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Abstract
In designing a longitudinal cluster randomized clinical trial (cluster-RCT), the interventions are
randomly assigned to clusters such as clinics. Subjects within the same clinic will receive the
identical intervention. Each will be assessed repeatedly over the course of the study. A mixed-
effects linear regression model can be applied in a cluster-RCT with three level data to test the
hypothesis that the intervention groups differ in the course of outcome over time. Using a test
statistic based on maximum likelihood estimates, we derived closed form formulae for statistical
power to detect the intervention by time interaction and the sample size requirements for each
level. Importantly, the sample size does not depend on correlations among second level data units
and the statistical power function depends on the number of second and third level data units
through their product. A simulation study confirmed that theoretical power estimates based on the
derived formulae are nearly identical to empirical estimates.
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1. Introduction
A longitudinal cluster randomized trial (cluster-RCT) assumes a three level data structure in
that the time-specific outcome assessments are nested within subjects who in turn, are nested
within the randomized clusters. For instance, consider a study designed to test the effect of
an experimental intervention of physician training on the reduction of severity of patients'
symptoms of depression over time. In this design, primary care clinics are randomly
assigned to either experimental or control intervention and each physician within an
experimental clinic is trained to detect and treat depression. Each physician will treat
multiple subjects, who, in turn, repeatedly measured on severity of depression symptoms
over time.

The primary hypothesis in such a study would focus on the difference in declines of
symptom severity over time between subjects who were treated by physicians with and
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without the experimental intervention. The three level data in a longitudinal cluster-RCT
could test the significance of the intervention by time interaction using a mixed-effects
linear regression model [1-3].

Sample size determination and power calculations are essential in designing a cluster-RCT.
The number of clusters that is required for a target statistical power must be estimated at the
experimental design stage. To this end, we build on sample size formulae for two level data
structures [4-6] to derive explicitly closed form power function and sample size formulae for
detecting a hypothesized interaction effect. The derivations are based on a distribution of a
test statistic that used the maximum likelihood estimate of the interaction effect. A
simulation study followed to verify the statistical power achieved with the estimated sample
sizes.

2. Statistical Model
A three level mixed-effects linear model for outcome Y can be written as follows:

(1)

where i =1,2,…,2N3 is the index for the level three unit (e.g., clinic); j = 1,…, N2, is the
index for the level two unit (e.g., subject) nested within each i; and k = 1, 2, …, N1, is the
index for the level one unit (e.g., repeated outcome observations) within each j. The
intervention assignment indicator variable Xijk = 0 if the i-th level three unit is assigned to a
control intervention and Xijk = 1 if assigned to an experimental intervention; therefore Xijk =
Xi for all j and k. Furthermore, here a balanced design is assumed in that ΣiXi = N3. The time
variable is denoted by Tijk. In this study, it is assumed that Tijk = Tk for all i and j, and that
the time increase from 0 (the baseline) to Tend = N1 - 1 (the last time point) by 1 with equal
time intervals. Therefore, the parameter ξ represent the intervention effect at the baseline,
and the parameter τ represents the slope of time effect, that is, decline in symptom severities
over time. Finally, the intervention by time effect δ is of primary interest representing the
slope difference in outcome Y between the intervention groups, or additional decline in the
experimental group. The overall fixed intercept is denoted by β0.

It is assumed that the error term eijk is normally distributed as , the level two

random intercept  and the level three random intercept . Among those
random components, it is further assumed that ui ⊥ uj(i) ⊥ eijk, i.e., these three random
components are mutually independent. In addition, conditional independence is assumed for
all uj(i) and for all eijk, whereas as ui are unconditionally independent. That is, uj(i) are
independent conditional on ui, and eijk are independent conditional on both ui and uj(i). After
all, β0, ξ, τ and δ are fixed effect parameters and the last three terms in model (1) are random
effects.

As the parameter δ is of the primary interest, the null hypothesis to be tested is:

(2)

Under model (1), with its accompanying assumptions such as conditional independence
among random components, it can be shown that the elements of the mean vector are

(3)
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and that the elements of the covariance matrix are:

(4)

where 1(.) is an indicator function. This yields in particular,

Therefore, the correlation among level two data can be written for j ≠ j' as follows.

(5)

And, the correlation among level one data can be written for k ≠ k',

(6)

It can be easily seen that ρ1 ≥ ρ2 with equality when .

3. Maximum Likelihood Estimate and its Variance
The maximum likelihood estimate (MLE)  of the interaction effect is indeed the slope
difference between the two groups: that is,

(7)

where  is the MLE of the slope for the outcome Y in the g-th group, in which Xi =
g. Specifically, for i in the g-th group,

(8)

where: 1)  is the overall group mean of the outcome Y for the g-th group; 2)

 is the “mean” time point; and 3)  is the “population
variance” of the time variable T. In fact, the slope estimate (8), but not the variance of the
slope estimate, is the same as that of an ordinary linear regression with ui = uj(i) = 0 in model
(1). The reason for this, on a heuristic level, is that weights assigned to data points Yijk in
estimation of the slopes are identical and the slopes do not depend on random intercepts of
any data level. Indeed, the ordinary least square estimate (8) is the mle under a perfectly
balanced design [2] that we are considering in this paper.
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Based on equations (3) and (8), it can easily be shown that the MLE  is unbiased, i.e.,

. The variance of a slope MLE  can be obtained based on
equation (4) as follows (see Appendix for a proof):

(9)

Therefore, the variance of  is

(10)

Observe that  and  are independent each other. It is notable, however, that the variance
of  depends only on the residual variance , and none of , , or ρ2. Therefore, for a
given total variance σ2, it decreases with decreasing  or increasing ρ1, the correlation
among the first level data.

4. Power and sample size
The following test statistic D, based on (7) and (10), can be used to test the null hypothesis
(2):

(11)

If the three variance components— ,  and — are known, then the test statistic D is

normally distributed with mean  and variance 1. When those three variance
components are unknown and replaced by their MLE's, the test statistic D becomes a Wald
test statistic and its asymptotic distribution is normal based on a large sample theory [7].
Thus, under the null hypothesis (2), D ~ N(0, 1) and under an alternative hypothesis of

.

The power of the test statistic D, denoted by φ, can therefore be written as follows:

(12)

where α is a two-sided significance level; β represents the probability of type II error; Φ is
the cumulative distribution function (CDF) of a standard normal distribution and Φ-1 is its
inverse. From now on, it is understood that: 1) δ = |δ| > 0; and 2) the probability below a
critical value, Φ-1(α/2), in the other side under the alternative hypothesis is negligible and
thus assumed to be 0. When the slope difference is expressed in pooled within-group
standard deviation (SD) units, i.e., when expressed in terms of a standardized effect size

Heo and Leon Page 4

Stat Med. Author manuscript; available in PMC 2009 October 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the power function can be expressed as follows:

(13)

It follows that when the hypothesis testing is based on D with a two-sided significance level
of α, the third level unit sample size N3 per group for a desired statistical power φ = 1 - β can
be calculated from equation (12) as:

(14)

or equivalently in terms of the standardized effect size Δδ from equation (13)

(15)

More precisely, N3 is the smallest integer greater than the right hand side of equation (14) or
(15). It can be observed that the level 3 sample size is a deceasing function of increasing ρ1
and Varp(T) in particular. Stated differently, more follow-up with more consistent (as
opposed to erratic) observations within subjects over time will increase the power (15) and
at the same time will reduce sample size required of N3 or N2 for the same anticipated
power.

The sample size N2 has a reciprocal relationship with N3 in a sense that the power depends
through N2N3 because both are free each other and of the other parameters. Therefore,
sample size N2 for the level two data can immediately be determined from equation (15) as
follows:

(16)

The sample size N1 for the level one data should, however, be determined in an iterative
manner because Varp(T) is a function of N1. Specifically, an iterative solution for N1 must
satisfy the following equation:

(17)
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5. Simulation study specification
We conducted simulation studies to verify the sample size N3 (15) and the power function
(13) using SAS PROC MIXED, which is suitable for fitting the three-level mixed-effects
linear model (1). For a two-sided significance level α = 0.05 and a desired power φ = 0.8,
the following combinations of the simulation parameters were prespecified: ΔδTend = Δδ(N1
- 1) = 0.3, 0.4, 0.5; N2 = 5, 10, 20, 30; N1 = 3, 6, 12; ρ1 = 0.4, 0.5, 0.6 while without loss of
generality σ = 1, ρ2 = 0.05, β0 = ξ = 0, and τ = -1 (in model (1)) remained fixed. This
3×4×3×3 factorial design scheme yielded a total of 108 combinations of those parameters. In
particular, the effect size of the interaction, or the between-group slope difference Δδ, is
specified in a way that it would yield a standardized between-group mean difference ΔδTend
at the end of trial, i.e., when T = Tend = N1 - 1.

To generate simulated data, we first estimated N3 using equation (15) for a given
combination (see step 2 below). Specifically, for each combination we followed the
following steps for simulations:

1. Calculate the variance of time, Varp(T), for given N1;

2. Calculate N3 (15) with the computed Varp(T) and given α, φ, N1, N2, and Δδ;

3. Calculate variance components, , and  based on equations (5) and (6) for given
ρ1, ρ2 and σ2; Specifically,  and ;

4.
Calculate ;

5. Calculate δ =σΔδ for the given σ2 and Δδ;

6. Generate the random intervention assignment indicator Xi = 0 or 1 for each i =
1,2,.., 2N3 in a balanced manner so that Σi Xi = N3;

7.
Generate ui from  independently for each i = 1,2,…,2N3 (Unconditional
independence assumption);

8.
For each ui, generate uj(i) from  independently for j = 1,2,…,N2
(Conditional independence assumption);

9. For each combination of ui and uj(i), generate eijk from N(0, σe 
2) independently for

k = 1,2, …,N1 (Conditional independence assumption);

10. Generate outcome data set for Yijk = β0 + ξXi + τTk + δXiTk + ui + uj(i) + eijk (1);

11. Fit the data set with the three-level linear mixed-effects model (1);

12. Retain a p-value, denoted by ps(δ) for the s-th simulated data set, obtained from
testing the null hypothesis (2);

13. Repeat the steps 6-12 for 1000 times (i.e., s = 1, 2, …, 1000) for each combination
of the simulation parameters.

Let us denote the empirical power by  that is obtained from the 1000 simulations as
follows:

(18)
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This empirical power is compared with the theoretical power φ that is computed based on N3
obtained in step 2 above, but not with the prespecified power of 0.8. It should be noted that
the theoretical power φ obtained in that way is never less than the prespecified power of 0.8
since N3 is the smallest integer greater than the right hand side of equation (15).

6. Simulation study results
Table 1 summarizes the specified (N2 and N1) and estimated (N3) sample sizes, the empirical
power  (18) and the theoretical power φ (13) based on the estimated N3. Although the
empirical power is negligibly underestimated as reflected on the mean differences in the last
row in Table 1, it is virtually identical to the theoretical power. For instance, among the 108
combinations (Table 1), the maximum absolute difference  was 0.027, which is
tolerable given that the width of the 95% confidence interval for simulation estimates is

. Thus, the derived formulae for sample size and the power
are very accurate under the conditions that were examined. In each case, the theoretical
power is no less than 0.8, since the power calculations were based on “integer” values of N3.

As expected, the sample size N3 for the identical power decreases with increasing
correlation ρ1 when the other design parameters are held the same. For example, when N2 =
5, N1 = 6, and ΔδTend = 0.3, (or Δδ = 0.3/5 = 0.06) the respective sample sizes requirements
for 80% power, for the level three data (N3), were 30, 25, and 20 for ρ1 = 0.4, 0.5, and 0.6.
Furthermore, the theoretical power is identical for various combinations of N2 and N3 that
yield an equivalent product, assuming other design parameters are held constant. For
instance, as shown in Table 1, each the following pairs of N2 and N3 with a product of 210
yielded identical power of 0.801 when N1 = 3, ρ1 = 0.4, ΔδTend = 0.3 (or Δδ= 0.3/2 = 0.15):
N2 = 5 and N3 = 42; N2 = 10 and N3 = 21; N2 = 30 and N3 = 7.

7. Application
The results in Table 1 can be applied to designing a longitudinal cluster-RCT. Consider, for
instance, a longitudinal cluster-RCT that compares an innovative primary care level
intervention with a usual primary care practice on depression outcome of subjects as
conducted in the PROSPECT [8,9] and the RESPECT [10] trials. To test whether the course
of depressive symptoms over time depends on the care that the subjects receive, it is
anticipated that primary clinics can accommodate 20 subjects (N2) for the research purpose
and each patient would be followed up for 6 times (N1) for assessments. The results
presented in Table 1 can be applied to estimating number of primary clinics, i.e., level 3
units (N3), for 80% power. If ρ1 = 0.5, then four clinics (N3) for each of the two intervention
groups, or a total of 160 subjects, would be needed to detect an effect size ΔδTend = 5Δδ =
0.4 (or Δδ = 0.4/5 = 0.08) with at least 80% statistical power (Table 1). Sample size
requirements for other design parameters can be obtained from Table 1. For other
combinations of design specification that were not presented in Table 1, the sample size
formula (18) can be applied.

8. Discussion
The derived power function (13) and level 3 unit sample size formula (15) requirements to
detect an intervention by time interaction are shown to be accurate compared to empirical
estimates based on a simulation study. Therefore, sample size formulae (16, 27) for number
of level 2 and level 1 data units are also accurate because they are different expressions of
equation (15). Importantly, the sample size did not depend on correlations among second
level data units and the statistical power function depends on the number of second and third
level data units through their product. Furthermore, when either N3 or N2 is equal to one, it
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reduces the level 3 data structure to that of level 2 data with the number of second level data
as N2 or N3 correspondingly. In either case, the variance  of the level three random
intercept can be considered to be 0 and thus ρ2 can be assumed to be 0. This reduces the
sample size formula (14) to equation (2.4.1) in Diggle et al [6] on its page 29, as it should. In
Diggle et al's formula too, it can be found that the power function is increasing in ρ1.

Collectively, therefore, as far as testing the intervention by time interaction is concerned, the
design can be very flexible for the same statistical power depending on feasibility. For
example, when N3N2 = 200 subjects per group is needed for 80% power, then sample sizes
for N3 and N2 can be determined depending on availability of recruitment of level two and
level three units regardless of an anticipated ρ2. To this end, if recruitment of 10 subjects
(N2) per clinic was feasible, then the investigators could try to enlist 20 clinics (N3) per
intervention group. On the other hand, if only 5 clinics (N3) were available per intervention
group, then recruitment of 40 subjects (N2) per clinic would be required. In an extreme case
where only one clinic (N3=1) is available, one could recruit 200 subjects (N2) from the
single clinic.

Although the empirical power was based on unknown variance components of random
effects, it was virtually identical to the theoretical power derived with known variance
components in the test statistic D (11). Therefore, derivation of power function with
unknown variances may not be necessary even for small N3, although it might be possible
through application of CDFs of central and non-central t distributions [11] replacing the
standard normal CDF Φ and its inverse Φ-1 in equation (14) or (15).

It should be noted that the sample size formula is to detect a slope difference per se but not
an expected between-group difference at Tend, the end of a study. In other words, the sample
formula (15) derived herein is not appropriate to detect an intervention effect at a
prespecified time point such as the end of a trial. It is because the variance of this effect is
not equal to , even if the estimated quantities are the same. Thus, this
intervention effect, ΔδTend, served as the basis for estimating a hypothesized slope
difference Δδ.

Other sample size formulae are available. For instance, Liu et al [12] derived sample size
formulas for the slope difference using generalized estimating equations. Murray et al [13]
presented detectable effect sizes based on expected mean square errors using random
coefficients analysis for the nested cohort design. Roy et al [14] derived general-form
sample size determinations using a mixed-effects linear model, taking into account for
potential attrition rates and more general correlation structures. Heo and Leon [15] derived
an algorithm for sample size requirements to detect a main effect of group using a linear
mixed effects model for three level data. Although comparisons of sample sizes assuming
different modeling approaches would provide better insight in designing a cluster-RCT, the
sample size equations presented above (15,16,17) are more readily implemented.

The sample size determinations derived here have limitations. First, the formulae were
derived assuming fixed numbers of units for all levels although number of subjects per clinic
will likely vary, i.e., j = 1, 2, …, ni, depending the i-th clinic. Furthermore, the number of
assessments per subjects will also vary (i.e., k = 1, 2, …, nij, depending on both clinics and
subjects) because attrition of subjects during a trial in reality is the norm rather than
exception [16,17]. Nevertheless, our derivation based on non-varying cluster sizes provides
a useful approximation and, further, can serve as a basis for deriving a sample size algorithm
for varying cluster sizes. For instance, if the variation in the cluster sizes is completely at
random in the missing data analysis framework [18], a replacement of the varying cluster
sizes with an average cluster size has been shown to be effective for sample size and
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statistical power with varying cluster sizes under two level binary outcome data [19].
Second, for pragmatic reasons the covariance structure (4) considered here was based on the
conditional independence assumption. Therefore, robustness of the derived formulae under
alternative covariance structure, such as autocorrelation or unstructured covariance matrix,
is unknown.

In conclusion, the derived formulae for sample sizes (15,16,17) and power functions (12,13)
can be useful in designing community based longitudinal cluster-randomized clinical trials
that compare slopes of outcomes over time between two intervention groups in a three level
data structure.
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Appendix

Proof of equation (9), Var . Let ,

then We have: ; ;  and

.
Observing that Y is independent over i, we decompose the variance of the numerator of  as
follows:

Now, recall equation (4), that is,

It follows that A = σ2N3N2N1Varp(T) since . Further,

 since . Therefore,

. It is easy to see that C = 0 since . Hence, we have

. It follows that equation (9) above
holds.
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