of differentially abundant proteins passing q
value thresholds. FDR q value thresholds of �0.05, 0.1, 0.15, and 0.2
were applied to the 10 versus 30 °C data set after significance testing
using a moderated t test. There was a linear increase in the number of
significantly changed proteins as q value increased and, as a result, a
linear increase of the number of expected false positives (FP). DE,
differentially expressed.
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significance threshold of q � 0.2 (20% FDR), which may seem
to be a large error value, provides a more conservative and
better informed outcome than an uncorrected p � 0.05.

Statistical Versus Biological Significance

As discussed above (under “-Fold Change”) there are good
reasons to distinguish statistical significance from biological
significance, the most important reason being that without
having confidence in the proteomics outcomes (statistical
significance) it is not possible to draw confident inferences
about the biology. From the 278 proteins with FC 	 1.5,
approximately half (n � 135) had a q value 	0.2. This illus-
trates the potential difficulties that would be created for inter-
preting the biology if half of the proteins are in fact not reliably
associated with the test conditions being examined (in this
case, temperature).

One method for exploring this difference is via a volcano
plot where the relationship between FC and statistical signif-
icance (q value) can be examined (Fig. 7A). Proteins that have
a q value �0.2 and an FC 	 1.5 are differentially abundant by
both the statistical and FC approaches. Proteins that satisfy
both statistical and FC criteria (Fig. 7B), the FC criteria only
(Fig. 7C), or the statistical criteria only (Fig. 7D) have been
highlighted. The majority of proteins with large FCs but insig-
nificant changes (Fig. 7C) arise from proteins with fewer than
five observations. Furthermore in these cases the large FC
may be associated with high variance and in cases that in-
volved few measurements are less likely to be indicative of a
consistent and important biological change. Importantly the

statistical approach is capable of identifying proteins that
have small but consistent changes in abundance (Fig. 7D) that
would have been overlooked using an FC thresholding
approach.

Conclusion

Complex quantitative proteomics experiments represent
an analytical challenge for computing the probability of
differential protein abundance while correctly accounting
for an experimental design that can include label swapping,
different extraction buffers, and biological and technical
replicates. The data processing and analysis work flow
combining MA plotting, linear data models, lowess normal-
ization, and use of an empirical Bayes moderated t test in a
single analysis environment (R) is novel in its application in
quantitative proteomics. We found that the optimum nor-
malization approach is dependent upon the individual ex-
periment and must be assessed on a case-by-case basis by
inspection of MA plots. Fitting the data to a properly spec-
ified linear model accounting for correlation due to technical
replication using an empirical Bayes moderated t test with a
Storey-Tibshirani FDR (23) was a successful approach for
maximizing quantitative proteomics data while controlling
false discoveries and correcting for multiple testing. The
normalization and statistical testing approach provided rig-
orous data processing and evaluation of differential abun-
dance in a high throughput quantitative proteomics data set
and is generally applicable to global quantitative proteomics
analyses.

FIG. 7. Assessing statistical versus biological relevance. A, volcano plot of all 1,172 quantified proteins from the 10 versus 30 °C data set
displaying the relationship between statistical significance and FC of each protein. The log2 FC (x axis) was plotted against the �log10 q value
(y axis). A q value threshold of 0.2 (dashed horizontal line) and 	1.5-FC (vertical dashed lines) are shown where open circles are differentially
abundant proteins with small q values and large FCs. B–D, normalized FC values of three representative proteins were plotted across all 10
versus 30 °C experiments (A–F) to illustrate experimental variance. B, a representative protein with statistically significant differential
abundance (q � 0.2) and a large FC value (i.e. the protein satisfies both statistical and FC criteria). C, a representative protein with a large FC
that is not significantly differentially abundant (q 	 0.2). D, a representative protein with statistically significant differential abundance (q � 0.2)
and small FC.
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