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Summary

The epidermal growth factor receptor (EGFR) is a transmembrane tyrosine
kinase receptor involved in the proliferation and survival of cancer cells.
EGFR is the first molecular target against which monoclonal antibodies
(mAb) have been developed for cancer therapy. Here we review the mecha-
nisms underlying the effects of EGFR-specific mAb in cancer therapy. The
efficacy of EGFR-specific mAb in cancer occurs thanks to inhibition of EGFR-
generated signalling; furthermore, the effects of antibodies on the immune
system seem to play an important role in determining the overall anti-tumour
response. In this review, attention is focused on cetuximab and panitumumab,
two mAb introduced recently into clinical practice for treatment of metastatic
colorectal and head and neck cancer which target the external part of EGFR.
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Epidermal growth factor receptor

Epidermal growth factor receptor (EGFR) is a cell membrane
growth factor receptor characterized by tyrosine kinase act-
ivity that plays a crucial role in the control of key cellular
transduction pathways in both normal and cancerous cells.
EGFR is over-expressed in a variety of human tumours,
including head and neck, breast, lung, colorectal, prostate,
kidney, pancreas, ovary, brain and bladder cancer [1–3].

The 170 kDa protein function depends either on the for-
mation of EGFR – EGFR homodimers or heterodimers –
that comprise the three members of the EGFR [human epi-
dermal receptor 1 (HER1)] family of growth factor recep-
tors (HER2, HER3 and HER4) following binding of an
EGFR-selective ligand. The activating ligands include the
epidermal growth factor (EGF), transforming growth
factor-a (TGF-a), amphiregulin or neuregulin. The binding
EGFR/ligand results in conformational changes that allow
the activation of EGFR tyrosine kinase and the phosphory-
lation of specific tyrosine residues within the EGFR intrac-
ellular carboxyl- terminal domain. Phosphorylated tyrosine
residues serve as docking sites for several signalling proteins
finally stimulating cell proliferation, loss of differentiation,
invasion, angiogenesis and blocking of apoptosis. Within a
few hours of activation, receptors are internalized into cyto-
plasm, where they are either degraded or recycled back to
the membrane.

EGFR homodimers undergo degradation, whereas EGFR
and HER2 heterodimerization is associated with recycling
upon endocytosis, which enhances mitogenic signalling.
Homodimers are weaker effectors compared with het-
erodimers: EGFR and HER2 is the most common het-
erodimer; HER2:3 plus neuregulin is the most potent
combination; HER2 decelerates the internalization of HER1;
HER1 requires ligand binding before dimerization, while
HER2 does not require a ligand to dimerize and is often
expressed at a 100-fold higher concentration compared with
HER1. The complex signalling network generated by trigger-
ing EGFR includes the ras- and mitogen-activated protein
kinase (MAPK) pathway that leads to cell proliferation, the
phosphatidylinositol-3 kinase (PI3K) and protein kinase B
(Akt) pathway driving cell cycle progression and cell survival
[4]. There is also evidence that EGFR can translocate to the
nucleus, where it acts as a transcription factor (Fig. 1) [5–7].

Inhibition of the target

Two pharmacological approaches have been used success-
fully to inhibit EGFR functions in cancer treatment: neutral-
izing monoclonal antibodies and small-molecule tyrosine
kinase inhibitors.

Anti-EGFR monoclonal antibodies bind to the extracellu-
lar domain of EGFR in its inactive state; they compete for
receptor binding by occluding the ligand-binding region,
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and thereby block ligand-induced EGFR tyrosine kinase
activation [8,9]. Small-molecule EGFR tyrosine kinase
inhibitors compete reversibly with Adenosine 5′ triphos-
phate to bind to the intracellular catalytic domain of
EGFR tyrosine kinase and, thus, inhibit EGFR auto-
phosphorylation and downstream signalling. In addition,
various small-molecule EGFR tyrosine kinase inhibitors can
block different growth factor receptor tyrosine kinases,
including other members of the EGFR family, or the vascular
endothelial growth factor receptor. Anti-EGFR monoclonal
antibodies recognize EGFR exclusively and are therefore
highly selective to this receptor. Nevertheless, an intrinsic or
acquired resistance to the EGFR inhibitor that limits the use
of these drugs in cancer therapy has been evidenced. This
could be related to constitutive activation of downstream
mediators or over-expression of other tyrosine kinase recep-
tors [10]. For example, the persistent activation of down-
stream signalling steps such as MAPK and PI3K/Akt could
promote cell proliferation, survival, differentiation and
motility [11], as illustrated in a study in which the resistant
phenotype unaffected by the treatment with C225 (mono-
clonal antibody anti-EGFR) is due to the intrinsic activity of
those pathways [12].

Moreover, the increase of angiogenesis caused by up-
regulation of the vascular endothelial growth factor in
human cancer cells by EGF and TGF-a could promote resis-
tance to EGFR inhibition [13].

To date, two anti-EGFR monoclonal antibodies, panitu-
mumab and cetuximab, are currently in widespread use in
cancer treatment.

Cetuximab

Cetuximab (C225, ErbituxTM) is an immunoglobulin (Ig)
G1 human–murine chimeric counterpart of the murine

monoclonal antibody M225. It binds to the EGFR with a
2-log higher affinity compared with the natural ligands
TGF-a and EGF [14]. Binding of cetuximab to the EGFR
promotes receptor internalization and subsequent degrada-
tion without receptor phosphorylation and activation [15].
This results in receptor down-regulation, reducing the avail-
ability of EGFR on the cell surface and preventing activation
of EGFR-associated, downstream signalling pathways.
Cetuximab also binds to the mutant receptor EGFRvIII,
inducing internalization of 50% of antibody-receptor com-
plexes after 3 h, and an 80% reduction in phosphorylated
EGFRvIII.

Binding of cetuximab to EGFR inhibits the progression of
the cell cycle at the G0/G1 boundary, increases expression of
the cell cycle regulator p27KIP1 and induces apoptosis by
increasing expression of pro-apoptotic proteins (e.g. Bax and
caspase-3, caspase-8 and caspase-9) [16] or by inactivation
of anti-apoptotic proteins (e.g. Bcl-2) inducing decreased
expression or phosphorylation [17]. Cetuximab has also
been reported to inhibit the production of pro-angiogenic
factors such as vascular endothelial growth factor,
interleukin-8 and the basic fibroblast growth factor; inhibi-
tion of these factors is associated with a decrease in new
blood vessel formation and the development of distant
metastases in orthotopic cancer models [18].

Clinical overview of cetuximab

The first cetuximab Phases I and I/II trials demonstrated the
safety of cetuximab alone or in combination with cytotoxic
chemotherapy used as treatments for patients with meta-
static squamous cell carcinoma of the head and neck, col-
orectal cancer and non-small-cell lung cancer [19–22].

A multi-centre, randomized Phase II trial examined the
combination of cetuximab and irinotecan (n = 218) com-
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pared to cetuximab alone (n = 111) in patients with EGFR-
positive irinotecan-refractory metastatic colon cancer. The
response rate (RR) of the combination was significantly
higher, 23% versus 11% with cetuximab alone (P = 0·007),
and the disease control rates were 56–32%, respectively. The
time to progression was also significantly greater for the
combination arm (4·1 versus 1·5 months, P < 0·001), and the
median survival time was 8·6 months in the cetuximab arm
(P = 0·48); survival in the two arms was not statistically
significant. The presence of cutaneous rash correlated sig-
nificantly with response, as the RR was higher in patients
presenting rash compared with rash-free patients (25·8%
versus 6·3%, P = 0·005) [23]. These findings were also con-
firmed by the MABEL (Monoclonal Antibody Erbitux in a
European Pre-License study) study, which assessed defini-
tively the efficacy and safety of cetuximab in the treatment of
metastatic colorectal cancer (mCRC) [24].

Based on these results, cetuximab was approved for use
in patients with EGFR-expressing mCRC refractory to
irinotecan-based chemotherapy, in combination with irino-
tecan (for irinotecan-refractory patients) or as monotherapy
(for irinotecan-intolerant patients).

The impact of cetuximab plus irinotecan in second-line
metastatic colorectal EGFR-expressing cancer patients was
examined in a multi-national Phase III trial known as the
EPIC (Erbitux Plus Irinotecan for Metastatic Colorectal
Cancer) study. The results reveal that treatment with cetux-
imab improved the progression-free survival (PFS), RR and
health-related quality of life [25]. Moreover, cetuximab dem-
onstrated activity in patients with colorectal cancer in whom
other treatments have failed, improving the PFS, overall
survival and quality of life over best supportive care (BSC)
[26].

The role of cetuximab was also investigated in first-line
treatment of mCRC. Phase II studies indicate that cetuximab
combined with both irinotecan- and oxaliplatin-based che-
motherapies is active with a 10–20% absolute increase in RR
[27–30]. Recently, a multi-centre, randomized, Phase III
study evaluated the combination of cetuximab with a stan-
dard chemotherapeutic regimen of fluorouracil, leucovorin
and irinotecan (Folfiri) in previously untreated mCRC.

Cetuximab plus Folfiri increased RR significantly and pro-
longed PFS (Table 1) [31,32].

Cetuximab was also approved in 2006 for the treatment
of head and neck cancer as a single agent in patients with
advanced platinum resistant disease and in combination
with radiotherapy for treatment of locally advanced
disease.

A Phase III randomized trial of cetuximab in advanced
head and neck cancer was carried out. In this study, a sample
of 424 patients was divided into those treated with radiation
therapy alone and those receiving supplementary treatment
with cetuximab. At a median follow-up of 54 months, it was
observed that the rate of survival was almost double in
patients receiving cetuximab compared with patients receiv-
ing radiation therapy alone (49 versus 29 months; P = 0·03).
Statistically significant increases in loco-regional control and
PFS were also reported for the group receiving cetuximab.
This is the first study to demonstrate a statistically significant
survival benefit rate for patients treated with curative intent
using an anti-EGFR antibody [33].

In addition, cetuximab plays a crucial role in the treat-
ment of platinum-resistant squamous-cell carcinoma of
head and neck cancer alone or in combination with chemo-
therapy (first-line setting) [34].

Panitumumab

Panitumumab (Vectibix, Amgen, Thousand Oaks, CA, USA)
is a fully human IgG2 targeting the extracellular domains of
EGFR monoclonal antibody. Developed by Abgenix’s Xen-
oMouse technology, which creates antibodies that do not
contain murine proteins, it offers effective high affinity
therapy (Kd = 5 ¥ 10-11 M) with a minimum rate of allergic
reactions or anaphylaxis [35].

Well tolerated – its main toxic effect is dermatological – it
has never reached grade 4 in clinical trials. Because of its
structure (fully human antibody), infusion-related reactions
are minimal (only one of 148 patients experienced grade 3
reaction while one of 463 patients discontinued treatment
due to grade 2 hypersensitivity reaction). Panitumumab
could be administered weekly, fortnightly or every 3 weeks

Table 1. Up-front therapy with cetuximab and oxaliplatin or irinotecan (intention to treat population).

Authors Patients (n) Regimen Response rate % PFS (months)

Tabernero 2007 [27] 43 Folfox-4 72 10·2

Bokemeyer 2007 [28] 337 Folfox-4 versus Folfox-4 + cmab 35·7

45·6

7·2

Borner 2006 [71] 74 Xelox versus Xelox + cmab 33

53

–

Folprecht 2006 [29]

Van Cutsem 2007 [31]

21

1217

Irinotecan/5FU/FA + cmab

Folfiri versus Folfiri + cmab

67

38·7

46·9

9·9

8

8·9

Tabernero 2006 [30] 62 Folfiri + cmab every 2 weeks (escalating dose) 42 7·2

Cmab, cetuximab; PFS, progression-free survival; FU/FA, fluorouracil and leucovorin; Folfiri, fluorouracil, leucovorin and irinotecan; Folfox,

oxaliplatin, leucovorin and fluorouracil.
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without visible change in pharmacokinetic parameters
[36].

Clinical overview of panitumumab

Panitumumab has been evaluated in clinical trials both as
monotherapy and in combination with other agents for the
treatment of various types, including colorectal and kidney
cancer[37].

The Phase I study demonstrated that pharmacokinetic
exposure showed similarities at 2·5 mg/kg per week, 6 mg/kg
every 2 weeks and 9 mg/kg every 3 weeks. Grades 3- or
4-related adverse events were noted in 10% of patients, with
grade 3 skin-related effects being the most frequent (7% of
patients). No maximum tolerated dose was reached, and no
human anti-human antibody formation or infusion-related
reactions were observed [38].

In the Phase II studies, panitumumab in monotherapy
and in combination with chemotherapy for the treatment of
chemo-refractory colorectal cancer was active and well
tolerated. A relationship between skin rash severity and sur-
vival was noted as being similar to that observed with the use
of cetuximab. Moreover, its efficacy appears to be similar in
patients with both low and negative EGFR levels [39–42].

A large Phase III multi-centre pivotal trial randomized
patients with oxaliplatin and irinotecan-refractory EGFR-
expressing mCRC between BSC and BSC plus panitumumab
at a dose of 6 mg/m2 every 2 weeks. The aim of this study was
to show the significant difference in PFS. Panitumumab
showed a 46% decrease in tumour progression rate compared
with that of BSC alone (hazard ratio: 0·54; 95% confidence
interval: 0·44, 0·66; P < 0·000000001, stratified log-rank test).
The subset analyses demonstrated the consistent treatment
effect of panitumumab in all subgroups of patients. The RR
was significantly higher in the panitumumab arm, with an 8%
partial RR and 28% achieving stable disease, compared with
no partial responses and 10% stable disease with BSC alone.
The time to response was 8 weeks, and the median duration of
the response was 17 weeks. Panitumumab also showed activ-
ity in cross-over study patients, with 10% achieving partial
response and 32% stable disease. No difference was observed
in overall survival (hazard ratio: 1·00; 95% confidence inter-
val: 0·82–1·22) due probably to the high rate of cross-over
population to panitumumab.

Skin reactions of any grade occurred in 90% of patients
receiving panitumumab, and in 9% of those receiving BSC;
the incidence of grades 3–4 skin-related adverse reactions
was 14% compared with 0% in patients not treated with
panitumumab. The incidence of skin toxicity in the panitu-
mumab group was dose-related; however, no correlation was
observed between dose and severity [43].

A further analysis of biomarkers was conducted to deter-
mine whether the effect of panitumumab monotherapy on
PFS differed in patients with tumours characterized by
mutant compared with wild-type (WT) K-ras.

Amado et al. first demonstrated that the response to pani-
tumumab monotherapy and the improvement in PFS was
limited only to patients with WT K-ras. No patient harbour-
ing a K-ras mutation (46%) responded to panitumumab
[44].

These findings led to registration by regulatory agencies
worldwide as a monotherapy for third-line treatment of col-
orectal cancer that is refractory to fluoropyrimidines, oxali-
platin or irinotecan. Moreover, in 2007, panitumumab was
approved by the European Medicines Agency for use in
patients with colorectal cancer carrying a normal, WT K-ras
gene.

The role of panitumumab in combination with anti-
angiogenic drugs has also been explored in a randomized
Phase III study (panitumumab advanced colorectal cancer
evaluation). In this trial patients with mCRC were assigned
randomly for first-line treatment within each chemotherapy
cohort (823 patients oxaliplatin- and 230 irinotecan-based)
to bevacizumab and chemotherapy with or without panitu-
mumab 6 mg/kg every 2 weeks. The primary end-point was
PFS within the oxaliplatin cohort. The results of the study
were negative, as the combination of panitumumab with
bevacizumab and chemotherapy resulted in a decrease of
PFS and in excessive toxicity, particularly diarrhoea, infec-
tions and pulmonary embolism. The results were consistent
in both the oxaliplatin and irinotecan cohorts. Moreover, as
demonstrated previously, the triple combination did not
provide additional benefit in the K-ras WT population
treated with panitumumab [45].

Predictive biomarkers

The early biomarker, developed in mCRC to correlate with
the activity of anti-EGFR antibodies, was confined to merely
expressing the target.

Chung et al. demonstrated that colorectal cancer patients
with EGFR-negative tumours have the potential to respond
to cetuximab-based therapies, registering a 25% objective
RR. Consequently, the presence of the target (EGFR) does
not ensure the response to anti-EGFR inhibitors. Further-
more, EGFR analysis by current immunohistochemistry
techniques does not seem to have predictive value for
the selection or the exclusion of patients for cetuximab,
therefore EGFR immunohistochemistry is not warranted
currently[46].

In addition, not even the gene copy number for EGFR
determined by fluorescence in situ hybridization on tumour
samples was associated significantly with clinical response to
this targeted therapy [47].

Several studies have been carried out to define a subgroup
of patients with potentially differential responses to anti-
EGFR antibody therapy, and these show that benefits are
confined to the subgroup with WT K-ras tumours.

K-ras is a guanosine triphosphate-binding protein with a
critical role in cellular growth and survival pathways [48]. It
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is mutated in approximately 30–50% of colorectal cancer
and results in a constitutive activation of the MAPK pathway
and in lack of response with EGFR inhibitors [49–53].

Published reports so far have investigated the role of K-ras
as a selection marker for EGFR inhibitor treatment on
tumour samples from uncontrolled studies and include
therapy with EGFR inhibitors alone or in combination with
chemotherapy. In this respect, the relative effect with anti-
body treatment on the outcome of K-ras, as a predictive
marker, is not so clear. In, the study published by Amado
et al., comparing panitumumab monotherapy with BSC, no
clinical benefit to panitumumab at all in patients with the
K-ras mutation was evidenced in any clinical end-point, thus
confirming the role of the K-ras mutant as a negative pre-
dictor of response (Table 2) [44].

Analyses of K-ras status and response to cetuximab have
provided similar results.

The retrospective correlative analysis of patients enrolled
in the CO.17 trial performed by Karapetis et al. show that the
benefit of cetuximab treatment was confined to patients who
had a tumour with no K-ras mutations, with few or no
effects in the presence of a K-ras mutation (Table 3) [54].

Moreover, in patients with mCRC treated with first-line
infused fluorouracil, folinic acid and oxaliplatin with or
without cetuximab the improved RR and PFS associated
with cetuximab was confined to those patients having a
K-ras WT tumour [55–57].

Recently, another breakthrough has been achieved focus-
ing on the role of v-raf murine sarcoma viral oncogene
homologue B1 (BRAF) as a potential biomarker for anti-
EGFR antibody treatment. Di Nicolantonio et al. showed
that in the presence of BRAF mutations (BRAF V600E allele)
there was no response to either cetuximab or panitumumab
[58].

Immunological mechanisms

In recent years, it has been shown that the anti-tumoral
effects of mAb may be due to their ability to act on the
immune system [59]. In general terms, the use of mouse
chimeric antibodies may elicit immune responses specifi-
cally for the mouse portion of the molecule leading to a
destruction of the antibody; in some cases, however, also to
the destruction of targeted tumoral cells [60].In addition,
several reports have described, both in vitro and in vivo, how
these antibodies are able to elicit antibody-dependent cellu-
lar cytotoxicity (ADCC), complement-mediated cytotoxic-
ity, or both. These effector responses are due to the binding
of the Fc portion of antibodies to the Fc receptors expressed
on the surface of different cell types. This binding leads to a
wide array of effects, from uptake to killing. It should be
noted that macrophages, dendritic cells, neutrophils, eosino-
phils, B cells, mast cells, natural killer (NK) cells, platelets
and Langerhans cells express Fc receptors capable of dis-
criminating different Ig classes. The effects of ligation of the
Fc portion of the antibody with the Fc receptors on the cells
depend upon the specificity of the Fc receptors for a given Ig
class and on the cell types. For instance, cetuximab is an
IgG1, therefore it is able to bind several Fc receptors: FcgRI
(CD64), FcgRII-A (CD32), FcgRII-B1 (CD32), FcgRII-B2
(CD32) and FcgRIII (CD16) [61]. For this reason, cetuximab
is able to mediate ADCC induced by NK activity through
binding to FcgRIII, but it is also able to engage Fc receptors
on the surface of other cells such as eosinophils, mast cells,
dendritic cells, B cells and other cell types [62]. Therefore, an
obvious scenario can be envisaged in which the overall
effects of these antibodies are also due to complex mecha-
nisms other than those of ADCC and complement-mediated
cytotoxicity. Recently, another intriguing mechanism has

Table 2. Phase III study of panitumumab versus best supportive care (BSC).

Panitumumab

(n = 231)

ITT population

BSC (n = 232)

K-ras WT

panitumumab (n = 124)

BSC

(n = 119)

RR, n (%) 22 (10) 0 (0) 21 (17) 0 (0)

mPFS (m) 1·9 1·7 2·9 1·7

PFS HR 0·54 (0·44–0·66) 0·45 (0·34–0·59)

Amado et al. 2008 [44]

ITT, intention to treat; RR, response rate; PFS, progression-free survival; HR, hazard ratio; WT, wild-type.

Table 3. Phase III study of cetuximab versus best supportive care (BSC).

Cetuximab

(n = 287)

ITT population

BSC (n = 285)

K-ras WT

cetuximab (n = 124)

BSC

(n = 119)

RR, n (%) – – 13 (13) 0 (0)

mPFS (m) 1·9 1·8 3·8 1·9

PFS HR 0·68 (0·57–0·80) 0·40 (0·30–0·54)

mOS (m) 6·1 4·6 9·5 4·8

OS HR 0·77 (0·64–0·92) 0·55 (0·41–0·74)

Karapetis et al. 2008 [54]

ITT, intention to treat; PFS, progression-free survival; RR, response rate; HR, hazard ratio; OS, overall survival; WT, wild-type.
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been highlighted that can help to exploit the potential effect
of mAb in solid cancer. Upon recognition by antibodies of
ligands on target cells, the components of this immune
complex (antibody and ligand) can be removed (shaved)
from these cells and internalized by cells expressing Fcg
receptors [63–66].

The mechanism has been called trogocytosis, or nibbling.
Trogocytosis triggers a cascade of complex events, depending
upon the ligand size and IgG class involved, which affect the
immune response in different ways, sometimes even depress-
ing the immune response or the efficacy of the binding
antibody/target due to antigen shedding in blood [67]. It has
also been shown to be effective when IgG2 antibodies, such
as panitumumab, are used (Fig. 2) [68].

Finally, it should be remembered that the ability to inter-
fere with the signalling initiated by EGFR affects many other
receptor systems, for instance chemokine and cytokine
receptors Toll-like receptors, that are critical for immune
responses [69]. Another interesting perspective worthy of
note is that activation of the immunonological mechanisms
described above corresponds with the observation that
increased efficacy in patients treated with EGFR mAb is cor-
related with the presence of cutaneous rash. Indeed, the links

between complement activation, ADCC and cutaneous rash
are well known to clinical immunologists.

On the basis of such premises, it can be suggested that the
beneficial effects of anti-EGFR antibodies do not depend
only upon their ability to interfere with the signalling gen-
erated by the receptor and this could explain, at least in part,
the different response observed in treated patients. Further-
more, a better understanding of the interactions between the
mAb used as therapy for solid tumours and the immune
system could be critical in designing new approaches for
immunotherapy in cancer.

Conclusion

The use of anti-EGFR monoclonal antibodies is diffuse in
cancer therapy; however, clinical responses have been
observed in only 15% of patients treated. Moreover, the use
of these drugs has contributed only a modest overall survival
benefit in comparison to commonly practised BSC.
Although these results could be considered interesting, it
should be taken into account that in several countries
the analysis of cost-effectiveness is now proportionally
extremely limiting, given the economic crisis worldwide and
its effects on the budgets of national health systems. As a
result, these data would not be sufficient to influence or
avoid a progressive reduction in the use of mAb therapy in
clinical practice.

The challenge for the near future is to identify biomarkers
that are capable of predicting and targeting eligible patients
for anti-EGFR antibody treatment on a one-to-one scale. On
the basis of reported trials and current debate [70], complex
efforts are needed that take into consideration not only the
mechanistic effect of blocking EGFR, but also the further
exploiting of mAb effects on the immune system. Clearly,
this is no simple task and, although there is now an impres-
sive quantity of data in the field, we are still far from having
a thorough understanding of the scenario as a whole. In this
respect, the consideration that EGFR-related signalling is
involved in many steps of immune responses provides an
inkling of just how complex is the road ahead. However, in
the long term the final destination will be well worth all our
painstaking and strenuous efforts.
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