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Summary

Multi-nucleated giant cells (MGCs; Langhans-type cell), formed from
macrophage fusion, are recognized as a hallmark histological feature in
chronic inflammation. However, their precise pathological role is still poorly
understood, especially for microorganism pathogens in the neonatal immune
system, which are capable of surviving intracellularly in phagocytes. To
conduct a partial evaluation of the monocyte function of neonates, we inves-
tigated the ability of human cord blood monocytes to form MGCs in vitro by
stimulating various cytokines and comparing them with adult peripheral
blood monocytes. Monocytes from cord blood and adult peripheral blood
were isolated and cultured for 14 days with cytokines known to induce MGC
in vitro. The fusion index in experiments with a combination of interleukin
(IL)-4 and macrophage colony-stimulating factor (M-CSF) and a combina-
tion of IL-4 and granulocyte–macrophage colony-stimulating factor (GM-
CSF) was significantly lower in cord blood than in adult blood monocytes
(P = 0·0018 and P = 0·0141, respectively). The number of nuclei per MGC was
significantly lower in cord blood than in adult blood monocytes in experi-
ments with IL-4 alone, the combination of IL-4 and M-CSF, and the combi-
nation of IL-4 and GM-CSF (P < 0·0001). These results suggest the possibility
that the susceptibility of newborns to mycobacterium infection is due partly
to impaired MGC formation.
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Introduction

Human neonates are susceptible to infections [1,2], espe-
cially by microorganism pathogens, which are capable of
surviving intracellularly in phagocytes (e.g. mycobacterium
[3], listeria [4], herpes simplex virus [5], cytomegalovirus
and toxoplasma [6]). Neonates sometimes develop a serious
systemic infection with rapid progress from these pathogens.
The immune reactions to these pathogens are depressed in
neonates; in particular, poor mobilization of phagocytes
(neutrophils and macrophages) and decreased production of
interferon (IFN)-g by CD4+ T lymphocytes have been well
established [6,7].

Multi-nucleated giant cells (MGCs; Langhans-type cells),
formed from macrophage fusion, are recognized widely as a
cellular feature of chronic inflammatory disorder. MGCs
were first described by Langhans in tuberculoid lesions, and
are found to be present in a variety of granulomatous con-
ditions including infection by the above-listed pathogens,

sarcoidosis, rheumatoid arthritis, neoplasm and the foreign
body reaction by the host defence mechanism. In vitro
MGCs formation was described first by Black in 1976 [8],
and various cytokines including macrophage colony-
stimulating factor (M-CSF), granulocyte–macrophage
colony-stimulating factor (GM-CSF), interleukin (IL)-4 and
interferon (IFN)-g have been found to induce MGCs forma-
tion in vitro [9–13]. In addition, several molecules have been
found to be related to MGC formation [14–27]. Although
the molecular mechanism of MGC formation has been
gradually elucidated, the pathophysiological actions of MGC
and their precise roles in immune responses are still poorly
understood. Furthermore, these findings are from experi-
ments established in animals or human adults, and there is
little information on MGC in human neonates [28,29]. The
granuloma structure (including MGCs) and their protective
function against mycobacterial infections have been dis-
cussed in current studies [30–33]; histopathological findings
in congenital tuberculosis patients have been studied and few
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granulomatous lesions or MGCs were shown in their lesions
[34–36].

We speculated that the reason why human neonates are
susceptible to the pathogens listed above is partly because of
the decreased ability of MGCs formation. In this study, we
investigated the ability of human cord blood monocytes to
form MGCs in vitro by stimulation of the cytokines listed
above. We attempted to evaluate partly the monocyte func-
tion of neonates and to compare the results with those
obtained using adult peripheral monocytes.

Materials and methods

Reagents

RPMI-1640 and phosphate-buffered saline (PBS) were from
Gibco (Grand Island, NY, USA). The human cytokines
(IL-4, M-CSF, GM-CSF, IFN-g and TNF-a) were from Wako
Pure Chemical Industries (Osaka, Japan).

Blood samples

Adult peripheral blood was obtained from healthy volun-
teers, in accordance with the principles of the Declaration
of Helsinki. Umbilical cord blood was obtained from
healthy term neonates immediately after delivery. Parental
informed consent was obtained for every donor, and the
examination protocol of peripheral blood samples was in
accordance with the guidelines of the Institutional Review
Board of Okayama University Hospital. Both types of
blood samples were collected in heparinized syringes and
processed within 3 h.

Monocyte isolation and cell culture

Adult peripheral blood and cord blood mononuclear cells
were isolated by Histopaque (Sigma, St Louis, MO, USA)
density gradient centrifugation. The monocytes were
isolated by negative selection with monoclonal antibody
(mAb)-coated immunological magnetic beads and a
cell sorter (Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany) after centrifugation. Purity, assessed by detection
of reactive oxygen species with a fluorescence probe (hydrox-
yphenyl fluorescein) stimulated with 10 ng/ml phormol
myristate acetate (PMA) and saturated with anti-CD14 mAb
(IOM2; Immunotech; Marseille, France) by flow cytometer,
were both more than 95%. The monocytes were cultured at
37°C and a 5% CO2 atmosphere in condition medium con-
sisting of RPMI-1640 medium supplemented with 10%
heat-inactivated fetal bovine serum (FBS), 100 U/ml penicil-
lin and 100 mg/ml streptomycin at 1 ¥ 106 cells/ml/well in
24-well tissue culture plates (Sumitomo Bakelite, Tokyo,
Japan) with various cytokines. The cells were maintained
for 14 days without changing the medium. All culturing

procedures were performed under sterile conditions, and
each experiment was performed with at least seven indepen-
dent samples.

Cell staining and evaluation of MGCs formation

After 14 days’ incubation, the culture plates were gently
rinsed twice with PBS and dried well, and the cells then
stained with a May – Grünwald–Giemsa stain (Merck Ltd,
Darmstadt, Germany). Digital pictures at low power
(10 ¥ objectives) were taken with a microscope (Keyence,
Osaka, Japan) under low voltage (LV) light for the quantifi-
cation of MGC. The fusion rate of monocytes was deter-
mined by counting the number of nuclei within MGC
(>3 nuclei/cell) in randomly acquired areas per total number
of nuclei in the same areas (at least 500 nuclei): fusion rate
(%) = (number of nuclei within MGC/total number of
nuclei ¥ 100). The number of nuclei per MGC (20 cells
acquired randomly in each experiment) was also evaluated.

Collection of supernatants and analysis of cytokines

After 14 days’ incubation without change of culture
medium, the supernatants were collected and centrifuged at
500 g for 5 min to remove particulate debris, then stored at
-30°C. IL-1b was measured by a two-site-directed ELISA,
with an exclusion limit of 10 pg/ml (Pierce Biotech,
Rockford, IL, USA). Tumour necrosis factor (TNF)-a was
assessed by a specific ELISA, with a sensitivity of 0·5 pg/ml
(Pierce Biotech). IL-4 was also measured by an ELISA with a
sensitivity of 2·0 pg/ml. IFN-g was measured by an enzyme
immunoassay (EIA) with a sensitivity of 0·1 pg/ml.

Superoxide anion (O2
-) production

The amount of superoxide released from isolated monocytes
(1 ¥ 106 cells/ml) was determined with a Hitachi spectro-
photometer U 2000 (Tokyo, Japan) as the change in absor-
bance at 550 nm resulting from superoxide dismutase
(SOD)-inhibitable cytochrome c reduction at 37°C [37]. The
reaction was carried out for 5 min with PMA (10 ng/ml)
with calcium chloride (1·5 mM) and magnesium sulphate
(1·2 mM) in the presence of 1 mM NaN3, after which
the reaction was stopped by addition of 0·5 mM
N-ethylmalemide. The generation of superoxide was calcu-
lated by subtracting the change in absorbance in the presence
of SOD (1 mM) from that in its absence, and then dividing
this value by 21·1 ¥ 103/M/cm for the molar extinction
coefficient.

Statistical analysis

Data in the table and figures are shown as means � standard
deviation (s.d.) unless indicated otherwise. Statistical
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analysis was performed with unpaired t-test (GraphPad
Prism version 5·00 for Mac OS X; GraphPad Software, San
Diego, CA USA). Results with P-values less than 0·05 were
considered statistically significant.

Results

IL-4 and IL-4 with M-CSF, IL-4 with GM-CSF-induced
MGCs in vitro

In our culture system, many of the monocytes were degen-
erated, and only a small number of MGCs appeared sponta-
neously in the controls without cytokine (Fig. 1). These

MGCs were small, generally with three to five nuclei. In the
experiments to evaluate the cytokines, which were described
previously as inducing MGCs, M-CSF (20–100 ng/ml)
alone, GM-CSF (20 ng/ml) alone, a combination of M-CSF
(20 ng/ml) and TNF-a (20 ng/ml), a combination of
GM-CSF (20 ng/ml) and TNF-a (20 ng/ml) and a combina-
tion of GM-CSF (20 ng/ml) and IFN-g (1000 U/ml) main-
tained cell densities and promoted monocytes adhesion, but
did not affect MGC formation significantly, from both adult
blood and cord blood monocytes in comparison with the
controls (data not shown). IL-4 (20 ng/ml), a combination
of IL-4 (20 ng/ml) and M-CSF (100 ng/ml) and a combina-
tion of IL-4 (20 ng/ml) and GM-CSF (20 ng/ml) increased

Fig. 1. Morphology of multi-nucleated giant

cells (MGCs) induced by interleukin (IL)-4,

IL-4 with macrophage colony-stimulating

factor (M-CSF) and IL-4 with

granulocyte–macrophage colony-stimulating

factor (GM-CSF) in vitro. Adult peripheral

blood and cord blood monocytes were cultured

in RPMI-1640 medium supplemented with

10% heat-inactivated fetal bovine serum (FBS),

100 U/ml penicillin and 100 mg/ml

streptomycin, at 1 ¥ 106 cells/ml/well in 24-well

tissue culture plates with or without cytokines.

After 14 days’ incubation without changing

the medium, the cells were stained with a

May–Grünwald–Giemsa stain. (a) No added

cytokine: adult blood; (b) no added cytokine:

cord blood; (c) IL-4 (20 ng/ml) alone: adult

blood; (d) IL-4 (20 ng/ml) alone: cord blood;

(e) IL-4 (20 ng/ml)+M-CSF (100 ng/ml): adult

blood; (f) IL-4 (20 ng/ml)+M-CSF (100 ng/ml):

cord blood; (g) IL-4 (20 ng/ml)+GM-CSF

(20 ng/ml): adult blood; (h) IL-4

(20 ng/ml)+GM-CSF (20 ng/ml): cord blood.
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the fusion index significantly both from adult blood and
cord blood monocytes, respectively (Fig. 2). In addition,
these MGCs differentiated sometimes into large ones with 20
or more nuclei and/or large cytoplasmic spreading. There
was no distinct difference in the characteristics of MGC
among the different cytokines added (IL-4 alone, the com-
bination of IL-4 and M-CSF and the combination of IL-4
and GM-CSF) (Fig. 1).

MGC formation from cord blood monocytes induced
by IL-4 and IL-4 with M-CSF, and IL-4 with GM-CSF,
in comparison with adult peripheral blood monocytes

As described previously, the fusion index was low and there
was no difference in the index between adult blood and
cord blood monocytes in the control without cytokine
(Fig. 2). The fusion index in the experiment with IL-4
alone was lower in cord blood than in adult blood
monocytes, but not significantly different (P = 0·0958). In
contrast, the fusion index in the experiment with the
combination of IL-4 and M-CSF and that with the combi-
nation of IL-4 and GM-CSF was significantly lower in cord
blood than in adult blood monocytes (P = 0·0018 and
P = 0·0141, respectively) (Fig. 2). These findings resulted
from the number of nuclei per MGCs rather than from the
prevalence of MGCs. The number of nuclei per MGC was
significantly higher in adult blood than in cord blood
monocytes in all experiments with IL-4 alone, the combi-
nation of IL-4 and M-CSF and the combination of IL-4
and GM-CSF (P < 0·0001) (Fig. 3). The average number of
nuclei per MGCs from cord blood monocytes was about
half that from adult blood monocytes.

Cytokine production from monocytes after 14-d
culture with IL-4 and IL-4 with M-CSF, IL-4 with
GM-CSF

The production of several cytokines was evaluated in the
supernatant of culture medium for 14 days. Three individual
samples were analysed in each group. In both adult blood
and cord blood, IL-4 alone, the combination of IL-4 and
M-CSF and the combination of IL-4 and GM-CSF did not
stimulate the production of TNF-a, IFN-g and Il-1b com-
pared with the control (no stimulant). Differences between
adult blood and cord blood in each group were not statisti-
cally significant (Table 1). Cytokine levels in the supernatant
of culture medium at 5 days also showed the same results
(data not shown).

Superoxide anion production by monocytes

Isolated monocytes (1 ¥ 106 cells/ml) in PBS were stimulated
with PMA. Control O2

- production stimulated with PMA
(10 ng/ml) ranged from 112 to 220 nmol cytochrome c
reduced/106 cells for 5 min (171 � 35 nmol; mean � s.d. of
five individual adult volunteers), and ranged from 120
to 198 nmol cytochrome c reduced/106 cells for 5 min
(170 � 30 nmol; mean � s.d. of four individual cord blood
samples).
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Fig. 2. Effect of cytokines on multi-nucleated giant cell (MGC)

formation; adult blood versus cord blood monocytes. Adult peripheral

blood (solid bar) and cord blood (open bar) monocytes were cultured

as described in the legend to Fig. 1. The results were calculated from

seven independent experiments as the fusion index. Significantly

different from control or between cord blood and adult blood:

*P < 0·0001, **P < 0·01, †P < 0·05.
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Fig. 3. Nuclei per multi-nucleated giant cells (MGCs) induced by

cytokines; adult blood versus cord blood monocytes. Adult peripheral

blood (solid box) and cord blood (open box) monocytes were

cultured as described in the legend to Fig. 1. The number of nuclei

per MGC (20 cells acquired randomly in each experiment) was

counted. Results from seven independent experiments are shown in

the box-and-whisker plots. Line in the box shows median point, box

shows the point from first to third quartile, whiskers show the point

from smallest to largest number. Significantly different between cord

blood and adult blood: *P < 0·0001.
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Discussion

MGC formation from umbilical cord blood mononuclear
cells has rarely been studied, and was reported first by Zur
Hausen et al. [28]. They found that mononuclear cells from
human umbilical cord were fused more frequently into
MGCs than those from adult peripheral blood. Because of
the morphological appearance of the MGCs they attempted,
but failed, to prove that a viral agent induced macrophage
fusion. The first comparative analysis of experimentally
induced MGCs from mononuclear phagocytes isolated from
human cord blood and adult peripheral blood was reported
by Gerberding et al. [29]. They found that spontaneous
MGC formation occurred in both cord and adult blood
mononuclear cell cultures by 7 days of incubation, although
significantly fewer MGCs formed in cord blood cultures.
PMA treatment of adult blood mononuclear cells resulted in
a significant increase in MGC formation after 7, 14 or 21
days of culture, but PMA did not increase MGC formation
significantly in cord blood cultures until 14 or 21 days of
culture.

In the present study, we used a pure population of mono-
cytes from cord blood and adult peripheral blood with
stimulation of various monoclonal cytokines (IL-4, M-CSF,
GM-CSF, TNF-a, IFN-g) that are known to induce the for-
mation of MGCs in vitro. Among these cytokines IL-4 alone,
a combination of IL-4 and M-CSF and a combination of IL-4
and GM-CSF could increase MGC formation significantly in
both cord blood and adult peripheral blood culture. In the
experiment with the combinations of IL-4 and M-CSF or
IL-4 and GM-CSF, the fusion index was significantly lower in
cord blood than in adult blood monocytes. In addition, we
notably demonstrated that the number of nuclei per MGCs
was significantly lower in cord blood than in adult blood
monocytes in all experiments with IL-4 alone, the combina-
tion of IL-4 and M-CSF and the combination of IL-4 and
GM-CSF. In these experiments we used a pure population of
monocytes from cord blood and adult peripheral blood and
evaluated the production of cytokines from cultured cells.
TNF-a, IFN-g and Il-1b were detected, but differences

between adult blood and cord blood in each group were not
statistically significant, so the difference in MGC formation
seemed to be dependent upon the character of the mono-
cyte itself but not the produced cytokines (autocrined
monokines). Previous studies have also reported that the
ability of neonatal monocytes and macrophages to produce
several monokines (including TNF-a and IL-1b) is similar
or reduced modestly compared with adult cells [3,38]. Addi-
tionally, neonatal monocytes/macrophages produce super-
oxide anion as much as adult cells.

Knowledge of the functions of MGCs is still limited, but
several recent studies have revealed their pivotal functions,
particularly the function played in mycobacterial infection.
In studies utilizing an in-vitro model of human tuberculous
granulomas, Lay et al. have shown that the high-virulence
mycobacterium, Mycobacterium tuberculosis, induces large
MGCs with more than 15 nuclei per cell, whereas with low-
virulence mycobacterium species, M. avium and M. smeg-
matis induce MGCs with a low number of nuclei per cell,
fewer than seven [30]. The high-virulence mycobacterium
species resulted in large granulomas where the MGCs are
incapable of phagocytosis but still retain a strong antigen-
presentation capability, thus appearing to be devoted to the
destruction of bacilli. In a report of idiopathic disseminated
bacille Calmette–Guérin (BCG) infection, Emile et al.
found two types of granuloma [31]. The first type
(tuberculoid type) consisted of well-circumscribed and
well-differentiated granulomas, with epithelioid and MGCs
containing very few acid-fast rods, surrounded by lympho-
cytes and fibrosis and occasionally with central caseous
necrosis. The second (lepromatous) type consisted of ill-
defined and poorly differentiated granulomas, with few if
any giant cells and lymphocytes but widespread macroph-
ages loaded with acid-fast bacilli. There was a strong corre-
lation between the type of granuloma and clinical outcome.
The tuberculoid type was associated with patients’ survival,
while the lepromatous type was associated with their poor
outcome and death [32,33]. Furthermore, the histopatho-
logical appearances of congenital tuberculosis in the litera-
ture are similar to the lepromatous type, and are described

Table 1. Concentration of interferon (IFN)-g, interleukin (IL)-1b, IL-4 and tumour necrosis factor (TNF)-a in the supernatants of adult peripheral

blood and cord blood monocytes after 14 days’ culture with the cytokines listed below.

IFN-g (IU/ml) IL-1b (pg/ml) IL-4 (pg/ml) TNF-a (pg/ml)

Adult blood (n = 3) Control 0·9 � 0·9 393 � 202 <2·0 49 � 5

IL-4+M-CSF 1·0 � 0·8 159 � 180 3007 � 1074 36 � 20

IL-4+GM-CSF 0·5 � 0·2 147 � 175 2633 � 421 35 � 13

IL-4 0·7 � 0·4 217 � 162 4740 � 1935 44 � 23

Cord blood (n = 3) Control 1·1 � 1·2 765 � 412 <2·0 51 � 9

IL-4+M-CSF 0·1 � 0·1 583 � 761 3737 � 1004 28 � 10

IL-4+GM-CSF 0·2 � 0·2 473 � 708 1960 � 1196 27 � 6

IL-4 0·7 � 0·6 479 � 351 4580 � 1403 40 � 17

Three individual samples were analysed in each group. Differences between adult blood and cord blood in each group were not statistically

significant; difference among controls and each group were also not statistically significant. M-CSF, macrophage colony-stimulating factor; GM-CSF,

granulocyte–macrophage colony-stimulating factor.
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as being composed of central caseous necrosis with sur-
rounding scanty epithelioid cells and lymphocytes and few
or no MGCs [34–36].

These findings suggest the importance of the function of
MGCs in preventing critical infection with mycobacterium.
Our results showed that MGCs from cord blood monocytes
had only half the number of nuclei in each cell than MGCs
from adult peripheral blood. The histopathological appear-
ances of congenital tuberculosis can be explained partly as
the result of poor mobilization of phagocytes, decreased pro-
duction of cytokines (especially IFN-g) by T lymphocytes [3]
and impaired formation of MGCs in the neonates.

Additional investigations are needed to confirm the
decreased ability of cord blood monocytes to fuse into
MGCs in other experimental conditions, and to determine
what mechanism or molecule (cell surface fusion molecules)
underlies the decreased ability of cord blood monocytes to
fuse into MGCs. Additional research regarding the physio-
pathology of MGC in neonates might be helpful for the
appropriate treatment of infection with microorganisms
which are capable of surviving intracellularly.
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