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e Background and Aims Understanding the genetic basis underlying domestication-related traits (DRTS) is important
in order to use wild germplasm efficiently for improving yield, stress tolerance and quality of crops. This study was
conducted to characterize the genetic basis of DRTs in soybean (Glycine max) using quantitative trait locus (QTL)
mapping.

e Methods A population of 96 recombinant inbred lines derived from a cultivated (ssp. max) x wild (ssp. soja) cross
was used for mapping and QTL analysis. Nine DRTs were examined in 2004 and 2005. A linkage map was con-
structed with 282 markers by the Kosambi function, and the QTL was detected by composite interval mapping.

o Key Results The early flowering and determinate habit derived from the max parent were each controlled by one
major QTL, corresponding to the major genes for maturity (e/) and determinate habit (dt/), respectively. There were
only one or two significant QTLs for twinning habit, pod dehiscence, seed weight and hard seededness, which each
accounted for approx. 20—50 % of the total variance. A comparison with the QTLs detected previously indicated
that in pod dehiscence and hard seededness, at least one major QTL was common across different crosses,
whereas no such consistent QTL existed for seed weight.

e Conclusions Most of the DRTs in soybeans were conditioned by one or two major QTLs and a number of
genotype-dependent minor QTLs. The common major QTLs identified in pod dehiscence and hard seededness
may have been key loci in the domestication of soybean. The evolutionary changes toward larger seed may have
occurred through the accumulation of minor changes at many QTLs. Since the major QTLs for DRTs were scattered
across only six of the 20 linkage groups, and since the QTLs were not clustered, introgression of useful genes from
wild to cultivated soybeans can be carried out without large obstacles.

Key words: Soybean, Glycine max, domestication related traits, QTL, hard seededness, seed size, pod dehiscence,

twinning habit.

INTRODUCTION

The morphological and physiological changes associated
with domestication can be delimitated into adaptation syn-
dromes resulting from natural or deliberate human selection
(Harlan, 1992). Selection pressures associated with harvest-
ing and planting have resulted in non-shattering charac-
teristics, increases in seedling vigour and more rapid
germination via loss or reduction of germination inhibitors,
whereas human-selected changes have included larger inflor-
escences, larger seeds, thicker stems, more upright plants,
etc., by intentionally selecting for higher yield. The genetic
bases underlying distinctive differences between cultivated
crops and their wild relatives have long been the subject of
evolutionary interest to not only agronomists but also evolu-
tionary geneticists because they have resulted from the differ-
ent modes of natural and artificial selection (Lande, 1983;
Gottlieb, 1984). The development of easily usable and poly-
morphic DNA markers has facilitated a mapping-based dis-
section of the genetic basis for domestication-related traits
(DRTs) in many plant species such as aubergine (Doganlar
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et al., 2002), maize (Doebley et al., 1990; Doebley and
Stec, 1993; Lauter and Doebley, 2002), pearl millet (Poncet
et al., 2000, 2002), rice (Xiong et al., 1999; Cai and
Morishima, 2002), sunflower (Burke et al., 2002), tomato
(Grandillo and Tanksley, 1996), common bean (Koinange
et al., 1996) and wheat (Peng et al., 2003).

By reviewing recent reports on quantitative trait locus
(QTL) mapping of DRTSs, Ross-Ibarra (2005) was able
to identify three major patterns. First, the QTLs are not
randomly or even uniformly distributed throughout the
genome, but rather occur in apparently linked clusters in
certain regions of the chromosome. Secondly, relatively
few QTLs of large effect are involved in most DRTs across
a variety of taxa. Thirdly, an extensive synteny exists
among the QTLs of major effect among species which
belong to Gramineae (Paterson et al., 1995) and Solanaceae
(Doganlar et al., 2002).

Cultivated and wild soybeans belong to the same biologi-
cal species, and are constituents of the primary gene pool
of Glycine (Hymowitz, 2004). Ohashi (1982) classified
cultivated and wild soybeans into Glycine max (L.) Merr.
subsp. max Ohashi and G. max subsp. soja (Sieb. & Zucc.)
Ohashi. Crosses between them generally produce viable
and fertile progeny, although in some soja accessions there
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are chromosome interchanges which result in bridges and
multivalent formation at meiosis that reduce the pollen and
seed fertility in hybrids (Palmer et al, 1987, 2000;
Singh and Hymowitz, 1988). Cultivated and wild soybeans
differ in a set of various morphological and physiological
characteristics collectively designated as the domestication
syndrome (Broich and Palmer, 1980, 1981). The typical
cultivated phenotype displays a bush-type growth habit
with a stout primary stem and sparse branches, bearing
large seeds with variable seed coat colours, while the wild
phenotype is a procumbent or climbing vine with a slender,
many branched stem bearing small, coarse black seeds. The
wild soybean also differs in the extent of hard seededness
and pod dehiscence from the cultivated soybean, although
genetic variations also exist in the latter for these DRTs
(Bailey et al., 1997; Chachalis and Smith, 2000; Mullin
and Xu, 2001; Funatsuki ez al., 2006).

Marker-assisted studies have detected many QTLs for
various quantitative characteristics including physiological,
morphological, yield-related traits and quality-related traits,
such as the protein and oil contents in soybean. Currently,
>900 QTLs are reported in SoyBase (http:/www.SoyBase.
org) (Hyten et al., 2004). However, few genetic studies
have been carried out for DRTs in soybean. Although the
wild soybean is useful as a genetic resource for cultivar
improvements (Sebolt er al., 2000; Wang et al., 2001;
Concibido et al., 2003; Fukuda et al., 2005; Luo et al.,
2005; Chen et al. 2006; Kanamaru et al., 2006), our under-
standing of the genetic basis of DRTs still remains insuffi-
cient. The objective of this study was to gain a better
understanding of the genetic basis of morphological and
physiological traits that differentiate cultivated and wild
soybeans, by means of molecular mapping of recombinant
inbred lines (RILs) resulting from a cross between a culti-
vated and a wild soybean.

MATERIALS AND METHODS
Plant materials and character evaluation

A population of 96 RILs was developed by a single-seed
descendent (SSD) method from an F, population of the
cross between a max line Tokei 780 and a soja accession
Hidaka 4. Tokei 780 is an early-maturing, determinate, and
yellow-seeded breeding line with grey pubescence, bred
at Tokachi Agricultural Experimental Station, Memuro,
Hokkaido, Japan. The wild accession was collected in
Biratori town along the Saru River of the Hidaka region,
Hokkaido. The seed (F,.g) for each RIL and the seed of
the parental lines were sown in paper pots (#2, Nippon
Beet Sugar Mfg, Co., Ltd, Sapporo, Japan) in the
Research Faculty of Agriculture greenhouse at Hokkaido
University, Sapporo, Japan, in late May 2004. Two weeks
later, four seedlings for each RIL and the parents were
transplanted into a pot of 22 cm in diameter and 20 cm in
depth. A plastic support was then placed close to each indi-
vidual plant. Four traits affecting plant architecture, namely
plant height (PH), number of nodes (NN), maximum inter-
node length (MIL) and twinning habit (TH), were scored
6 weeks after transplantation. TH was evaluated by the
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number of times that a main stem of an individual plant
wound autonomously around the support. Flowering date,
the date of the first flower appearance (R1: Fehr er al.,
1971), was individually recorded. Determinate habit (DH)
was evaluated by scoring an increment of nodes in a
main stem from R1 to maturity, according to Thseng and
Hosokawa (1972). Mature but undehisced pods were
sampled for each of the RILs and parental lines, and pre-
served as bulk in a refrigerator at 5 °C and >80 % relative
humidity until analysis to avoid further desiccation. Pod
dehiscence (PD) was evaluated by two replications and
expressed as a ratio of dehiscent pods of the 20 pods that
were put in a humidity-controlled chamber of 20 °C and
10 % relative humidity for 24 h. After evaluation, seeds
were threshed by hand, and used for scoring the 100 seed
weight (SW) and hard seededness (HS). HS was evaluated
by two replications as a percentage of impermeable seeds
out of 40 seeds after 24 h of immersion in 50 mL of dis-
tilled H,O in a 200 mL beaker. The experiment was also
carried out in 2005 using the seed (F,.9) obtained from a
single Fg plant for each RIL. A total of eight traits were
examined in the 2005 test, omitting DH. The seeds were
directly sown in pots in the greenhouse in early June
2005, and thinned to four plants 2 weeks later. Character
evaluation followed the method in the 2004 test except
for the following two points: in the 2005 test, morphologi-
cal evaluation was carried out 10 weeks after seeding
(approx. 2 weeks later than in the 2004 test) to enlarge
the differences among the RILs, and PD was evaluated
with four replications.

Isozyme analysis

Genotypes at five isozyme loci were determined for each
of the 96 RILs, according to the method described by Abe
et al. (1992). The loci tested were an acid phosphatase locus
(Ap), isocitrate dehydrogenase locus (Idh2), mannose phos-
phoisomerase locus (Mpi) and two phosphoglucomutase
loci (Pgml and Pgm?2).

DNA isolation and SSR analysis

The parents, Tokei 780 and Hidaka 4, were first surveyed
for 317 simple sequence repeat (SSR) markers selected
from an integrated soybean genetic linkage map (Cregan
et al., 1999; Song et al., 2004). The primer sequences
were obtained from the SoyBase Web site of the USDA,
ARS Soybean Genome Database (http:/soybase.agron.
iastate.edu/). DNA was extracted from young leaves
sampled from eight Fg plants for each RIL following the
method described by Doyle and Doyle (1990). SSR analysis
was carried out with either 6 % denatured polyacrylamide
gel electorophoresis (PAGE) with fluorescent-labelled
primers or 15% non-denatured PAGE with ethidium
bromide staining. The polymerase chain reaction (PCR)
mixture contained 30 ng of total genomic DNA, 0-25 um
of 5 and 3’ end primers, 200 pm of each dNTP, 0-5 U of
Taqg polymerase (TaKaRa, Otsu, Japan) and 1x PCR
buffer (10 mm Tris—HCI, pH 8-3; 50 mm KCI; 1-5 mm
MgCl,) for a total volume of 20 pwL. The PCRs were
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performed with a GeneAmp PCR System 9700 (Perkin
Elmer/Applied Biosystems, Foster City, CA, USA) using
the following program: 32 cycles at 94 °C for 30 s, 55°C
for 30 s and 72 °C for 30 s. Following the amplifications,
in the PAGE method with fluorescent-labelled primers,
up to six PCR products were combined and brought to
a total volume of 20 wL by adding distilled water. An
aliquot (1-5 pL) of the mixed PCR products combined
with a loading buffer (1-5 wL) was denatured at 95 °C for
5 min and then loaded and separated using an ABI 377
sequencer (Perkin Elmer/Applied Biosystems). GeneScan
software (version 3-1) was used to score the observed poly-
morphisms. In the PAGE method with ethidium bromide
staining, the PCR products were mixed with 5 pL of
loading buffer (25 % glycerol, 50 mm Tris, 5 mm EDTA,
0-2 % bromophenol blue) and then were loaded on the
gel. Electrophoresis was performed at a constant voltage of
250 V for 4 h. After electrophoresis, the gel was stained
with 10 pg mL~" of ethidium bromide for 5 min and band
profiles were recoded with a Typhoon 9410 imaging system
(Amersham Bioscences, Piscataway, NJ, USA).

Amplified fragment length polymorphism (AFLP) analysis

About 100 ng of total genomic DNA was digested with
5U of EcoRl and 1U of Msel, and simultaneously
5 pmol of EcoRI adaptor and 50 pmol of Msel adaptor
were ligated with 1 Weiss unit of T4 DNA ligase
(New England Biolabs, Beverly, MA, USA) in a reaction
buffer containing 50 mm Tris—HCI (pH 7-5), 10 mm
MgCl,, 10 mm dithiothreitol (DTT), 50 mm NaCl, 1 mm
ATP and 25 pg mL™' bovine serum albumin (BSA) in a
total volume of 20 pL for 10 h at room temperature. The
sequences of the EcoRI and Msel adaptors were the same
as described by Vos et al. (1995).

Pre-amplification was performed in a total volume of
20 pL containing 3 pL of 10x diluted digestion—ligation
DNA template, 025 pum EcoRI+ A and Msel +C
primers, 0-2 mm of each dNTP, 0-5U of Tag polymerase
(TOYOBO, Osaka, Japan), 1-5 mm MgCl, and 1x PCR
buffer. The pre-amplification was performed in a thermo-
cycler GeneAmp PCR system 9700 using the following
program: 25 cycles of 94 °C for 20 s, 56 °C for 30 s and
72°C for 2 min, followed by one cycle of 60°C for
30 min. The PCR products were diluted 10-fold and used
as templates for selective amplification. Selective PCRs
were carried out in a volume of 20 pL containing 3 pwL of
10x diluted pre-selective PCR product, 0-25 pm EcoRI +
ANN primer and Msel + CNN primers, 0-5 U of Tag poly-
merase, 0-2 mm of each dNTP, 1-5 mm MgCl, and 1 x PCR
buffer. PCR was performed on the thermocycler with
the following touchdown program: one cycle of 94 °C for
20 s, 65°C for 30 s and 72 °C for 2 min, followed by
eight cycles of 1 °C decreasing annealing temperature per
cycle, and 23 cycles of 94 °C for 20 s, 65 °C for 30 s and
72 °C for 2min, with a final extension at 60 °C for
30 min. The PCR products were separated on 15 % non-
denatured PAGE as for the SSR analysis.
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Map construction

Of the SSR markers tested, 204 polymorphic and infor-
mative markers were chosen as anchors to construct the
linkage groups covering all of the 20 linkage groups.
A total of 282 markers, including five isozyme and 73
AFLP markers, were mapped in the RIL population.
Marker order and distance were determined by the Map
Manager program QTXbl17 (http:/mapmgr.roswellpark.
org/mapmgr.html) using the Kosambi function and a cri-
terion of 0-001 probability (d.f. = 1), equivalent to a LOD
score of 2.4. Most of the markers were assigned to the
20 linkage groups as expected from the integrated map
(Cregan et al., 1999; Song et al., 2004). A lower criterion
of 0-05 probability was applied to a few unlinked distal
SSR markers and the markers that belonged to their respec-
tive linkage groups.

Statistical analysis and QTL mapping

All traits were tested for deviations from normality using
the Shapiro—Wilk test (SPSS, version 14-0). Where neces-
sary, traits were transformed using the Box—Cox transform-
ation (Box and Cox, 1964). Each trait was then analysed
by one-way analysis of variance (ANOVA) for the 2004
and 2005 data individually, and by two-way ANOVA for
the combined data. Tests of significance and partitions of
variance components for the RIL, year and RIL X year
effects were carried out based on a Model II ANOVA,
where the RIL and year effects were treated as random vari-
ables (Sokal and Rohlf, 1981).

Marker order and distance inferred by QTXb17 were
used to find the candidate QTL by composite interval
mapping (CIM) implemented by MapQTL 5 (Van Ooijen,
2004). A total of 1000 permutations were performed on
all traits to establish the empirical LOD thresholds at 0-05
probability (Churchill and Doerge, 1994). QTLs were con-
sidered to exist only at positions where a LOD score
exceeded the corresponding significance threshold. CIM
was performed by using the markers nearest to significant
QTLs detected by interval mapping in advance as cofactors,
and was repeated by adding the markers nearest to the QTLs
newly detected by CIM to cofactors until additional QTLs
were not detected. The chromosomal location, magnitude
and direction of the additive effect and the proportion of
the phenotypic variation explained (PVE) for each detected
QTL were obtained from the CIM output. One-LOD
support limits for the position of each QTL were calculated
from the CIM results. The pair-wise interaction between
QTLs was analysed as a two-way ANOVA with tagging
markers as factors.

RESULTS
Segregation of markers and map construction

Most of the markers used segregated in an expected 1: 1
ratio in the RIL population. Twenty-seven markers (9-6 %
of the 282 markers) on 12 linkage groups produced a signifi-
cantly (P = 0-05) distorted segregation. Of these, the distor-
tions observed in Satt038, ATG/CAC340 and Satt505 on
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linkage group G, and Satt551 on linkage group M, were
highly significant (P = 0-01). Two or more neighbouring
markers that significantly deviated from the expected 1: 1
ratio existed in six linkage groups, i.e. Cl, C2, E, G, L
and M. Particularly in the six distorted markers observed
in linkage group G, three closely linked distal markers
(Satt038, ATG/CAC340 and Satt570) yielded an allele
from the soja parent in surplus, while the other closely
linked proximal markers (ATG/CAT100, Satt138 and
Satt505) yielded an allele from the max parent in surplus.

A linkage map of 282 markers and covering 2383 cM
was constructed using the Kosambi function. The average
distance between markers was 8-5cM. There were still
gaps of >25cM in four linkage groups, i.e. B2, CI, C2
and Dla, because of a lack of polymorphic SSR markers.
The map length approximately corresponded to the cur-
rently known recombination distance of 2524 cM of the
integrated soybean linkage map (Cregan et al., 1999;
Song et al., 2004). The marker order constructed in this
study was in good agreement with that of the integrated
map except for a few SSR markers. Most of the discordant
marker orders occurred within a region of <5 cM. However,
Sat_024 on linkage group E, which is located between
two distal SSR markers, Satt411 and Satt384, in the inte-
grated map (Cregan et al., 1999; Song et al., 2004), was
positioned near a proximal marker (Satt606) on the same
linkage group in the RIL population tested. The linkage
map obtained in this study is available on request.

Parental phenotypes and segregation of
domestication-related traits

Table 1 shows averages and standard deviations of parents
and variance components (%) obtained from two-way
ANOVA for nine traits in the RIL population. Of the nine
traits tested, TH, PD, SW and HS are representative DRTs
in soybean that characterize the difference between the
modern cultivars and the wild soybean, although some of
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the Asian landraces possess the soja-like phenotypes, such
as stone (impermeable) seed, twinning tendency and very
small seed size. The parents of the RIL population also dif-
fered in flowering time (FT), DH and some morphological
traits influencing plant architecture such as PH, NN and
MIL. The max parent possessed an early and determinate
habit with shorter PH, fewer NN and shorter MIL, whereas
the soja parent possessed a late-flowering and indeterminate
habit with taller PH, more NN and longer MIL (Table 1).

Frequency distributions of phenotypes in the RIL popu-
lation in the 2005 test (for DH in the 2004 test) are
presented in Fig. 1. FT and DH produced a bimodal distri-
bution, suggesting an involvement of one or two major
genetic factors. HS also had two modes: one in a class of
<5 % (max type) and the other in a class of >95 % (soja
type). On the other hand, PH, NN, MIL and SW were
characterized by normal distribution. Transgressive segre-
gations were observed in FT, DH, PH, NN and MIL. In
the 2005 test, two (PH and MIL, and DH in the 2004
test) to 12 (FT) RILs significantly exceeded the parental
values at 0-001 probability (Fig. 1). The frequency distri-
bution of SW was normal, but ranged from the soja
parent (3:6 g) to the mid-parent (14-9 g), with only three
RILs being distributed over the mid-parent value. Both
PD and TH yielded phenotype frequency distributions
which were shown to deviate significantly from normality
by the Shapiro—Wilk test.

Results of one-way ANOVA revealed that 70 % or more
of the total variance observed in each trait was attributable
to the variance explained among RILs, suggesting that the
variation observed in the RIL population was mostly
genetic. Results of two-way ANOVA for the combined
data of the two years further indicated that 80 % or more of
the total variance was ascribed to the RIL effect in FT, SW
and HS (Table 1), suggesting that these three traits were phe-
notypically stable over the two years tested. TH, MIL and PD
showed moderate values of 36-9-48-6 % for the RIL effect
and slightly low values of 19-2—-26-3 % for the RIL x year

TaBLE 1. Averages and standard deviations of parents and variance components (%) obtained from two-way ANOVA for nine
traits in a RIL population derived from a cross between G. max ssp. max and ssp.soja

FT DH PH NN MIL TH PD SW HS
2004
Tokei 780 (max) 457 (1-2)  2.0(0-0) 183(22) 6305 4308 0000 012(0-17) 26:2(1-3) 0-0 (0-0)
Hidaka 4 (soja) 77-5(2:9) 118 (1:3) 305(7-1) 69(04) 7-1(1-:00 54(1-1) 078(0-27) 3-0(0-05) 100-0 (0-0)
2005
Tokei 780 (max) 445 (1-3) - 272 (2:0)  93(04) 5104 00(0-0) 0-19(0-18) 26:3(1-2) 0-0 (0-0)
Hidaka 4 (soja) 730 22) - 622 (5:3) 140(08) 93(0-6) 99(04) 096005 3-6(02) 98-8 (1-8)
Percentage of variance
components estimated by
two-way ANOVA
RIL 90- 1 #%#* - 15-8%#* 1-8% 36-9%** 48-6%** 45.2%%% 80-0%** 85 7%
Year 00 - 61.7%%%* 87.8%** 24.6 *** 0-0 23 027 0-1
RIL x year 0-8 - 17275 6-77%% 192 k2. (kokk 26-3%%* 3.8% 6-2%7%%
Error 9-1 - 53 3.7 19-3 30-4 26-2 16-0 80

Values in parentheses are standard deviations. F-tests and partitions of variance components were carried out based on a Model II ANOVA, where
the RIL and year effects were treated as random variables (Sokal and Rohlf, 1981). * and ***, significance at the 5 and 0-5 % levels, respectively.

FT, flowering time (number of days after seeding); DH, determinate habit (number of nodes increased after flowering); PH, plant height (cm); NN,
number of nodes; MIL, maximum internode length (cm); TH, twinning habit (number of times that a main stem winds around a support); PD, pod
dehiscence (rate of dehiscent pods); SW, 100 seed weight (g); HS, hard seededness (percent of hard seed).
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F1G. 1. Frequency distributions of phenotypes for nine domestication-related traits in a RIL population derived from a cross between G. max ssp. max and

ssp. soja. Black bars indicate RILs which significantly exceeded the parental values at 0-001 probability. PVER (the proportion of the phenotypic variation

explained by RILs) was calculated based on a Model I ANOVA (Sokal and Rohlf, 1981). FT, flowering time; DH, determinate habit; PH, plant height;
NN, number of nodes; MIL, maximum internode length; TH, twinning habit; PD, pod dehiscence; SW, 100 seed weight; HS, hard seededness.

effect. On the other hand, the year effect occupied large parts
of the total variance in PH (61-7 %) and NN (87-8 %). The
high year effects for PH and NN were due to the fact that
morphological evaluation was carried out in different
growth stages in the 2004 and 2005 tests.

QOTL analyses of domestication-related traits

CIM was carried out separately for each of the 2004 and
2005 tests and, except for PH and NN which showed large
year effects, the average of the two years. Results of the
QTL analysis are presented in Table 2 and graphically in
Fig. 2. To compare the results with the QTLs detected in
previous studies by the CIM of a lower criterion (lower
LOD scores) or by ANOVA, non-significant QTLs with a
LOD score of >2-5 are also included in Table 2. CIM
revealed a total of 14 significant (P = 0-05) QTLs affecting
DRTs by the genome-wide analyses with permutation tests.
These QTLs were distributed in six of the 20 linkage
groups, and individual QTLs accounted for 13-4-72-5 %
of the phenotypic variance observed. In all except a QTL
for FT, the direction of additive effects for alleles derived
from the soja parent (Table 2) was consistent with that
expected from the parental phenotypes (Table 1).

A major QTL for flowering time (gFT-C2) with a PVE of
>45 % was consistently detected in linkage group C2 in the
2004 and 2005 data. gF'T-C2 was flanked with SSR markers
Sat_076 and Satt307, which are located in a region harbour-
ing the major gene E/ for maturity (Molnar et al., 2003).
Another QTL (¢FT-J) on linkage group J was significant
in the 2004 test, and had a LOD score of 2-9 in the com-
bined data of the two years. ¢gF'T-J had an opposite effect
compared with the parental phenotypes (Table 1), which
is a plausible factor for causing the transgressive segre-
gation of FT observed in the RIL population (Fig. 1).
A single major QTL (¢DH-L) for DH with a PVE of 72-5 %
was detected on linkage group L. gDH-L was flanked
with SSR markers Sat_099 and Satt006, which are located
in a region harbouring the major gene dr/ for DH
(Cregan et al., 1999).

A significant QTL influencing all of the four morpho-
logical traits was detected on linkage group G in the
2005 data and the combined data of the two years. The
portion of phenotypic variance explained by the QTL
was highest in TH: it accounted for 34-3 and 26-4 % of
the total variance for the 2005 data and the combined
data of the two years, respectively, suggesting that the
QTL mainly controlled the TH. Another significant QTL
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TaBLE 2. QTLs for domestication-related traits detected in a RIL population derived from a cross between G. max ssp. max
and ssp. soja

Traits QTL-LG Position (cM) Nearest marker LOD PVE (%) Additive effect
FT04 qFT-C2 100-7 AGG/CGC380 14-3 554 114
qFT-J 44.3 Satt686 4.0 13-4 =57
FT05 gFT-C2 101-7 AGG/CGC380 107 454 10-8
FT-C qFT-C2 100-7 AGG/CGC380 12.3 494 10-4
qFT-J 44.3 Satt686 29 ns 8-8 —4-5
DHO04 qgDH-L 819 Sat_099 23.9 72-5 4.6
PHO4 qPH-L 710 ATC/CCG315 3.0 ns 13-4 2.5
PHOS qPH-G 280 Satt235 4.6 20-7 6-5
NNO5 gNN-Al 253 Satt042 2-5ns 99 0-5
gNN-G 224 Satt235 3.2 14.0 0-6
MIL04 gMIL-C2 50 Sat_130 3.3 16-8 0-8
MILOS gMIL-G 30-0 Satt235 3.8 152 0-8
gMIL-L 71-0 ATC/CCG315 29 ns 10-6 0-7
MIL-C gMIL-G 280 Satt235 39 17-0 07
gMIL-L 71-0 ATC/CCG315 3.6 16-0 0-7
THO4 qTH-D1b 95.0 Satt546 4.2 20-5 0-8
qTH-G 25-4 Satt235 2-6 ns 10-5 0-6
qTH-L 131 Satt182 2.6 ns 10-8 0-6
THOS qTH-G 280 Satt235 7-6 34.3 13
TH-C qTH-Dla 0-0 Satt408 2-6 ns 9:2 0-6
qTH-D1b 95-0 Satt546 2-7 ns 10-1 0-7
qTH-G 274 Satt235 57 26-4 1-1
PD04 qPD-J 184 AGT/CCAL170 3.3 ns 16-3 0-10
PDO5 qPD-J 549 Satt215 4.2 19-4 0-10
PD-C qPD-E 47-8 Sat_124 2-7 ns 9-6 0-07
qPD-J 569 ATG/CCG270 4.9 21-8 0-11
SWo04 qSW-D2 519 Satt154 4.6 24.2 —1-1
qSW-H 60-6 Satt442 2.7 ns 12-0 —-0-7
SWO05 qgSW-D2 48-9 Satt154 3.9 18-5 —1-1
qSW-M 69-3 AGA/CAG540/560 2.9 ns 115 —-09
qgSW-0 879 Sat_274 2-8 ns 10-8 —-0-4
SW-C qSW-D2 519 Satt154 52 19-3 —1-1
qgSW-M 58-6 AGA/CAG540/560 2.7 ns 10-8 -0-8
qSW-0 879 Sat_274 2-8 ns 11.3 —0-8
HS04 gHS-C2 107-3 ACG/CCG45 4.8 137 21-1
qHS-D1b 124.3 Satt459 13.7 47-8 42-8
HS05 gHS-C2 1017 AGG/CGC380 59 18-5 257
qHS-DI1b 124.3 Satt459 12:5 42-5 39-1
HS-C gHS-C2 107-3 ACG/CGC380 57 16:5 23.0
qHS-DI1b 124.3 Satt459 13:5 46-3 399

QTL analyses were conducted for each of the 2004 and 2005 tests (04 and 05) and the average of the two years (-C). ns, non-significance at 0-05

probability by 1000 permutation tests.

The additive effect of each QTL is shown as a trait unit contribution of the soja allele.

FT, flowering time (number of days after seeding); DH, determinate habit (number of nodes increased after flowering); PH, plant height (cm); NN,
number of nodes; MIL, maximum internode length (cm); TH, twinning habit (number of times that a main stem winds around a support); PD, pod
dehiscence (rate of dehiscent pods); SW, 100 seed weight (g); HS, hard seededness (percent of hard seed).

for TH (qTH-D1b) was detected near Satt546 on linkage
group DI1b in the 2004 data. In contrast to gTH-G,
qTH-D1b had no effect on PH, NN and MIL.
Significant QTLs for MIL were detected on linkage
group C2 in the 2004 data and on linkage group L in
the combined data of the two years.

A significant QTL (¢PD-J) for PD was detected on
linkage group J in the 2005 data and the combined data
of the two years. In the 2004 data, this QTL was not signifi-
cant, but had a LOD score of 3-3. A non-significant QTL
with a LOD score of 2-7 was detected on linkage group E
only for the combined data of the two years. gPD-J
accounted for 194 and 21-8% of the total variance
observed in the 2005 data and the combined data of the
two years, respectively.

A significant QTL (¢gSW-D2) for SW was consistently
detected on linkage group D2 in the 2004 and 2005 data.
It accounted for 24-2 and 18-5% of the total variance
observed in the two years. In addition, there were three
non-significant QTLs for SW, one (¢gSW-H) on linkage
group H in the 2004 data and two (¢gSW-M and gSW-O)
on linkage groups M and O in the 2005 and combined
data of the two years. These QTLs each accounted for
10-8—12-0 % of the total variance.

Two significant QTLs for HS (¢gHS-C2 and gHS-D1b)
were consistently detected on linkage groups C2 and D1b
in the 2004 and 2005 data. QTL mapping using the RIL
population therefore confirmed two of the three QTLs
detected by ANOVA in the early generations of the same
cross from which the RIL population derived (Sakamoto
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F1c. 2. Six linkage groups harbouring significant QTLs for domestication-related traits in a RIL population derived from a cross between G. max ssp. max and ssp. soja. QTL analyses were conducted for
each of the 2004 and 2005 tests (04 and 05) and the average of the two years (-C). The box delineates the one-LOD support interval, and the whiskers of each box delineate the two-LOD support interval. FT,
flowering time; DH, determinate habit; PH, plant height; NN, number of nodes; MIL, maximum internode length; TH, twinning habit; PD, pod dehiscence; SW, 100 seed weight; HS, hard seededness.
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et al., 2004). Sakamoto et al. (2004) found another
minor QTL on linkage group G, which was not confirmed
in the RIL population tested in this study. Of the two
QTLs detected, gHS-D1b had the more prominent effect,
accounting for >40% of the total variance, whereas
gHS-C2 accounted for 13-7—18-5 of the total variance.

Interaction between QTLs

A pair-wise two-way ANOVA demonstrated that there
was a consistently significant interaction (P < 0.01)
between two QTLs for HS (¢HS-C2 and gHS-D1b) in the
2004 and 2005 data. A combination of the soja alleles at
both gHS-C2 and gHS-DI1b affected HS more potently
than the sum of their additive effects. No significant epista-
sis was detected in other pairs of QTLs.

Commonality of the QTLs for pod dehiscence, hard
seededness and seed weight in different crosses

Table 3 presents a summary of the QTLs for PD, HS and
SW detected in this and previous studies. In order to make a
comparison with the QTLs detected in previous studies,
non-significant QTLs with a LOD score of >2-5 are also
included in Table 3. All of the crosses tested for PD ident-
ified a common QTL on linkage group J. It had the most
marked effect in each cross, and accounted for approx. 20
to >50 % of the total variance. There were four additional
QTLs in linkage groups D1b, E, L and N in this and pre-
vious studies (Saxe et al., 1996; Bailey et al., 1997). The
effects of these QTLs varied with the crosses. A minor
QTL, gPD-E, detected in this study was located near the
QTL on linkage group E detected by Saxe et al. (1996).

Of the two significant QTLs for HS (¢HS-C2 and
qHS-D1D) detected in this study, gHS-DI1b was positioned
in almost the same region as the QTLs previously identified
in crosses between max and soja (Keim et al., 1990b) and
between the max and semi-wild max lines (Watanabe
et al., 2004). Another significant QTL, gHS-C2, was also
positioned in the region corresponding to the QTL detected
in a cross between the max and semi-wild max lines
(Watanabe et al., 2004). On the other hand, four additional
QTLs for HS were detected on linkage groups A2, I, L and
N in previous studies (Keim et al., 1990b; Watanabe et al.,
2004). Of these, the QTL on linkage group A2, which was
considered as the / locus inhibiting seed coat coloration
itself, had the most prominent effect, with a PVE of 32 %
in a cross between max and soja (Keim et al., 1990b).
However, it was not observed in either the cross between
max and soja tested in this study or the cross between the
max and semi-wild max lines (Watanabe et al., 2004).

There are many reports on the QTLs for SW in soybean.
Table 3 presents only the results obtained in three crosses in
which the parents exhibited large differences in SW. The
previous studies reported an involvement of 4—6 QTLs in
the genetic control of SW in each population. As a whole,
the QTLs for SW were scattered across 12 linkage groups
(A2, B1, B2, C2, D2, G, H, J, K, L, M and O), and each
accounted for around 10 % or less of the observed variation.
The QTL corresponding to gSW-D2, the most marked QTL
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detected in this study, was observed only in a cross between
the max lines (Zhang et al., 2004). No commonality was
detected in the other QTLs across the crosses tested.

DISCUSSION
Segregation distortion

Segregation distortion of molecular markers has often been
reported in the progeny of crossings of cultivated crops x
wild progenitors in maize (Doebley et al., 1990; Doebley
and Stec, 1993), rice (Cai and Morishima, 2002), pearl
millet (Poncet et al., 2000, 2002) and soybean (Keim
et al., 1990a; Yamanaka et al., 2001; Watanabe et al.,
2004). Segregation distortion occurred in six linkage
groups, i.e. C1, C2, E, G, L and M, in the RIL population
tested in this study. Similarly, Yamanaka et al. (2001)
found a highly significant (P < 0-01) segregation distortion
in six linkage groups, i.e. Al, D1b, D2, E,J and L, in an F,
population of a cross between the max and semi-wild max
lines, Misuzudaizu x Moshidou Gong 503. However,
most of the distortions detected by Yamanaka et al.
(2001) were not confirmed in the Fg RIL population gener-
ated from the same cross by SSD, in which the distortion
occurred in four linkage groups, i.e. A2, I, L and M
(Watanabe et al., 2004). Furthermore, there were only a
few regions that consistently produced the segregation dis-
tortion across the two crosses tested by this study and in that
of Watanabe et al. (2004). The observed segregation distor-
tions may have occurred partly by chance because of the
limited sample sizes in the segregating populations.

Xu et al. (1997) summarized the segregation distortion of
molecular markers that has been reported in the literature,
and highlighted possible factors, including the abortion of
male or female gametophytes or the selective fertilization
of gametes. Aberrant segregation ratios also result from
non-deliberate selection against wild characters under culti-
vated conditions (Cai and Morishima, 2002). Cytogenetic
studies in soybeans have revealed that paracentric inver-
sions and reciprocal translocations existed between the cul-
tivated soybean and certain wild soybean accessions
(Palmer et al., 1987; Singh and Hymowitz, 1988; Palmer
et al., 2000). Crossing over within inversions or interchange
segments in plants heterozygous for paracentric inversions
and/or reciprocal translocations leads to both pollen and
ovule sterilities and restriction of recombination, because
of formation of gametes with incomplete genetic comp-
lements. Pollen fertility and seed abortion were not observed
in the F'; hybrid of the cross used in this study. However, the
tight linkage unexpected from the recombination distance in
the consensus map (Cregan et al., 1999; Song et al., 2004)
was not observed for neighbouring SSR markers. Also,
intentional selection against wild characters in experimental
conditions can be excluded as a causal factor because the loss
of wild traits, such as hard seededness and seed shattering,
could be easily remedied by scarification of the seed coat
and harvesting of the mature pods before shattering during
development of the RIL population. A further study is
needed to verify the possibility that the segregation distortion



TaBLE 3. Commonality of QTLs for pod dehiscence, hard seededness and seed weight in different crosses of soybean

Parent*
Female Male Analysis method Linkage group Nearest marker Position” (cM) PVE or r* LOD Reference
Pod dehiscence
A81-3560222 PI468916 M J Sct_065 32 34.7 Approx. 3-7 Saxe et al. (1996)
M) (S) J AT24 85 21-6 Approx. 2.7
Dl1b B194-2 88 23.7 Approx. 3-1
Young PI1416937 ANOVA Di1b AT25 9 53-72 - Bailey et al. (1997)
M) M) E cr274-1 48-53 6-0-7-1 -
J B122-1 57 39-1-44-4 -
L A489-1 95 5-0-5-6 -
N A808n 69 4.1-57 -
Toyomusume Hayahikari CIM J Sat_093 46 >50-0 13-8-15-6 Funatsuki et al. (2006)
(M) M)
Tokei 780 Hidaka 4 CIM E Sat_124 16 (32-40) 9-6 2.7 This study
(M) (S) J Satt215 44 16-3-21-8 3.3-4.9
Hard seededness
A81-3560222 PI468916 ANOVA A2 1 49 32.0 - Keim et al. (1990)
™M) (S) Dl1b K411 119 13-0 -
L G173-1 87 15-0 -
N K418 30 12-0 -
Misuzudaizu Moshidou Gong 503 CIM Cc2 Satt100 114 26-0 140 Watanabe et al. (2004)
M) M) Dl1b B142 119-132 10-6 63
I GM222b 28-31 6-1 3-0
Tokei 780 Hidaka 4 CIM Cc2 AGG/CGC380 99-121 13.7-18:5 4.8-5-9 This study
M) (S) Dl1b Satt459 119 42.5-47-8 12-5-13.7
Seed weighﬁ]E
V71-370 PI407-162 ANOVA A2 T153 50 49-7-1 - Maughan et al. (1996)
™M) (S) Bl All18 59 21-1-14-2 -
(24-19) (159 G A816 68 7-8-9-8 -
J K384 28 5:7-10-5 -
L A023 37 4.3-87 -
L K385 101 10-5-09 -
Kefeng 1 Nannong 1138-2 CIM A2 Satt525 97 6-7 3.4 Zhang et al. (2004)
M) M) Bl Satt509 33 10-8 3-8
81g) (193 g) D2 A611D 10-23 92 4.5
D2 B146H 23-25 114 4.8
Misuzudaizu Moshidou Gong 503 CIM B2 B124b 84 6-1 3.1 Watanabe et al. (2004)
M) M) c2 Satt286 102 77 3-8
(approx. 21 g) (approx. 5 g) H A858a 124 74 29
K Satt518 47 5-8 32
Tokei 780 Hidaka 4 CIM D2 Satt154 57 18-5-24-2 3.9-5.2 This study
M) (S) H Satt442 47 12-0 2.7
(264 g) 329 M AGA/CAGS540/560 67-95 10-8-11-5 2.7-29
O Sat 274 108-0 10-8-11-3 2-8

* M and S indicate max and soja. A dehiscent or hard-seeded parent is underlined.
T Position in the consensus map (Cregan ez al., 1999; Song et al., 2004). In the case of AFLP markers, the positions of flanking SSR markers are presented.

* Seed size of parents is given in parentheses.
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is caused by gametophyte genes, as frequently found in
subspecific crosses of rice (Oka, 1988; Xu et al., 1997).

Genetic basis of pod dehiscence, hard seededness and
twinning habit

CIM revealed that one or two significant QTLs were
involved in the genetic control of each DRT. Of these
QTLs, gPD-J for PD and gHS-D1b for HS were common
across the different crosses tested so far (Table 2). In par-
ticular, gPD-J is a major QTL that contributes to a wide
variation from the wild soybean to modern indehiscent
soybean cultivars. Another commonly found QTL,
gHS-D1b, differed in relative effects on hard seededness
among the crosses. It had the most marked effect in the
RIL population tested in this study, whereas the QTLs on
linkage groups A2 and C2 (corresponding to gHS-C2 in
this study) had larger effects in the other crosses (Keim
et al., 1990b; Watanabe et al., 2004). In particular, the
QTL on linkage group A2 detected by Keim et al
(1990b) was not found in the cross used in this study or
in that used by Watanabe et al. (2004). Therefore, different
sets of QTLs may contribute to the phenotypic difference in
HS between the cultivated and wild soybeans to different
degrees, as suggested in our earlier study (Sakamoto
et al., 2004).

Two QTLs, gTH-G and gTH-D1b, are the first reported
QTLs for TH in soybean. Each of the two QTLs was
detected in both the 2004 and 2005 tests. MIL, a measure
of the degree of internode elongation in the upper nodes,
also characterized the difference in plant architecture
between the parents used in the cross. gTH-G influenced
the expression of MIL as well, whereas ¢gTH-D1b did not.
Rather, gMIL-C2 controlled MIL in the 2004 test. The
detection of QTLs for plant architecture may therefore
have depended on the growing stages in which morphologi-
cal evaluation was performed. The DH and early-flowering
habit derived from the max parent, on the other hand, had
no developmental constraint on the expression of TH,
because there was no significant phenotypic correlation
between DH or FT and TH in the RIL population tested
(data not presented). The DH was controlled exclusively
by a major QTL (¢DT-L) with a marked effect, most prob-
ably a major gene dtl. The expression of dtl was therefore
stable even in the genetic background segregating for the
wild characters such as TH.

Seed size, a gigantism in soybean

Seed size evaluated as 100 seed weight was different
from PD and HS in terms of the underlying genetic
bases. SW in the RIL population tested produced a
normal but shifted distribution toward smaller seed size
classes. A lack of large-seeded phenotypes in the hybrid
progeny was also observed in the F, and F5 generations
of a cross between max and soja (Maughan et al., 1996)
and an Fg RIL population derived from a cross between
the max and semi-wild max lines (Watanabe et al., 2004).
In the present study and the study of Watanabe er al.
(2004), there was little distorted segregation for markers
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proximal to the QTLs detected for SW. Thus, the frequency
distribution observed in SW was not caused by unequal seg-
regations of chromosomal regions harbouring the QTLs
for SW. Maughan et al. (1996) suggested that partial
dominance of the small-seeded allele at the QTLs produced
the frequency distribution skewed toward the small-seeded
phenotypes. However, this is not the case for the RIL popu-
lation used in our study and the study of Watanabe et al.
(2004), in which the number of heterozygotes was very
small. The lack of large-seeded phenotypes might rather
be attributed to epistasis between QTLs influencing seed
size directly and indirectly.

A comparison of the QTLs detected so far among the
different crosses may further differentiate a genetic basis
for seed size from PD and HS. In contrast to PD and HS,
common QTLs for seed size across the different crosses
could not be identified (Table 2). Compiling the seed size
QTLs reported so far, Hyten er al. (2004) found that
a total of 26 QTLs for SW were scattered in 18 of the
20 soybean linkage groups, and there were no invariable
QTLs across the cross combinations tested. Soybean var-
ieties and/or landraces most probably have, by different
combinations, the alleles of different effects at many
QTLs. This may result in the transgressive segregation of
seed size frequently observed in intervarietal crosses of
soybean (Fasoula et al., 2004; Hyten et al., 2004). The
lack of common QTLs for SW is in further sharp contrast
to that of the Graminae species, such as rice, maize,
sorghum and tetraploid wheat, where most of the QTLs
for seed size existed commonly in homeologous chromo-
somes even across the species (Paterson et al., 1995; Peng
et al., 2003). The absence of common major QTLs and
the involvement of many QTLs with minor effects strongly
suggest that evolutionary changes toward larger seed in
soybean have resulted from an accumulation of minor
changes at many QTLs influencing seed size directly and
indirectly. Usage of a variety of landraces with different
seed sizes in Asia might have contributed to the conserva-
tion of diversity for genetic control of seed size in soybean.

Implication of the genetic basis of domestication-related
traits and the genetic diversity involved in soybean

The results obtained in this study suggest that most of the
DRTs examined are controlled by one or two major QTLs
and a number of genotype-dependent minor QTLs. This
is in good agreement with the genetic basis for DRTs
reported in many crop species as reviewed by Ross-Ibarra
(2005). Another commonly found trend of the genetic
basis of DRTs is a clustering of domestication-related
QTLs. However, this did not hold true for soybean. In the
RIL population tested, only four genomic regions harboured
QTLs for different traits, i.e. QTLs for FT and HS in
linkage group C2, QTLs for HS and TH in linkage group
DIb, QTLs for FT and PD in linkage group J, and QTLs
for MIL and DH in linkage group L. Minimal clustering
of QTLs for DRTs observed in this study may be partly
attributable to the fact that most of the traits examined,
except for the four morphological traits associated with
plant architecture, had no developmental constraint toward
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each other. Introgressions from the wild to cultivated soy-
beans can be relatively easily carried out without any
large obstacle because the major QTLs for DRTs were
present on only six of the 20 linkage groups, and there
were few clusterings of those QTLs, although the role of
minor QTLs undetected by CIM should not be
underestimated.

The results obtained in this study also have an important
implication concerning the genetic diversity embedded in
the max germplasm. Compiling both their own data and
the data presented in the literature, Wang et al. (2004)
suggested that it would be difficult to unlock positive
allelic diversity from the wild soybean. This is based on
the findings that the useful QTLs from the wild soybean,
such as the QTLs for high protein content (Sebolt et al.,
2000), SCN resistance (Wang et al., 2001) and yield
(Concibido et al., 2003), were already present in the max
germplasm and/or were mapped in cultivated soybean
populations as well (Wang et al., 2004). However, this is
not contradictory to the findings that the introgression
from the wild to cultivated soybeans repeatedly had
occurred via hybridizations or independent domestications
in various regions of East Asia, as has been indicated
from a overlapping of geographical distributions of chloro-
plast and mitochondorial genome types between the culti-
vated and wild soybeans (Shimamoto et al., 1998, 2000;
Abe et al., 1999; Xu et al., 2003). The findings obtained
from this and previous studies on the genetic basis of
DRTs may therefore indicate that some of the useful
genes from the wild soybean, as exemplified by Wang
et al. (2004), have been repeatedly introduced into the cul-
tivated germplasm pools without marked obstacles and have
been retained in a variety of soybean landraces in Asia.
However, the wild soybean is still rich in novel and/or
useful variants for soybean breeding in various traits,
such as high tolerances to salt (Luo et al., 2005) and dehy-
dration (Chen et al. 2006), seed storage protein electro-
phoretic variants (Fukuda et al., 2005), and high lutein
content in seed (Kanamaru et al., 2006). The present
results for QTL mapping of DRTs would be useful to intro-
duce such unutilized genetic characteristics in the wild
soybean into the cultivated genetic background by marker-
assisted selection.
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