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Abstract
MassMatrix is a program that matches tandem mass spectra with theoretical peptide sequences
derived from a protein database. The program uses a mass accuracy sensitive probabilistic score
model to rank peptide matches. The tandem mass spectrometry search software was evaluated by
use of a high mass accuracy data set and its results compared with those from Mascot, SEQUEST,
X!Tandem, and OMSSA. For the high mass accuracy data, MassMatrix provided better sensitivity
than Mascot, SEQUEST, X!Tandem, and OMSSA for a given specificity and the percentage of
false positives was 2%. More importantly all manually validated true positives corresponded to a
unique peptide/spectrum match. The presence of decoy sequence and additional variable post-
translational modifications did not significantly affect the results from the high mass accuracy
search. MassMatrix performs well when compared with Mascot, SEQUEST, X!Tandem, and
OMSSA with regard to search time. MassMatrix was also run on a distributed memory clusters
and achieved search speeds of ~100,000 spectra per hour when searching against a complete
human database with 8 variable modifications. The algorithm is available for public searches at
http://www.massmatrix.net.
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1 INTRODUCTION
Database search in combination with shotgun proteomics is the major tool used to identify
peptides and proteins in complex protein mixtures. Database search programs match
experimental spectra with theoretical spectra created from the database. They are classified
into four categories according to their score algorithms: descriptive, interpretative, stochastic
and statistical/probabilistic [1]. SEQUEST [2] is an example of a descriptive model and one
of the most commonly used database search programs. Other programs of this type include
Sonar [3] and SALSA [4]. PeptideSearch [5] is based on an interpretative model for
database search. SCOPE [6] and OLAV [7] use stochastic models for database search. A
group of programs that are based on statistical and probabilistic models have also been
developed [8–15]. Among them, Mascot [9] is the most commonly used. The probability
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based score is a direct measure of the probability that the match is significant. Probability
based scores from different search algorithms can be directly compared, whereas descriptive
score must be converted to probabilities for comparisons [16].

These programs score candidate matches for the experiment spectra with theoretically
generated counterparts from a protein database. Low mass accuracy, noise and low signal to
noise ratio can compromise search results from database search programs [8,9]. There are
inconsistencies between search results from different search programs due to their different
score algorithms. Kapp et al [17] performed a systematic comparison of various database
search algorithms including Mascot [9], SEQUEST [2], Sonar [3], Spectrum Mill
(www.chem.agilent.com) and X!Tandem [18]. A data set containing 3952 tandem MS
spectra created from human B3-Cit-plasma (Asian-American) on an LCQ Deca XP ion trap
mass spectrometer was searched by all five algorithms. The trypsin-constrained search
results from the five algorithms achieved consensus for 345 spectral matches. Considering
all search results the algorithms matched 662 spectra [17].

It has been reported that improving mass accuracy of precursor and product ions produced
during data-dependent LC-MS/MS can significantly improve the confidence of
identification of peptides and lower the rates of false and ambiguous identifications [19–22].
More instruments capable of performing LC-MS/MS with high mass resolution and high
mass accuracy are becoming available to the research community [23–28].

Meng et al developed a score algorithm based on a Poisson distribution for protein
identification in top-down proteomics that incorporates mass accuracy during scoring [29].
The algorithm is implemented in a web based application named ProSight PTM [30]. Some
algorithms take advantage of mass accuracy in bottom-up proteomics, however, the full
potential of mass accuracy has not been fully exploited. Here we describe a new search
program that uses a mass accuracy sensitive probabilistic score algorithm for peptide
identification in shotgun proteomics based on a binomial distribution and central limit
theorem [31]. This approach is separate and distinct from algorithms that filter matches
based on mass accuracy. In the latter high mass accuracy can be used to filter spectra by
only searching tandem mass spectra whose precursor ion falls within the stated mass
tolerance, and filtering product ions by high mass accuracy can further reduce the likelihood
of a random match [19,22,32]. However, a mass accuracy sensitive probabilistic score
model implicitly takes mass accuracy into account during scoring and high mass accuracy
will not only reduce false positives, but also improves the scores of true positive matches.
By incorporating mass accuracy in the peptide scores, MassMatrix achieved better
sensitivity for high accuracy data sets than Mascot, SEQUEST, X!Tandem, and OMSSA
[14]. Furthermore, in MassMatrix high mass accuracy lowers false positive rate and
improves confidence in peptide assignment and protein identification. The presence of
decoy sequences and additional variable PTMs has limited impact on the database search
results of high mass accuracy, which allows for high-throughput unsupervised searches.
Comparisons are made between the search results from MassMatrix, Mascot, SEQUEST, X!
Tandem, and OMSSA for a data set obtained with an LTQ-Orbitrap mass spectrometer.
Furthermore the algorithm was evaluated against the five algorithms mentioned above by
the publicly available data set describe by Kapp et al [17].

2 METHODS
2.1 Search Engine

MassMatrix is the name of the software package that implements the new score algorithm
described previously [31]. The algorithm was developed with ANSI C++. The software is
portable and has been compiled successfully on personal computers and high-performance
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clusters running Microsoft Windows or Linux operating systems. A parallel version, MPI
MassMatrix, based on the message passing interface (MPI) has been developed for use on
distributed memory clusters. A web interface to a public form of the algorithm is also
available at http://www.massmatrix.net. MassMatrix supports mzDATA format, mzXML
format and Mascot generic format (.MGF) as input for tandem MS data. Databases must be
formatted as FASTA or converted to the MassMatrix database format (.BAS) for protein
database. This manuscript describes the implementation of the algorithm and its
performance on real data sets.

MassMatrix contains two independent score models, including a mass accuracy sensitive
statistical model and a descriptive model. These models are used to calculate three distinct
scores for a peptide match. The two statistical scores, pp and pp2, represent the negative
logarithm of the probability that a peptide match is a random occurrence. For example, a pp
or pp2 score of 6 indicates that the peptide match is random with a one-out-of-a-million
chance. The pp score evaluates a peptide match based on the number of matched product
ions in the experimental spectrum and the pp2 score is based on the total abundance of
matched product ions in the experimental spectrum. Because each score is distinct, the
combination of scores is useful for validating each peptide match. Among these three scores,
pp value returned from the statistical model is the primary standard used to assess the quality
of peptide matches [31].

MassMatrix searches PTMs and chemical modifications of the peptide sequence. There are
two types of modifications included: 1) fixed modifications, and 2) variable modifications.
Fixed modifications are those that modify all occurrences of certain amino acid residues in
the protein sequences. Fixed modifications do not add complexity to the database because
the search space does not increase. Variable modifications are those that may or may not
modify the occurrence of certain amino acid residues in the protein sequences. Variable
modifications add complexity as there are a great number of permutations of variably
modified peptides for each sequence. MassMatrix searches all possible permutations of
modified peptides for each peptide sequence. For example, a peptide sequence with three
lysine residues and two serine residues will create (2+1)3×(1+1)2 = 108 permutations of
unmodified and modified peptides when two variable modifications for lysine and one
variable modification for serine are allowed. This paradigm results in high computational
expense due to the increased number of theoretically possible modified peptides. The need
for such a comprehensive search was born from our extensive analysis of histone proteins
which possess this level of complexity in their patterns of PTMs. MassMatrix was
specifically designed to be able to solve such large problems.

A flow diagram for the database search is shown in Figure 1. MassMatrix initially digests
the protein sequences according to the enzyme or cleavage sites specified by the user. The
resulting peptide sequences (and any permutations due to PTMs) are fragmented and then
matched against the experimental data. To improve efficiency, it skips redundant peptide
sequences. Three scores (score, pp, and pp2 values) are calculated for each potential match
by use of the algorithm described previously [31]. After the scores for all potential matches
are calculated, matches below the critical thresholds are discarded. Peptide hits are then
matched with its corresponding protein sequences. MassMatrix then outputs the results as
html files for portability.

Searches of big data sets against large databases with many variable modifications are
computationally expensive. The number of peptides searched can exceed 1010 and the job
could require days to complete. MPI MassMatrix was designed for use on distributed
memory clusters. The search algorithm lends itself to being an embarrassingly parallel
application. Since the search processes for each peptide sequence are fully independent, they
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can be easily split into sub-jobs that are then distributed to many processors on the cluster.
The master node initializes the peptide list to be searched and distributes peptide search as
sub-jobs to the slave processors. The master maintains a balanced load among all slaves
throughout the job.

2.2 Sample Preparation and Mass Spectrometry
Human histones were isolated from Kasumi-1 cells as described previously [33]. The
mixture of core histones was digested by the protease trypsin in 100 mM ammonium
bicarbonate buffer. The digested peptides were identified by nano liquid chromatography
tandem mass spectrometry (nano-LC-MS/MS). The high mass accuracy data set was
obtained on an LTQ-Orbitrap mass spectrometer (ThermoElectron Finnigan, San Jose, CA,
USA) by use of data-dependent LC-MS/MS. Ions were fragmented by use of collision
induced dissociation in the linear ion trap and mass analyzed by the Orbitrap mass analyzer.
The high accuracy data set contains precursor and product ions obtained with the Orbitrap.

2.3 Database Search and Search Parameters
The .RAW data files obtained from the mass spectrometer were converted to .DTA files by
use of extract_msn.exe, a windows console application provided by Thermo Electron
(ThermoElectron Finnigan, San Jose, CA, USA). Tandem MS spectra with more than five
product ions were extracted to .DTA files and then merged into .MGF files by use of a Perl
script. Spectra were not grouped based on precursor mass. The data set in .MGF format is
available at http://www.massmatrix.net/download/. The data set was then searched by use of
MassMatrix against the NCBInr human databases with the following options: i)
Modifications: variable acetylation of lysine, variable acetylation of N-terminus; ii) Enzyme:
trypsin; iii) Missed Cleavages: 3; iv) Peptide Length: 4 to 30 amino acid residues; v)
Precursor Ion Charge: 1+, 2+, 3+; and VI) A mass tolerance of 0.02 Da and 0.01 Da for the
precursor and product ions respectively. The same data set was also evaluated by Mascot,
SEQUEST (SEQUST v.28 on BioWorks 3.3), X!Tandem, and OMSSA. The search
parameters in Mascot, SEQUEST, X!Tandem, and OMSSA were identical to those in
MassMatrix where appropriate. Critical values for scores in the three programs were set as
follows: pp or pp2 value > 6 in MassMatrix; score > 30 in Mascot; XCorr > 1.5 for +1
peptides, 2.0 for 2+ peptides and 2.5 for 3+ peptides in SEQUEST; expectation value < 0.1
in X!Tandem; and e-value < 0.1 in OMSSA. If multiple peptide matches were found for a
given spectrum only the match with the highest score was considered. In order to improve
the performance of SEQUEST, the protein database was indexed prior to database searches.

The true positives and false positives for the three algorithms were determined by searches
against a human database containing reversed decoy sequence as described by Elias [34].
The total number of false positive peptide matches was calculated by multiplying the
number of peptide matches to reversed sequences by two. The number of true positives was
then calculated by subtracting total number of false positives from the total number of
peptide matches in the forward and reversed databases [34].

2.4 Comparisons with Other Algorithms
In order to test the consensus between MassMatrix and five publicly available search
algorithms (Mascot [9], SEQUEST [2], Sonar [3], Spectrum Mill, and X!Tandem [18]), a
data set provided by Kapp et al [17] was searched by MassMatrix against the Human
International Protein Index database (IPI, version 3.19 July 2003, 60397 entries, European
Bioinformatics Institute) [17,35] with the following options: i) Precursor ion tolerance: 3.0
Da; ii) Product ion tolerance: 0.8 Da iii) No fixed or variable modifications; iv) Enzyme:
trypsin; v) Missed Cleavages: 2; vi) Peptide Length: 4 to 40 amino acid residues; vii)
Precursor Ion Charge: 1+; 2+, 3+; and viii) Maximum Product Ion Charge: 2+. The result
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was compared with those reported by Kapp et al [17]. The search parameters in MassMatrix
were set according to the counterpart parameters that Kapp et al. used for the other five
search programs. Mascot, SEQUEST, X!Tandem and Sonar Searches were performed
against the Human International Protein Index database with the following parameters:
trypsin-constrained (two missed cleavages); 3.0 Da precursor ion tolerance and 0.5 Da
fragment ion tolerance, and ESIIT selected as instrument setting. Searches in Spectrum Mill
used the same parameters except that the precursor mass tolerance is 2.5 Da and the
fragmentation ion tolerance is 0.7 Da. The search parameters in the five algorithms reported
by Kapp et al were set to maximize and optimize the performances of the search algorithms
[17].

3 RESULTS AND DISCUSSION
3.1 Consensus with Other Search Algorithms

The reliability and consensus of MassMatrix results compared to those of other algorithms
was determined by searching the publicly available data set evaluated by Kapp et al [17].
This data set contains 3952 tandem MS spectra obtained from an LCQ Deca XP ion trap
mass spectrometer (Thermo-Finnigan, San Jose, CA, USA) [17]. The search parameters
were set according to those described previously. Spectra that were not determined to be
singly charged were extracted as both doubly and triply charged resulting in 5806 spectra
searched [17]. The MassMatrix search was performed at the critical values of pp value = 6
and pp2 value = 8. 826 spectra were identified by MassMatrix with significant peptide
matches. The Venn Diagram for peptide matches of the LCQ data set from MassMatrix,
Mascot and SEQUEST are shown in Figure 2.

The complete lists of all “first pass” peptide matches from the five searches in Mascot,
SEQUEST, Sonar, Spectrum Mill, and X!Tandem by Kapp et al [17] were downloaded from
http://www.ludwig.edu.au/archive/. In Kapp's report, 662 out of 3952 spectra were identified
with “first pass” matches. Out of these 662 “first pass” matches, the five algorithms
achieved consensus on 349 spectral matches. When factoring in the results from
MassMatrix, the consensus peptide lists from all six algorithms drops to 345. The 4 spectra
that were different had low signal to noise ratio, and did not appear to be good matches
based on the protocol of manual validation described by Tabb et al [36].

The consensus results between MassMatrix and each search algorithm were individually
compared. MassMatrix achieved high levels of consensus with each algorithm as follows: a)
498 spectra out of all 660 Mascot “first pass” matches; b) 519 out of 662 SEQUEST
matches; c) 453 out of 646 Sonar matches; d) 428 out of 544 Spectrum Mill matches; and e)
434 out of 557 X!Tandem matches. For the 660 “first pass” peptide matches from Mascot,
492 were verified by Kapp and et al. as correct identifications [17]. Most of these correct ID
(488) were captured by MassMatrix. The other 4 were manually checked and they all have
very low signal to noise ratio and low scores. MassMatrix also returned many peptide
matches there were not caught by any of the five other algorithms. This might be due to the
fact that the later version of IPI human database was used in the MassMatrix search and the
majority of the additional peptides found by MassMatrix were of low scores and less than 6
amino acid residues in length, which were too small to be returned by other algorithms.

3.2 Comparison of High Accuracy Search Results
The mass accuracy sensitive score model in MassMatrix was evaluated against a high mass
accuracy data set and the results were compared with those obtained by the commercial
search engines Mascot, SEQUEST, X!Tandem, and OMSSA [2,9,14,18]. Experimental MS/
MS data for a tryptic digest of a protein mixture containing histones were obtained on a
ThermoElectron Corp LTQ-Orbitrap mass spectrometer. Histones were chosen as they
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represent a unique challenge to search engines due to the large number of PTMs [33]. A
primary goal in developing MassMatrix was to be able to obtain meaningful results from
data that contain a large number of PTMs. Precursor and product ions were mass analyzed in
the Orbitrap to achieve high mass accuracy (< 5ppm).

Figure 3 displays the Venn Diagrams for peptide matches from MassMatrix, Mascot,
SEQUEST, X!Tandem, and OMSSA. 197 of 1837 spectra were scored as potential peptide
matches in MassMatrix. Mascot returned 104 peptide matches where 98 were found by
MassMatrix; SEQUEST returned 86 peptide matches of which 77 were found by
MassMatrix; X!Tandem returned 125 peptide matches where 110 were found by
MassMatrix; OMSSA returned 144 peptide matches of which 106 were found by
MassMatrix. The complete lists of peptide matches from the five algorithms for the high
mass accuracy data set are listed in Supplementary Tables 1–5.

Further comparison between MassMatrix, Mascot, SEQUEST, X!Tandem, and OMSSA was
made by use of receiver operating characteristic (ROC) analysis [14,37,38]. The number of
true positives and false positives in the ROC curves was determined by searches with the
presence of the reversed human database in addition to the human database. The ROC
analysis of the data set was performed with and without allowing the modifications of
acetylation of K and acetylation of N-terminus. Because the majority of correctly identified
peptide matches are unmodified, ROC curves of the data set for the five programs without
allowed modifications were very similar to those with allowed modifications. The result
from ROC analysis for the five programs with allowing modifications of acetylation of K
and acetylation of N-terminus is discussed in details below (Figure 4).

Among the peptides with significant scores returned by MassMatrix, the relative number of
false positives was as low as 2%. Furthermore all true positives corresponded to a unique
peptide/spectrum match in MassMatrix. MassMatrix achieved better sensitivity than Mascot,
SEQUEST, X!Tandem, and OMSSA for a given specificity when analyzing high mass
accuracy data obtained on the Orbitrap. This result is due to the mass accuracy sensitive
score model that achieves better separation between the distributions of pp values for the
true positives and false positives [31]. A more detailed discussion of this effect is present in
the next section.

3.3 Effect of High Mass Accuracy in MassMatrix
The statistical model in MassMatrix does not provide any benefit or penalty for mass error.
Rather the model relies on the occurrence of the mass within the give mass tolerance
window. Therefore we were able to simulate the effect of mass spectrometer accuracy on the
pp values by altering the mass tolerance used to search the high mass accuracy data set. This
approach eliminates any possible factors that may arise due to the use of data sets obtained
on different instruments. The distributions of pp values for true and false positives at
simulated mass accuracy of 1.0 Da, 0.1 Da and 0.01 Da are shown in Figure 5. Because the
pp values implicitly include mass accuracy in the statistical model, their distribution for true
matches improves with the mass accuracy and search tolerance. For the high mass accuracy
data set, we observed an increase of 10 in the pp values of true positives for every 10 fold
increase in mass accuracy. Thus MassMatrix improves the scores for true matches as the
mass accuracy increases. Because the pp value is the negative logarithm of the probability
that a match is random, the overall statistical confidence in peptide assignment was
significantly improved. Additionally the number of reported false positives substantially
decreased as mass accuracy increased. In contrast to true matches, the pp scores for false
positives decreased at higher accuracy and thus fewer false positives exist above the critical
threshold and were reported by MassMatrix. Thus raising mass accuracy has an immediate
effect of reducing false positives and improving peptide scores for true positives.
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3.4 Distraction from Additional Modifications
Including additional modifications also increases the number of peptides searched and result
in a greater likelihood for peptide false positives. The high mass accuracy data set was also
searched against the human database with additional modifications of phosphorylation of
serine, threonine and tyrosine. The resulting number of peptides searched increased from 6.1
million to 665.7 million. The additional modification imposed no negative effect on the
search results of high accuracy data in MassMatrix.

3.5 Search Speed
The search time in MassMatrix is proportional to the number of theoretical peptides
searched. Proteins containing redundant sequences in the databases do not increase the
search time because redundant peptide sequences are skipped. The search time also
increases with the number of experimental tandem MS spectra. However, this increase is not
linear (nearly logarithmic) as all tandem MS spectra are stored in a sorted table and recalled
by use of a binary search algorithm. For the search of Orbitrap data set, MassMatrix and
SEQUEST took 61 and 255 sec respectively on a single AMD 3200+ (2.2GHz) PC. Mascot
spent 240 sec on a dual-Intel Xeon server (2.8 GHz × 2). X!Tandem and OMSSA took 73
and 80 sec respectively on an Intel quad core PC (2.4 GHz). Despite the difference in
architecture the search results show that MassMatrix performs as well as or better than
Mascot, SEQUEST, X!Tandem, and OMSSA with regard to search time. On a modern PC,
MassMatrix was able to search >100,000 tandem MS spectra per hour against the human
protein database with 2 variable modifications or >100,000 peptides per second against a
data set containing 1837 tandem MS spectra.

The scalability of MPI MassMatrix was determined by searching the high mass accuracy
data set against a human database with 8 variable modifications. In this example the number
of peptides searched exceeded 4 × 108. The search was performed on a Linux Itnium2
cluster (900 MHz processors). As shown in Figure 6, the search speed of MPI MassMatrix
was nearly proportional to the number of processors used. The speedup showed obvious
nonlinearity when more than 40 processors were used. This nonlinear scaling was due to the
high communication overhead between the master and slave nodes. The non-ideal scaling
was exacerbated by searching a narrow mass tolerance that in turn reduced the number of
spectral comparisons on each slave and increased the rate of request between slave and
master nodes. Load balancing algorithms are currently being examined to improve the
scaling on clusters that exceed 20 processors. The parallel version of MassMatrix achieved a
maximum speed of 94,474 tandem MS spectra per hour against the human protein database
with 8 PTMs or 5,959,229 peptides per second against a data set containing 1837 tandem
MS spectra while running on 80 processors with a peak performance of 72 Gflops.

4 CONCLUDING REMARKS
A new tandem MS database search program, MassMatrix, employs a mass accuracy
sensitive score algorithm. The mass accuracy sensitive score algorithm gives rise to higher
sensitivity and specificity for searches at high mass accuracy. The high mass accuracy also
improves the pp values for true matches, reduces the pp value for random matches and
results in improved confidence in peptide identification. The program was first tested and
compared with other five search algorithms by use of a data set that was validated and
published by Kapp and et al. It was shown that MassMatrix has consensus with other
publicly available programs for searches at low mass accuracy and it returned most of
peptide matches from other programs that were validated as correct identification by Kapp et
al [17]. The peptide matches that MassMatrix missed were then manually checked and
found to be of low scores and quality. The program was also tested and compared with
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Mascot, SEQUEST, X!Tandem, and OMSSA by use of a high mass accuracy data set. The
ROC analysis shows that MassMatrix has a higher sensitivity than Mascot, SEQUEST, X!
Tandem, and OMSSA for the high mass accuracy data. The relative number of false
positives for our high accuracy data set was 2% and each spectrum corresponds to a
validated unique peptide match. The presence of decoy sequences and additional
modifications did not significantly alter the search results. The high confidence achieved
when searching high mass accuracy data reduces the requirement for manual validation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The overall scheme for the MassMatrix search software.
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Figure 2.
A Venn Diagram showing consensus of peptide matches from MassMatrix, Mascot, and
SEQEUST for the LCQ data set.
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Figure 3.
A Venn Diagram showing consensus of peptide matches from MassMatrix, Mascot,
SEQEUST, X!Tandem, and OMSSA for the Orbitrap data set.
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Figure 4.
ROC curves of MassMatrix, Mascot, SEQEUST, X!Tandem, and OMSSA for the Orbitrap
data set.
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Figure 5.
Distributions of pp values for (a) true positives and (b) false positives at different mass
accuracies: 1.0 Da, 0.1 Da and 0.01 Da.
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Figure 6.
Parallel job performance of the MPI version of MassMatrix when searching a data set
containing 1837 tandem MS spectra against a complete human database with 8 variable
modifications. The jobs were performed on a 900 MHz Itanium cluster.
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