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Abstract

A chiral phosphine catalyzes the addition of a carbon nucleophile to the γ position of an electron-
poor allene (amide-, ester-, or phosphonate-substituted), in preference to isomerization to a 1,3-diene,
in good ee and yield. This strategy provides an attractive method for the catalytic asymmetric γ
functionalization of carbonyl (and related) compounds.

During the past several decades, the development of effective chiral catalysts that generate a
new carbon–carbon bond and a new stereocenter α or β to a carbonyl group has been the focus
of intense investigation.1 In contrast, little progress has been described in corresponding
catalytic enantioselective functionalizations of the γ position.2 In 1992, Trost reported that
phosphines catalyze the isomerization of electron-poor alkynes and allenes to 1,3-dienes (eq
1).3,4 Soonafter, he established that in the case of substrates that lack a δ hydrogen (and
therefore cannot isomerize to a 1,3-diene) phosphines promote the addition of an array of
nucleophiles to the γ position (eq 2).5
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Clearly, the utility of phosphine-catalyzed γ additions would be greatly enhanced if such
processes could be achieved with higher homologues (eq 3), in preference to isomerization (eq
1) (Figure 1). This substantial enlargement in scope would be accompanied by a second
significant challenge: controlling the absolute configuration of the γ stereocenter, which could
be complicated by issues such as the E/Z geometry of critical intermediates and the reversibility
of key elementary steps (Figure 1).6

(3)
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To date, progress in addressing these two challenges has been limited. With respect to achieving
addition rather than isomerization, phosphine-catalyzed intermolecular γ addition has only
been accomplished with nitrogen nucleophiles (albeit in ≤30% yield),7 although intramolecular
additions of oxygen nucleophiles have been described.5a,8 With regard to asymmetric catalysis
to generate a γ stereocenter, just one success has been reported (intramolecular γ additions of
oxygen nucleophiles).8,9

Thus, there are no examples of the use of a carbon nucleophile in a phosphine-catalyzed γ
addition of the type illustrated in eq 3,10 as well as no reports of enantioselective intermolecular
additions to produce a γ stereocenter for any family of nucleophiles (carbon, nitrogen, or
oxygen). We were therefore pleased to determine that, through the appropriate choice of
catalyst and reaction conditions, both of these deficiencies can be remedied (Table 1, entry 1).
11 Specifically, phosphepine 1 catalyzes the γ addition of nitromethane to a racemic allene that
bears a Weinreb amide12 in good ee and yield at room temperature. Phosphepine 1 has been
reported to serve as a chiral ligand for rhodium-catalyzed hydrogenations and
hydroformylations, but to the best of our knowledge it has not previously been employed as a
nucleophilic catalyst.13,14

Related phosphepines are less effective as enantioselective catalysts for the γ addition of
nitromethane to the allenamide (Table 1, entries 2–4),15 as are a range of other chiral
phosphines and amines (e.g., entries 5–9). In the absence of an additive, a lower ee and yield
are observed (entry 10), and the other additives that we have examined are less useful than
phenol (e.g., entry 11).16 A smaller amount of the γ-addition product is observed in solvents
such as toluene and CH2Cl2 (entries 12 and 13). Finally, the use of less nitromethane leads to
a diminished yield (entry 14).

Under a standard set of conditions, phosphepine 1 serves as an effective catalyst for the
enantioselective addition of nitromethane to an array of allenamides to generate a new carbon–
carbon bond and a new γ stereocenter (Table 2). The R substituent can range in size from methyl
to sterically demanding isopropyl, and it can bear a variety of functional groups.17,18
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These new phosphine-catalyzed asymmetric carbon–carbon bond-forming processes are not
limited to allenes substituted with a Weinreb amide. In a preliminary study, we have determined
that ester- and phosphonate-activated allenes also undergo γ addition of nitromethane with
useful efficiency (Table 3). To the best of our knowledge, allenylphosphonates have not
previously been employed as substrates in phosphine-catalyzed γ additions.

During the course of a phosphepine-catalyzed γ addition, the allene starting material remains
racemic (i.e., no evidence for kinetic resolution), and the ee of the product is essentially constant
(eq 4). Furthermore, 31P NMR studies establish that the resting state of the catalyst is “free”
phosphepine 1, not a derivative such as a phosphonium salt (e.g., one of the intermediates
illustrated in Figure 1), an observation that can be accommodated by the pathway outlined in
Figure 1

(4)

The development of methods for the catalytic asymmetric functionalization of carbonyl
compounds in the γ position has the potential to complement the impressive accomplishments
that have been reported for functionalization of the α and the β positions; to date, comparatively
few such γ functionalizations have been described. In view of the ready accessibility of allenes,
19 the use of chiral phosphines to catalyze γ additions of nucleophiles represents an attractive
strategy for addressing this deficiency. However, due to the facility of isomerization to a 1,3-
diene (eq 1), there had been only limited success in achieving phosphine-catalyzed additions
of nucleophiles to allenes (or alkynes) that create a γ stereocenter; in particular, there had been
no reports with carbon-based nucleophiles. In this investigation, we have determined that under
the appropriate conditions such processes can be accomplished not only in useful yield, but
also with good enantioselectivity. The product of the γ addition is an α,β-unsaturated carbonyl
compound that is poised for stereoselective functionalization of the α and β positions.
Additional studies of phosphine-catalyzed γ additions are underway.
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Figure 1.
Possible mechanisms for phosphine-catalyzed reactions of electron-poor alkynes and allenes:
Isomerization and γ addition (for the sake of simplicity, only one E/Z isomer is illustrated and
all of the elementary steps are drawn as irreversible).
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Table 1
Catalytic asymmetric γ addition of a carbon nucleophile to an allene: Effect of reaction parameters.

Entry change from the “standard conditions” ee (%)a yield (%)b

1 none 93 83

2 2 instead of 1 – <2

3 3 instead of 1 67 51

4 4 instead of 1 68 51

5 5 instead of 1 −83 47

6 (S)-MONOPHOS instead of 1 – <2

7 (R,R)-Et-DUPHOS instead of 1 – <2

8 (R)-BINAP instead of 1 – <2

9 quinidine instead of 1 – <2

10 no PhOH 74 29

11 AcOH instead of PhOH – <2

12 toluene instead of dioxane 94 46

13 CH2Cl2 instead of dioxane 92 35

14 1.5 equiv instead of 5.5 equiv of MeNO2 94 48

All data are the average of two experiments.

a
A negative value for the ee signifies that the enantiomer of the illustrated product is formed preferentially.

b
The yield was determined by GC analysis with the aid of a calibrated internal standard.
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Table 2
Phosphine-catalyzed asymmetric γ additions of nitromethane to allenamides.

entry R ee (%) yield (%)a

1 Me 97 94

2 n-Pr 93 81

3 87 73

4b i-Pr 81 62

5 (CH2)4OTBS 92 57

6 (CH2)3CO2Me 93 75

7 (CH2)5CO2Me 92 82

8 92 83

9 93 84

All data are the average of two experiments.

a
Yield of purified product.

b
15% 1 was used.
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Table 3
Phosphine-catalyzed asymmetric γ additions of nitromethane to electron-poor allenes.

entry allene ee (%) yield (%)a

1 93 73

2 90 94

3b 73 87

All data are the average of two experiments.

a
Yield of purified product.

b
Conditions: 3 equiv PhOH, 60 °C.
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