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Abstract: The most fatal and prevalent form of malaria is caused by the bloodborne pathogen Plasmodium falciparum 
(henceforth P.f). Annually, approximately three million people died of malaria. Despite P.f devastivating effect globally, the 
vast majority of its proteins have not been characterized experimentally. In this work, we provide computational insight that 
explore the modalities of the regulation for some important group of genes of P.f, namely components of the glycolytic 
pathway, and those involved in apicoplast metabolism. Glycolysis is a crucial pathway in the maintenance of the parasite 
while the recently discovered apicoplast contains a range of metabolic pathways and housekeeping processes that differ 
radically to those of the host, which makes it ideal for drug therapy.

We have been able to validate some of our findings from available literature and therefore provide a basis to give theo-
retical insight for some genes regulations, which has not been characterized experimentally.

1. Introduction
The most fatal and prevalent form of malaria is caused by the bloodborne pathogen Plasmodium 
falciparum (henceforth P.f). Annually, approximately three million people died of malaria. Also, hundreds 
of millions of people in a year become clinically ill. The negative influence of these results is huge and 
its socioeconomic impact is beyond measure. This influence is particularly prominent in the Africa 
continent, where an estimated US$12 billion is been lost yearly (2; 9). Reports has shown that the 
parasites is growing resistance to existing drugs. Therefore, there is a huge and urgent need to discover 
and validate new drug or vaccine targets to enable the development of new treatments for malaria (4). 
The ability to discover these drug or vaccine targets can only be enhanced from our understanding of 
the detailed conceptual view of the gene regulatory circuitry of P.f.

Previously, two computational studies have attempted to characterize the genetic regulation of 
glycolytic genes and those specific for the apicoplast, namely, Khanin and Wit, 2004 and Barrera et al. 
2004. Their models could only show whether two genes interacted but were unable to explain the 
modalities of the genes regulation. In this work, we provide computational insight into the regulation 
of Plasmodium falciparum genes in glycolysis and apicoplast pathways using the time-series gene 
expression measurements of the intraerythrocytic development cycle (dataset of Bozdech et al. (5)). 
Our work can be said to be the first study that looks closely at important group of genes in P.f and 
attempt to elucidate the genes regulatory connections. The dataset of (5) has been shown (25) to compare 
very well with the other microarray dataset of (16), a recent comparison of this dataset to the results on 
other strains of P.f can be found in (18). And since the two existing computational genetic networks for 
P.f were induced using Bozdech et al. results, we made this data our basic dataset in this study. For the 
reconstruction of genetic regulatory interactions from the data, we applied Bayesian inference of the 
probabilistic model, previously developed and tested on the yeast S. cerevisiae (3). This model is based 
on the biologically motivated Boolean logic semantics, but a probabilistic one i.e. giving the possibility 
to incorporate uncertainty about the noisy data and the noisy process of genetic regulation. The framework 
allows for a particular gene to find a set of its regulators given a particular Boolean logic function 
governing this regulation. Boolean logic is a simple and particularly suitable way to model the working 
principles of the cis-regulatory elements. The ‘OR’ logic represents that a gene can be activated by one 
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of a few different possible transcription factors. In 
case of ‘OR-NOR’ logic, a gene is regulated by a 
set of possible activators and a set of possible 
inhibitors. The gene is transcribed if and only if 
one of its possible activators is active and it is not 
repressed by one of its possible repressors. We 
employ this kind of probabilistic graphical models 
with Boolean logic semantics for modeling the 
genetic regulatory interactions of P.f.

The write-up is organized as follows. In Section 2, 
we describe the systems and methods applied in 
our modeling and analysis of the pathway and 
metabolism under consideration. Section 3 contains 
our results and discussion of the implication of 
these results. We end this paper in Section 4 with 
a conclusion and further-work.

2. Systems and Methods

2.1. The model of gene regulatory
interactions
Here, we describe the probabilistic graphical model 
underlying our approach of inferring gene regula-
tory interactions of P.f. We assume that genes have 
only two states—active and not active, and model 
them with stochastic variables having binary 
values. The general structure of the gene interaction 
in our models is represented by a directed graph 
(see Fig. 1). We assume that the variable Xi (regu-
lator) can execute its influence on the variable Y 
(regulatee) independently of other possible regula-
tors X1, …, Xn of Y. The biological mechanism 
underlying this modeling assumption is the binding 
of protein transcribed by the regulator to the DNA 
of the regulatee. This process is not deterministic, 
rather each gene Xi can regulate the gene Y with 
probability θi and can fail to do this with probability 
1 – θi. In the graphical model intermediate variables 

I1, …, In are introduced, through which the vari-
ables X1, …, Xn execute their influence on a given 
common effect variable Y. Each intermediate vari-
able Ii has only one parent, the variable Xi. It’s 
probability distribution is defined as follows: given 
that Xi = 1, Ii takes the value 1 with probability θi 
and the value 0 with probability 1 − θi, respectively. 
Given that Xi = 0, Ii takes the value 0 with proba-
bility 1. The combined regulatory influence on the 
variable Y is calculated as the boolean function F 
on the input variables I1, …, In. If X1, …, Xn are 
activators, then the state of the variable Y is F(I1, …, 
In); if X1, …, Xn are inhibitors, the state of Y is 1 − 
F(I1, …, In). The boolean “interaction function” F 
defines in which way the intermediate effects Ii, 
and indirectly the variables Xi, interact. Here, we 
consider the interaction function ‘OR’. The seman-
tics of the ‘OR’-function implies that the variables 
Xi are each assumed to be sufficient to influence Y. 
In the present work we apply two models: the 
simple ‘OR’-model with activatory regulation and 
the complex ‘OR-NOR’-model with activatory and 
inhibitory regulation. In the complex model, the 
regulatory influences of multiple activators and 
multiple inhibitors are combined with ‘AND’-
function as depicted in Figure 2.

Introduction of the hidden state variables Ii 
allows to insert “noise” into the Boolean logic 
based models. It allows to model that the biological 
mechanism of the regulation of one gene by 
another could be inhibited for unknown reasons. 
Thus, the input variables can be considered as 
observables from which we make our noisy 
measurements, while the hidden variables have the 
“true” latent biological values.

2.2. Bayesian model selection
We employ the Bayesian methodology for 
learning the structure and parameters of the model 
from data. The Bayesian approach addresses the 
problem as calculating the posterior probability 

Figure 1. Model of gene regulatory interactions, F—Boolean function 
‘OR’.
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Figure 2. Complex model of gene regulatory interactions with activa-
tors and inhibitors (“OR-NOR” regulation).
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of a model given data for a collection of candidate 
models and selecting the most probable model. 
Suppose that the data D has been generated by a 
model m, one of a set M of candidate models, m 
∈ M. If p(m) is the prior probability of model m, 
then the posterior model probability by Bayes rule 
is p(m⏐D) ∝ p(D⏐m)p(m). The marginal likelihood 
p(D⏐m) = ∫ p(D⏐m, θm)p(θm⏐m)dθm, where 
p(θm⏐m) is the prior distribution of model param-
eters θm for model m. The calculation of the 
marginal likelihood is the general computational 
bottleneck of the Bayesian methodology, since 
the integral is analytically tractable only in certain 
restricted examples, namely, when a prior distri-
bution for the parameters of the model exists, so 
that the integral will have a closed form solution 
(conjugate prior). The models considered here 
are intractable (3).

Markov Chain Monte Carlo (MCMC) stochastic 
simulation techniques facilitate the Bayesian infer-
ence. MCMC generates samples from the joint 
posterior distribution p(m,θm⏐D) allowing to esti-
mate the posterior parameter probability p(m,θm⏐D). 
One of the MCMC approaches is Gibbs sampling. 
Gibbs sampling reduces the problem of dealing 
simultaneously with a large number of unknown 
parameters in a joint distribution into a simpler 
problem of dealing with one variable at a time, 
iteratively sampling each from its full conditional 
distribution given the current values of all other 
variables in the model.

The software OpenBUGS (BUGS stands for 
Bayesian Updating with Gibbs Sampling) is the 
general purpose software for Gibbs sampling on 
graphical models (23). OpenBUGS provides a 
declarative language for specifying a graphical 
model, i.e. the specification of the model likeli-
hood and of the prior distributions for all param-
eters is required. The output of Markov chain 
simulation is used to summarize the posterior 
distributions of the variables of interest. The 
present approach utilizes the Linux version of the 
software OpenBUGS.

Our problem of model selection is formulated 
as follows: given the data on the gene Y and its 
potential regulators X1, …, Xp, for a given boolean 
logic function F, identify the subset X1, …, Xn of 
actual regulators of Y. We substitute the model 
indicator m ∈M with the variable indicator γ = (γ1, 
…, γp), a binary vector, representing which of the 
Xj, j = 1, …, p should be included in the desirable 
“true” model. This allows the consideration of one 

joint space of the model parameters and the 
variable indicator, keeping the dimensionality 
constant across all possible models. By introducing 
the variable indicator, the “OR” model may be 
written as:
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where Y and Xj is the observed data and θ and γ are 
the parameters. This represents the specification 
of the model likelihood.

The Bayesian approach requires specification 
of prior distributions for the model parameters. We 
defined the priors for the parameters θj with Beta 
distribution, since Beta distribution constrains the 
parameters to the [0,1]-interval. We use a hierar-
chical formulation of the distribution, i.e. with 
hyperparameters aj and bj:

 θ j j jBeta a b~ ( , )  

The hyperparameters aj and bj are defined in two 
different ways, dependently on the parameters γj. 
If γj = 1, they are defined equal to 1, therefore 
making the prior non-informative (Beta(1,1)). In 
the case γj = 0, the parameters are called (pseudo-
priors). The pseudopriors may be chosen in a way 
to help increasing the efficiency of the sampling 
procedure. Efficient performance can be achieved 
when the moves of the MCMC chain between 
different models γ could be “local”. Therefore, the 
so called proposal densities for the pseudopriors 
can be used, which are being estimated by a pilot 
run of the MCMC for the saturated model, i.e. the 
model where all terms γj = 1 for all j. Thus, we 
calculate the hyperparameters aj and bj by the 
formulas (method of moments):
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where meanj and varj, the mean and the variance 
of the parameters θj, are estimated from the pilot 
run of the saturated model.
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Next, one must define the prior distribution for 
the variable indicator γ. Since the terms γj are 
independent, the prior can be decomposed into 
independent Bernoulli distributions for each term: 
γj ∼ Bernoulli(�j), where �j is the prior probability 
to include term j into the model. The prior �j = 0.5 
is non-informative in the sense of favoring all 
models equally, but is not non-informative with 
respect to the model size. To favor more parsimo-
nious models (i.e. with small number of actual 
regulators), we used �j = 0.2.

The runs of the MCMC were summarized and 
monitored for convergence using R-package 
CODA (http://cran.r-project.org).

We obtained the Markov chain samples on the 
parameters γj and θj. For the ‘OR’-model, we used 
20000 iterations of the Markov chain for the burn-
in time and 50000 iterations for the parameter 
estimations. For the complex ‘OR-NOR’-model, 
we used 30000 iterations for the burn-in, and 
100000 iterations for estimations. If the frequency 
of 1s in the chain for γj exceeded 0.7, we assumed 
that γj = 1and the respective regulator should be 
included in the “true” model. Otherwise, the regu-
lator j should be excluded.

We apply learning the ‘OR’ and ‘OR-NOR’ 
models from data for each gene, considering all other 
genes in the dataset as candidate regulators. Hence, 
in our approach, bidirectional regulations might be 
inferred i.e. the gene X might be deduced to regulate 
Y, and the gene Y might be deduced to regulate X. 
Thus, cycles can be present in the global picture of 
genes regulation. This is opposite to other approaches 
based on graphical models such as e.g. Bayesian net-
works, where the learning of all interactions at once, 
using global criteria, is executed. The “local” model 
learning, presented in this paper, is of greater advan-
tage, since it is capable of capturing the biological 
reality (feedback regulation etc.) more adequately.

2.3. Model checking
After the execution of the MCMC sampling and 
the estimation of the variable indicator γ, the check 
of goodness-of-fit of the model to data is required, 
to check whether the model assumptions were 
appropriate. Bayesian model checking uses the 
posterior predictive distributions (10). The goal is 
to perform posterior predictions under the model 
and to assess the discrepancy between predicted 
and observed data. If the model is reasonably 
accurate, the predicted data should be similar to 
the observed data.

Here, we wish to check the ability of the 
concrete regulatory model, defined by the inferred 
vector γ, to predict the state of the gene Y from the 
states of its regulators.

In the present framework, the posterior predic-
tions can be computed by simulation: in every 
MCMC loop, a replicate yrep is generated condition-
ally on the currently generated parameters θ. (Note 
that here fixed binary values for γ, estimated previ-
ously by the model learning, are used.) Based on 
the MCMC simulations, the estimate E(yrep) of the 
replicate can be made. The replicate is generated 
for each i = 1, …, N, where N is the number of 
samples in the Y dataset. Then, the individual 
observations of Y in the dataset yi, i = 1, …, N must 
be compared to the replicate data. For the compar-
ison, we use the residual function ri = |yi − E(yi

rep)|. 
Observations, for which the residual is not close 
to 0, indicate some lack-of-fit of the model and 
should be regarded as outlier. We regarded the 
residual as not close to 0, if its absolute value 
exceeded one estimated var(yi

rep). We calculate the 
model prediction accuracy as the percentage of 
non-outliers.

2.4. Types of regulatory situations
considered
Our data is the time-series data, i.e. we have 
measurements of genes at subsequent time points 
t = 1, …, T,where T = 53. The true biological time 
resolution of the gene transcription and activation 
is yet unknown. It can be assumed, that a gene is 
active at the same time point as its activators, or, 
that it becomes active at the next time point. We 
refer to the first situation as ‘simultaneous’ regula-
tion, and to the second as ‘time delay’ regulation. 
Both situations are considered in the present 
paper.

We treat gene measurements at each time point 
as statistical data samples. In the case of ‘simulta-
neous’ regulation, the state of a gene in the sample t 
depends on the states of its regulators in the same 
sample. Here, we have 53 data samples. In the 
case of ‘time delay’ regulation, the state of a gene 
in the sample t depends on the states of its regulators 
in the sample t − 1, so we have 52 data samples.

2.5. Data discretization
For the discretization of the continuous gene 
expression values into two states (0 - not active, 1 
- active) we used a vector quantization technique 
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based on the clustering algorithm k-means. For 
each gene we clustered its expression values into 
two groups by the k-means algorithm with two 
initial values: 0 and the maximum expression value 
of the gene.

3. Results and Discussion

3.1. Glycolysis pathway
From the public database PlasmoDB (http://plas-
modb.org), we harvested twenty genes that are 
known to be involved in the glycolysis pathway. 
The hypothetical functions for each of these genes 
are presented in the Table 1.

We found the time-resolved gene expression 
profiles of the eighteen of these genes in the dataset 
of (5). We averaged the values from multiple oligo-
nucleotides representing same gene. Then we 
discretize the continuous gene expression values 
into binary values 1 and 0 representing that the 
gene is active and not active.

We applied our approach for learning the ‘OR’-
and ‘OR-NOR’-models from data. Two models 
have different semantics and can bring slightly 
different results. Learning the “OR”-model identi-
fies only the activators of a gene, i.e. the model 
“explains” the non-activity of the gene with the 
failure of its activators. In the “OR-NOR”-model, 

the non-activity of the regulatee is also “explai-
ned” by the activity of its inhibitors. We applied 
model learning for each gene in the dataset, consid-
ering all other genes as candidate regulators. We 
have considered both ‘simultaneous’ and ‘time 
delay’ situations. The results of our ‘simultaneous’ 
and ‘time delay’ learning of the ‘OR-NOR’-model 
for 18 genes of the glycolysis pathways are summa-
rized in the Tables 2 and 3, and represented 
graphically in the Figures 3 and 4. The graphs were 
generated with the program GraphViz (www.
graphviz.org). The results of the ‘simultaneous’ 
and ‘time delay’ learning of the ‘OR’-model are 
displayed in supplementary Tables 1 and 2 and 
supplementary Figures 1 and 2.

The ‘OR-NOR’-learning mostly supported the 
results of the ‘OR’-model but found some more 
activators and inhibitors with increased accuracy. 
The regulatory network in Figure 3 reveals the 
strategic position and hence the key regulatory role 
of the genes PF11_0157, PFD0660w, PF14_0341 
and PF13_0141. The inhibitory connections 
between the genes PFD0660w and PFL0780w, 
from the gene PFD0660w to the gene PFI0755c, 
and between the genes PF14_0425 and PF13_0144 
might indicate three groups of genes working in 
timely separated manner. One group include the 
genes PF11_0157, PF13_0144, PF11_0294, 
PF13_ 0269 and PFD0660w. The second group 

Table 1. Hypothetical functions and EC numbers for genes of the glycolysis pathway. 

Gene Product Description EC Numbers
PF10_0122 phosphoglucomutase, putative 5.4.2.2
PF10_0155 enolase 4.2.1.11
PF11_0157 glycerol-3-phosphate dehydrogenase, putative 1.1.1.8 
PF11_0208 phosphoglycerate mutase, putative 5.4.2.1 
PF11_0294 ATP-dependent phosphofructokinase, putative 2.7.1.11; 2.7.1.90 
PF11_0338 Aquaglyceroporin 
PFL0780w glycerol-3-phosphate dehydrogenase, putative 1.1.1.8 
PF13_0141 L-lactate dehydrogenase 1.1.1.27
PF13_0144 oxidoreductase, putative 1.1.1.-; 1.1.1.27
PF13_0269 glycerol kinase, putative 2.7.1.30
PF14_0341 glucose-6-phosphate isomerase 5.3.1.9
PF14_0378 triose-phosphate isomerase 5.3.1.1
PF14_0425 fructose-bisphosphate aldolase 4.1.2.13
PF14_0598 glyceraldehyde-3-phosphate dehydrogenase 1.2.1.12
PFC0831w triosephophate isomerase, putative 5.3.1.1
PFD0660w phosphoglycerate mutase, putative 5.4.2.1
PFF1155w hexokinase 2.7.1.1
PFF1300w pyruvate kinase, putative 2.7.1.40
PFI0755c 6-phosphofructokinase, putative 2.7.1.11
PFI1105w Phosphoglycerate kinase 2.7.2.3
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contains the genes PFI0755c, PF14_0341, PF10_
0155, PF13_0141, PF10_0122, PF14_0378, 
PFI1105w, PF14_0598, where the last three genes 
are closely connected with each other. The third 
group is: PF11_0208, PFL0780w, PFC0831w, 
PF14_0425 and PF11_0338. Using a query tool 
titled “Identify Genes based on Predicted Func-
tional Interaction” from PlasmoDB, which is based 
on the data obtained from the work of Date and 
Stoeckert(8), the second group functionality or 
connectivity was overwhelmingly confirmed 
except for genes PF13 _0141 and PF14_0378. We 
will suggest that a further biological studies should 
be carried out to check our prediction here. Further-
more, in group three, using this tool, we are able 
to show that genes PF11_0338 and PFL0780w, 
PFL0780w, PF11_0338 and PFC0831w and 
PFC0831w and PFL0780w are functionally 
connected. This tools could not verify the functional 
connectivity of PF11_0208 and PF14_0425 as we 

have shown theoretically. Based on the correctness 
of our predictions so far, we will suggest that these 
and group one connectivities (including their regu-
latory modalities) as shown here should also be 
tested biologically.

The genes PFD0660w, PF14_0341, PF11_0338, 
and PF14_0425 present interesting crosspoints 
between the separate groups. In the recent review 
(24) that cataloguizes the various drug targets of 
P.f., three genes PF14_0341, PF13_0141 and 
PF14 _0425 which encode three important energy 
metabolites, namely enzymes EC 5.3.1.9 (glycose-
6 phosphate isomerase), EC 1.1.1.27 (lactate 
dehydrogenase) and EC 4.1.2.13 (aldolase) were 
stated as possible drug targets genes. Our theo-
retical finding predicts the important regulatory 
role of these genes in the glycolysis. The regulatory 
interactions of these genes to others reconstructed 
by our learning procedure should be verified in 
biological studies. Furthermore, biological litera-
ture supports our prediction that the gene 
PF14 _0598 is been activated by PF14_0378 (20).

The ‘time delay’ regulatory network (see Table 
3 and Fig. 4) suggests the key regulatory role of the 
genes PF11_0157, PF11_0208, PF14_0341 and 
PF10_0155. The graph in Figure 4 also reveals the 
groups of closely connected genes. Interestingly, 
the gene PF10_0155 is connected to both enzyme 
genes PF14_0341 and PF13_0141. It was shown 
experimentally that the gene PF13_0269 is been 
activated by PF11_0157(22) as we have predicted 
here. It is interesting to note that the metabolic 
pathway maps with enzymes for the P.f glycolysis 
pathway available at KEGG database supports our 
predicted interaction depicted in Figure 4. However, 
Figure 4 contains more informations and therefore 
can be used to update the KEGG database.

Barrera et al. (1) applied their probabilistic 
genetic network approach to the gene expression 
profiles of ten enzymes from the glycolytic 
pathway of P.f. Note that apart from the target 
genes that coded for all the 10 enzymes pertaining 
to the glycolytic pathway, included in their analysis 
are also 40 best predictors for each glycolytic target 
(289 distinct oligos in total). The authors assumed 
the ’time delay’ regulation. Their estimation proce-
dure is based on the conditional entropy minimiza-
tion to discover subsets of genes predicting the 
target gene at best. Their results provided a biolog-
ically meaningful list of genes with putatively 
similar functions, which are also obtained in (5), 
but it is not possible to study the modalities of the 

Table 2. ‘OR-NOR’-regulatory interactions of eighteen 
(18) genes in the glycolysis pathway, ‘simultaneous’ 
gene activities.

Genes Activators Inhibitors Accuracy
   (%) 
PFD0660w PF11_0157, PFL0780w 0.91
 PF11_0338
PFI0755C PF14_0341 PFD0660w 0.94
PFL0780w PF11_0208, PFD0660w 0.92 
 PFC0831w  
PFC0831w PFL0780w no 0.81
PF10_0155 PF14_0341 no 0.98
PF10_0122 PFD0660w, no 0.85
 PF13_0141
PFI1105w PF14_0598 no 0.94
PF11_0157 PF11_0294, no 0.83
 PFD0660w,
 PF13_0144
PF11_0294 PF11_0157 PFD0660w 0.77
PF11_0338 PFD0660w, no 0.83 
 PF14_0425
PF11_0208 PF14_0341, no 0.94
 PFL0780w
PF13_0141 PF10_0155 no 0.91
PF13_0269 PF11_0294 no 0.89
PF13_0144 PF11_0157 PF14_0425 0.62
PF14_0425 PFC0831w PF13_0144 0.89
PF14_0598 PF14_0378, no 0.94 
 PFI1105w
PF14_0341 PF10_0155, no 1
 PFI0755c
PF14_0378 PF13_0141, no 1
 PF14_0598
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genes regulation with their approach. Furthermore, 
the authors worked on the level of oligonucleotides 
i.e. representing one gene with multiple oligonucle-
otides, thus inserting bias from the statistical point 
of view. Among the oligos for target genes that 
code for all the 10 enzymes pertaining to the glyco-
lytic pathway, in their network, the oligos for the 

Table 3. ‘OR-NOR’-regulatory interactions of eighteen (18) genes in glycolysis pathway, ’time delay’ gene 
activities

Genes Activators Inhibitors Accuracy(%) 
PFD0660w PF11_0157 PFL0780w, PF11_0294 0.88
PFI0755C PF11_0208 PF14 0425, PF11_0338 0.85
PFL0780w PF11_0157 PFD0660w 0.71
PFC0831w PF11_0157 no 0.83
PF10_0155 PF14_0341 no 0.98
PF10_0122 PF14_0598, PF13_0141 no 0.81
PFI1105w PF14_0598, PF10_0155 no 0.96
PF11_0157 PF11_0294, PFD0660w, PF13_0144 no 0.85
PF11_0294 PF11_0157 PF11_0338 0.67
PF11_0338 PF13_0269, PFD0660w PFL0780w 0.81
PF11_0208 PF13_0269, PFL0780w, PF14_0341 no 0.96
PF13_0141 PF10_0122, PF10_0155 no 0.90
PF13_0269 PF11_0157 PFL0780w, PFD0660w 0.90
PF13_0144 PF11_0338, PF11_0208, PFD0660w PF10_0122 0.69
PF14_0425 PF11_0157 no 0.87
PF14_0598 PF14_0341, PFI1105w no 0.94
PF14_0341 PF10_0155, PF11_0208 no 0.96
PF14_0378 PF10_0122, PF14_0341 no 0.90

Figure 4. ‘OR-NOR’-regulatory interactions of eighteen (18) genes 
in glycolysis pathway, ‘time-delay’ gene activities.

genes PF14_0341 and PFI0755c are the only ones 
that shared direct contact. This is also shown to be 
so in our predictions of (Fig 3) in addition to the 
modality of their regulation.

Khanin and Wit (13) derived their overall 
malaria gene network in the intraerythrocytic 
development cycle based on the 3048 genes. Note 
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that Khanin and Wit (13) averaged the values from 
multiple oligonucleotides representing same gene. 
They claim that nine genes of the glycolysis 
pathway share five links among themselves and 
show that the probability of nine randomly picked 
genes having 5 links is 0.01% given the connec-
tivity matrix. Apart from the fact that, their output 
provided no hints on the altitude of the genes 
during regulation, we found out that theses genes 
share more than five links.

3.2. Plastid genome
We considered the set of genes annotated to make 
up the plastid genome, otherwise known as the 
apicoplast. We harvested the oligonucleotides 
representing each of the 26 putative apicoplast 
genomeencoded proteins listed from the DeRisi’s 
laboratory (malaria.ucsf.edu). In this case, we 
found in the 3D7 gene expression dataset (S01_
3D7_Raw.txt), taking also from the DeRisi malaria 
site, that only one oligonucleotide was used to 
represent each putative protein encoded genes of 
the plastid genome.

The apicoplast can be thought as a cell living 
within another cell (here P.f) and contains all the 
familiar cellular processes such as DNA replication, 
transcription, translation, fatty acid synthesis, 

isopentenyl diphosphate synthesis, aromatic amino 
acid synthesis and the heme synthesis (19).

The results of our ‘simultaneous’ and ’time 
delay’ learning of the ‘OR-NOR’-model for 26 
genes of the apicoplast are summarized in the 
Tables 5 and 6, and represented graphically in the 
Figures 5 and 6. The results of the ’simultaneous’ 
and ’time delay’ learning of the ‘OR’-model are 
displayed in Supplementary Tables 3 and 4 and 
Supplementary Figures 3 and 4. The graphs for 
‘simultaneous’ ‘OR’-and ‘OR-NOR’-regulation 
contain disconnected components suggesting the 
groups of closely related genes. One can see the 
strategical positioning of the genes ORF129, Clp, 
ORF91, tufA, PtRNA-Pro, and rpl16 indicating the 
key regulatory role of these genes. We discovered 
from the literature that the genes rpl23, tufA and 
rpl16 has been tested in wet experiments and have 
been marked as putative drug/herbicide targets 
(19). The observation of the ‘time delay’ regulatory 
interactions inferred further suggest the important 
role of Clp, rpl23, rpl16 but also of the genes rpl2, 
PtRNAGln and PtRNAThr. The gene rps19 was 
inferred to be regulated by many other genes. The 
graph of the ‘time delay’ ‘OR-NOR’-regulation is 
much more connected than that of the ’simulta-
neous’.

Table 4 shows the functional interconnection as 
derived in (Fig. 2) (B) of Barrera et al. (1). There 
are a lot of deviations, contactwise, in the contacts 
we predicted. Using the genes rpl23, tufA and rpl16 
that has been marked as putative drug/herbicide 
targets in Ralph et al. (19), we noted that our 
derived networks in Figures 5;6 and Figures 3;4 of 
the supplementary material suggested the correct-
ness of Ralph et al. predictions on genes rpl23, tufA 
and rpl16 than that of Barrera et al.

From all the information that we could gathered 
from PlasmoDB, DeRisi malaria site, KEGG data-
base and the metabolic maps of the apicoplast from 
the work of Barrera et al. which we have encapsula-
ted in Table 4, presently, nothing else is known 
about the metabolic maps of the apicoplast genes. 
So our work provides the first insight into the 
apicoplast genes regulatory connections.

4. Conclusion
In the present work we have elucidated regulatory 
interactions of the genes of P.f. in glycolysis 
pathway and apicoplast metabolism. Some of our 
predictions found support in the biological literature, 

Table 4. Barrera et al.(1) predicted pairwise interactions 
of the twenty six(26) genes in the plastid genome. 

Contact First gene Other genes involved
1 rpl23 PtRNAPro
2 PtRNAPro rpl23
3 rps12 rps19, tufA
4 ORF129 rpl2, rps5, rps7, 
  ORF91
5 rpl2 rps19, rps5
6 rps17 rpl2
7 rps3 rpl2
8 rps19 tufA, rps12, Clp, rps5, 
  rps5, rpl14, rpl16, rpl38 
9 rpl2 rps11, ORF129, rps12, 
  ORF91, rpl14, ORF91
10 rpl16 rps19
11 rpl36 rpl16, rps19
12 tufA rpl36, rps11, rps12
13 ORF91 ORF129, rpl2
14 rpl14 rpl2, rps19
15 rps5 rps19, rpl2, Clp
16 Clp rpl2, rps19, rps5
17 rps7 rps5
18 PtRNAPHE ORF129
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others would be worthwhile to verify in the ‘wet’ 
laboratory. We have proposed the groups of closely 
connected genes (pathways) and crosspoints 
between them.

Our approach is based on the Bayesian learning 
of the probabilistic graphical model explicitly 
representing the logic dependencies between a 
gene and its regulators. Our method allows for 
elucidating more complex multigene relations 
which go beyond pairwise relations retrieved by 
other approaches. Also, we derive sparse connec-
tions between the genes, which can be further 
interpreted and validated in the laboratory, as 
opposed to the previous authors (e.g. Khanin and 
Wit, 2004). An important advantage of the Bayesian 
approach is that it enables the inclusion of “subjec-
tive” prior information into the model. In this study 
we used the subjective prior specification to 
enforce the number of gene regulators to lie in the 
small range. Potentially, one could defi ne priors 
aiming to incorporate previous biological knowl-
edge into the model learning.

We have identified a few genes (like PF11_0157, 
rpl23) which regulate many other genes (master 
activators). Further theoretical extension of our 
work would be to collect potentially commonly 
regulated genes, scanning their upstream regions 
for commonly present, conserved sequence motifs 
(for example, by means of the PhyME algorithm 
(21)), computing a probability weight matrix from 
such motifs and scanning the genome of P.f. for 
further genes that harbor these motifs in their 
upstream region. Our initial work in this workflow 
revealed a set of three motifs commonly contained 
in seven genes (PFL0780w, PF14_0425, PF13_
0269, PF11_0294, PF13_0144, PFC0831w and 
PFD0660w) computationally predicted to be acti-
vated by PF11_0157 (Tachado et al. (22) has shown 
experimentally that PF13_0269 is been activated 
by PF11_0157). Restricting to high confidence 
presence of the motif, and requiring at least two of 
the three motifs to be present, a set of seven genes 
(PFL1160c, PFB0480w, PFI0260c, PFI1605w, 
MAL8P1.143, PF14_0363 and PF14_0472) were 

Table 5. ‘OR-NOR’-regulatory interactions of twenty six (26) genes in the plastid genome, ‘simultaneous’ gene 
activities. 
Genes Activators Inhibitors Accuracy(%)
Clp ORF129, ORF91 no 0.94
LSUrRNA1 tufA no 0.60
ORF91 Clp no 0.94
ORF129 Clp no 0.89
rpl2 rpl36 no 0.83
rpl4 PtRNAPro no 0.96
rpl6 rpl14 no 0.94
rpl14 rps8 no 0.96
rpl16 no no no
rpl23 LSUrRNA1, PtRNAGln no 0.68
rpl36 rpl2 no 0.83
rps3 rps5 no 0.91
rps5 rpl16, rps11, rps3 no 0.94
rps7 ORF91, tufA no 0.92
rps8 rpl14 no 0.96
rps11 rps12 no 0.87
rps12 no no no
rps17 rpl4 no 0.92
rps19 rpl16, rpl2 no 0.89
PtRNAGln rpl23, PtRNAGly no 0.85
PtRNAGly PtRNATrp no 0.87
PtRNAGly2 rpl16 no 0.75
PtRNAPro rpl4, rpl6, PtRNAThr no 1
PtRNAThr PtRNAPro no 0.83
PtRNATrp PtRNAGly, tufA no 0.87
tufA LSUrRNA1 no 0.60
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Table 6. ‘OR-NOR’-regulatory  interactions of twenty six (26) genes in the plastid genome, ’time delay’ gene 
activities. 
Genes Activators Inhibitors Accuracy(%)
Clp no no no
LSUrRNA1 rpl23, tufA rpl2 0.60
ORF91 PtRNAThr no 0.85
ORF129 PtRNAThr no 0.83
rpl2 Clp, rpl16 no 0.83
rpl4 PtRNAGln no 0.81
rpl6 PtRNAGln no 0.77
rpl14 no no no
rpl16 no no no
rpl23 PtRNAGln no 0.67
rpl36 Clp no 0.87
rps3 no no no
rps5 rpl23 no 0.73
rps7 rpl23, PtRNAGly no 0.75
rps8 rps19 no 0.79
rps11 rpl23 no 0.75
rps12 rpl23, PtRNAThr no 0.84
rps17 rpl23 no 0.75
rps19 Clp, rpl16, rpl2, rps7 no 0.83
PtRNAGln rpl2, rpl23 no 0.81
PtRNAGly rpl2, PtRNAGln rpl23 0.81
PtRNAGly2 PtRNATrp no 0.65
PtRNAPro PtRNAGln no 0.85
PtRNAThr no no no
PtRNATrp rps19, PtRNAGln no 0.81
tufA LSUrRNA1, rpl23 no 0.65

Figure 5. ‘OR-NOR’-regulatory interactions of twenty six (26) genes 
in the plastid genome, ‘simultaneous’ gene activities.
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Figure 6. ‘OR-NOR’-regulatory interactions of twenty six (26) genes 
in the plastid genome, ‘time delay’ gene activities.
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found that show remarkable correlation of their 
expression values with those of the glycolysis 
genes used to compile the motifs.
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Supplementary Material

S.Table 1. ‘OR’-regulatory interactions of eighteen (18) 
genes in the glycolysis pathway, ’simultaneous’ gene 
activities.

Genes Activators Accuracy
  (%)
PFD0660w PF11_0157, PF11_0338 0.83
PFI0755C PF14_0341 0.92
PFL0780w F11 0208 0.79
PFC0831w no no
PF10_0155 PF14_0341 0.98
PF10_0122  PFD0660w, PF13_0141 0.79
PFI1105w no no
PF11_0157 PF11_0294, PFD0660w, 0.83
 PF13_0144
PF11_0294 PF11_0157 0.62
PF11_0338 PFD0660w 0.83
PF11_0208 F14_0341, PFL0780w 0.94
PF13_0141 no no
PF13_0269 PF11_0294 0.89
PF13_0144 PF11_0157 0.57
PF14_0425 no no
PF14_0598 F14_0378 0.94
PF14_0341 PF10_0155, PFI0755c 1
PF14_0378 PF13_0141, PF14_0598 0.98

S.Table 2. ‘OR’-regulatory interactions of eighteen (18) 
genes in the glycolysis pathway, ’time delay’ gene ac-
tivities 

Genes Activators Accuracy
  (%)
PFD0660w PF11_0338, PF11_0157 0.83
PFI0755C PF11_0208 0.87
PFL0780w PF11_0157 0.65
PFC0831w PF11_0157 0.83
PF10_0155 PF14_0341 0.98
PF10_0122 no no
PFI1105w no no
PF11_0157 PF13_0144, PF11_0294, 0.85
 PFD0660w
PF11_0294 PF11_0157 0.63
PF11_0338 PF13_0269, PFD0660w 0.83
PF11_0208 PFL0780w, PF13_0269, 0.96
 PF14_0341
PF13_0141 PF10_0122 0.85
PF13_0269 PF11_0157 0.90
PF13_0144 PF11_0157 0.58
PF14_0425 PF11_0157 0.87
PF14_0598 PF14_0341, PFI1105w 0.94
PF14_0341 PF11_0208 0.94
PF14_0378 PF14_0341, PF10_0122 0.90

S.Figure 1. ‘OR’-regulatory interactions of eighteen (18) genes in 
the glycolysis pathway, ’simultaneous’ gene activities.
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S.Figure 2. ‘OR’-regulatory interactions of eighteen (18) genes in 
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Table 3. ‘OR’-regulatory interactions of twenty six (26) 
genes in the plastid genome, ‘simultaneous’ gene 
activities. 

Genes Activators  Accuracy
  (%) 
Clp ORF91 0.94
LSUrRNA1 PtRNAGly2, tufA 0.68
ORF91 Clp 0.94
ORF129 Clp 0.89
rp12 rp136 0.83
rp14 no no
rp16 rp114 0.94
rp114 rps8 0.96
rp116 no no
rp123 LSUrRNA1, PtRNAG1n 0.68
rp136 rp12 0.83
rps3 rps5 0.91
rps5 rp116, rps3 0.94
rps7 ORF91, tufA 0.92
rps8 rp114 0.96
rps11 rps12 
rps12 no no
rps17 no no
rps19 rp116, rp12 0.89
PtRNAG1n rp123 0.68
PtRNAG1y PtRNATrp 0.87
PtRNAGly2 no no
PtRNAPro rp14,PtRNAThr 0.98
PtRNAThr no no
PtRNATrp tufA 0.87
tufA LSUrRNA1 0.6

Table 4. ‘OR’-regulatory interactions of twenty six (26) 
genes in the plastid genome, ‘time delay’ gene 
activities. 

Genes Activators Accuracy
  (%) 
Clp no no
LSUrRNA1 rpl23 0.56
ORF91 no no
ORF129 no no
rpl2 no no
rpl4 no no
rpl6 no no
rpl14 no no
rpl16 no no
rpl23 no no
rpl36 Clp 0.87
rps3 no no
rps5 rpl23 0.73
rps7 rpl23, PtRNAGly 0.62
rps8 rps19 0.79
rps11 rpl23 0.75
rps12 rpl23 0.63
rps17 rpl23 0.75
rps19 rps7 0.75
PtRNAGln rpl23 0.67
PtRNAGly no no
PtRNAGly2 no no
PtRNAPro no no
PtRNAThr no no
PtRNATrp PtRNAGln, rps19 0.81
tufA LSUrRNA1, rpl23 0.65

S.Figure 3. ‘OR’-regulatory interactions of the twenty-six (26) genes 
in the plastid genome,’simultaneous’ gene activities.
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S.Figure. 4. ‘OR’-regulatory interactions of twenty six (26) genes in 
the plastid genome, ‘time delay’ gene activities.
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