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Abstract
In this paper, we present novel algorithms for statistically robust interpolation and approximation
of diffusion tensors—which are symmetric positive definite (SPD) matrices—and use them in
developing a significant extension to an existing probabilistic algorithm for scalar field
segmentation, in order to segment diffusion tensor magnetic resonance imaging (DT-MRI)
datasets. Using the Riemannian metric on the space of SPD matrices, we present a novel and
robust higher order (cubic) continuous tensor product of B-splines algorithm to approximate the
SPD diffusion tensor fields. The resulting approximations are appropriately dubbed tensor splines.
Next, we segment the diffusion tensor field by jointly estimating the label (assigned to each voxel)
field, which is modeled by a Gauss Markov measure field (GMMF) and the parameters of each
smooth tensor spline model representing the labeled regions. Results of interpolation,
approximation, and segmentation are presented for synthetic data and real diffusion tensor fields
from an isolated rat hippocampus, along with validation. We also present comparisons of our
algorithms with existing methods and show significantly improved results in the presence of noise
as well as outliers.

Index Terms
Affine invariance; approximation; diffusion tensors; interpolation; segmentation

I. Introduction
Analysis of matrix-valued image data is becoming quite common as advances in imaging
technology allow for the collection of matrix-valued datasets. In medical imaging, in the last
decade, it has become possible to collect magnetic resonance imaging (MRI) data that can
be used to infer the apparent diffusivity of water in tissue in vivo. A rank 2 tensor has been
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commonly used to approximate the diffusivity profile at each lattice point of the image
lattice [1]. This approximation yields a diffusion tensor magnetic resonance imaging (DT-
MRI) dataset that is a matrix-valued image. These tensors are elements of the space of the (3
× 3) positive-definite matrices denoted by P(3). A word on terminology, the space of
symmetric positive definite (SPD) rank 2 tensors describes the space of all SPD matrices
and in general, we use the notation P(n) to denote the space of SPD matrices of size (n, n).
In this paper, we will be concerned only with rank 2 tensors and for brevity, we will drop the
term rank 2 and simply use the word tensors to imply rank 2 tensors. Mathematically, these
positive definite diffusion tensors belong to a Riemannian symmetric space [2], where the
Riemannian metric is defined by the inner product assigned to each point of this space. By
using this metric, one can compute geodesic (shortest) distances between the points
(diffusion tensors) of this space and compute various statistics in this space [3]–[8].

Processing of DT-MRI datasets has scientific significance in clinical sciences. Most of these
applications involve processing that more often than not involves interpolation of the
diffusion tensor fields. For example, registration of DT-MRI datasets will require
interpolation to be employed when a registration transformation is applied to a tensor field
defined on a lattice. Other examples that require tensor field approximation as well as
interpolation include tensor field segmentation, atlas construction, etc.

In this paper, we present a novel diffusion tensor field approximation algorithm. Our
algorithm approximates and interpolates the diffusion tensor fields by forming a higher
order continuous tensor product of B-splines using the Riemannian metric on the space of
SPD matrices. Our method involves a two-step procedure wherein the first step uses
Riemannian distances to evaluate a tensor spline by computing a weighted intrinsic average
of tensors and the second step minimizes the Riemannian distance between the evaluated
tensor spline and the given data. Furthermore, we present a novel DT-MRI multimodal
(multiclass regions) segmentation algorithm using the proposed tensor splines as an
approximation module. The segmentation is achieved by jointly estimating the label
(assigned to each tensor residing at a voxel) field and the parameters (control points) of each
smooth tensor spline model representing the labeled regions. The label field is modeled by a
Gauss Markov measure field (GMMF) and the segmentation algorithm very efficiently
computes the posterior marginal probability distribution of the label field (given the
parameters describing the region model) as the global minimizer of a linearly constrained
quadratic energy.

We present comparisons of our algorithms with existing methods applied to synthetically
generated diffusion MRI data, and show significantly improved results in the presence of
noise and outliers. We also present several 3-D DT-MRI approximation and segmentation
results from an isolated rat hippocampus. The motivation for segmenting and analyzing the
hippocampus is due to its importance in semantic and episodic formation that is particularly
vulnerable to acute or chronic injury [9], [10]. In current clinical practice, we only look at
the whole hippocampus and describe atrophy for epilepsy (hippocampal sclerosis),
schizophrenia, depression, hypoxia-ischemia, trauma, and Alzheimer’s disease and other
dementias. Obviously, these cannot be distinguished from each other and hippocampal
atrophy is a late imaging sign of pathology. However, we know from more than 100 years of
literature that the hippocampus is made of many different cytoarchitectural regions and that
these regions are selectively vulnerable to the aforementioned diseases (e.g., the CA1 and
subicular regions are affected by Alzheimer’s disease while the dentate gyrus is affected by
medial temporal lobe epilepsy). These regions can be distinguished by diffusion tensor MRI.
Thus, the segmenting techniques being developed here could prove useful to improving the
sensitivity and specificity of diffusion MRI for detecting and monitoring hippocampal
diseases. We can also use these methods for studies in animal models of hippocampal
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disease. Structural insights from high-resolution DT-MRI imaging of the isolated rat
hippocampus were presented previously [11]. In our experiments, we use these structural
results [11] for validation of the obtained segmentation.

In the following sections, we review several existing methods for tensor field interpolation/
approximation and segmentation. Section II contains the mathematical preliminaries on
geometry of the space of diffusion tensors that will be used in developing the interpolation
and approximation algorithms. In Section III, we present the tensor splines interpolation and
approximation algorithms. Section IV contains the application of these algorithms as a
module in a tensor field segmentation algorithm. Section VI contains the discussion and
conclusion.

A. Tensor Field Interpolation and Approximation
Directly performing smooth interpolation of the individual components of the diffusion
tensor matrices [12] does not preserve most of the properties, e.g., the value of the
determinant of the diffusion tensors, etc. This motivates us to seek alternative methods to
achieve interpolation/approximation and segmentation. Smooth interpolation of orientation
fields has been proposed in [13]. Although rank-2 tensors contain the notion of orientation
(e.g., the orientation of its eigenvectors), their structure is much more complicated. Wang
and Vemuri [4], [5] used the symmetrized Kullback–Liebler (KL) divergence as a “distance”
measure between two SPD tensors. They also derived a closed form solution for computing
the mean of two or more SPD tensors. This result can be used in the context of interpolation
and approximation of SPD tensors but this aspect was never explored. In [3], [14], and [15],
a Riemannian metric was proposed for geodesic distance computation between two tensors.
However, none of these methods on geodesic curve computation between tensors use higher
order smoothness constraints in achieving the interpolation/approximation. Thus, although
there is continuity of the interpolated dataset, higher order continuity and hence smoothness
is lacking. Recently, a log-Euclidean metric was proposed in [16] for computing with
tensors. In this work, the elements from the space of positive definite diffusion tensors, P(3),
are mapped to their tangent space, denoted by Sym(3), using the matrix logarithm map. The
tangent space of P(3) forms a vector space of dimension 6. Therefore, one can use the
Euclidean norm for computations in this tangent space and finally by using the inverse
mapping, the interpolated data are mapped back to the space of positive definite matrices
P(3). This framework is very interesting and has advantages due to its high computational
efficiency. Approximation of matrix-valued images can be achieved via various
regularization methods. For instance, a PDE-based approach as was proposed in [17].
Another tensor field regularization method was proposed in [18] using normalized
convolution and Markov random fields (MRFs) in a Bayesian framework. The SPD tensors
are treated as vectors in 6-D and their components are treated independently. Most of the
aforementioned methods disregard the special geometry of the space of SPD diffusion
tensors in the regularization, which in turn may lead to inaccurate predictions (e.g., wrong
determinants, lack of affine invariance, etc.).

Affine invariance is a desirable feature for segmentation algorithms to possess. Many a time,
when a patient being imaged moves, the image data undergo rigid motions; moreover, if
there are breathing artifacts, data undergo an affine deformation. Other scenarios include
pre- and the post-surgical DT-MRI data acquired from the same patient, data acquired over
time depicting tumor growth, etc. In these latter situations, the diffusivity of the underlying
tissue microstructure is altered and does not remain constant. The true transformation of the
diffusivity is actually unknown and an affine transformation is at best an approximation.
Under these conditions, it is desirable to have affine invariance of the segmented structures,
i.e., the segmentations of the two images should be related by the same affine transform that
the two images are related by.
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In [19], it was shown that, under the assumption of tissue microstructure remaining intact
between two data acquisitions, the diffusion tensors are always transformed (pre- and post-
multiplication) only by rotations regardless of the order of the transformation relating the
two image coordinate systems. This is certainly true for the case when there is a rigid motion
of the patient between the two acquisitions. However, there are many applications that do
not guarantee this condition and the research reported here is an attempt to address this
problem through the imposition of an affine invariance requirement on the segmentation.
The claim is that if the relationship between the two image’s coordinate systems denoted by
X and Y can be approximated by an affine transform, the diffusion tensors estimated from
each image would be related by TY = AtTXA, where TX and TY denote the tensor fields on
the coordinate systems X and Y, respectively. This is mathematically precise and would
hold when there are microstructural changes that can be approximated by affine transforms.
For more details on affine invariant segmentation, the reader is referred to [5].

B. Tensor Field Segmentation
In this section, we will briefly review SPD tensor field segmentation algorithms. In [20],
Zhukov et al. proposed a level set segmentation method that segments the scalar anisotropic
property computed from the diffusion tensor. By using such a scalar field, the direction
information contained in the tensor field has been ignored. Thus, such a method will fail to
correctly segment two homogeneous regions of a tensor field that have the same scalar
anisotropy property but are oriented in different directions. Feddern et al. [21] extended the
mean curvature flow and self-snakes models to matrix-valued data. However, their method
employs the Euclidean metric to measure distance between tensors and not the Riemannian
metric discussed earlier. Thus, it does not possess some of the interesting properties that
accrue from the use of a Riemannian framework (e.g., the affine invariance property, etc.).
Wang et al. [4] developed a region-based active contour model for tensor field segmentation.
They generalized the well known region-based active contour model for scalar field
segmentation to that of tensor fields, and developed a variational principle using the
Forbenius norm of the difference of tensors as a discriminant in the data term. More
recently, Lenglet et al. [15] developed a statistical surface evolution framework using the
Fisher-Rao metric. They employed the principle that within a region the diffusion tensors
can be modeled by using statistics and distributions of diffusion tensors. The surface
evolution framework and the active contour models can be extended to cope with multiple
types of regions, but such an extension is computationally expensive and can be quite
cumbersome.

II. Mathematical Preliminaries
In this section, we briefly review the geometry of the space of diffusion tensors. More
detailed expositions on some of this material may be found in [3], [6], and [7].

The space of rank 2 diffusion tensors can be viewed as a Riemannian symmetric space [22],
where a Riemannian metric assigns an inner product to each point of this space. By using
this metric, we can compute geodesic distances between diffusion tensors and calculate
statistics on this space [3], [6], [7]. For example, the mean tensor of a set of diffusion tensors
can now be computed as that tensor that minimizes the sum of squared Riemannian
distances between itself and the given set of tensors. The mean tensor may be employed as
an interpolant for performing principal geodesic analysis, etc.

In the aforementioned Riemannian framework, the distance between two tensors T1 and T2
is given by dist2 (T1, T2) = trace(log(T1

−1/2T2T1
−1/2)2), where log is the matrix logarithm

operation. By using this distance measure, the geodesic curve (shortest path) between T1 and
T2 is defined uniquely. The tangent, specified at the first tensor with respect to the other one
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along the unique geodesic between them, is a 3×3 symmetric matrix and is given by the
Riemannian-log map, LogT1(T2) = T1

1/2 log(T1
−1/2T2T1

−1/2)T1
1/2. The inverse operation is

given by the Riemannian-exp map, ExpT1(T) = T1
1/2exp(T1

−1/2TT1
−1/2)T1

1/2, where Exp is
the matrix exponential operation and T is a 3 × 3 symmetric matrix. We will use this
Riemannian distance between SPD tensors in computing the distance between the given data
and the tensor spline approximation of the data as well as in computing the weighted
average for defining the tensor spline. In the following section, the Riemannian exponential
and logarithmic maps, and the expression for a geodesic between two diffusion tensors, will
be used in order to define and compute the tensor splines.

III. Tensor Splines
In this section, we present a novel and robust spline approximation algorithm given a noisy
SPD tensor field. Our algorithm involves the use of the Riemannian distance between SPD
tensors in order to evaluate a tensor spline by computing a weighted intrinsic average of
SPD tensors. This module (the intrinsic weighted average calculator) is then used in a robust
tensor product B-spline fitting method involving the minimization of the Riemannian
distance between the tensor spline function and the SPD tensor valued data. The tensor
valued data are obtained from the diffusion MRI datasets by fitting the mono-exponential
signal attenuation model, called the Stejskal–Tanner equation [23].

This section has three subsections. First, we provide a brief review of B-splines. Next, we
present a novel algorithm for computing splines on a given SPD tensor field. Following that,
we present tensor splines using the log-Euclidean metric as an improvement over recent
work in [16] (described earlier). Then, we present our robust tensor spline approximation
algorithm. Finally, a robust tensor spline approximation (fitting) technique is presented.

A. B-Splines
The equation for a (k − 1)th degree B-spline with (n + 1) control points (c0, c1,…, cn) and n
+ k + 1 numbers called “knots” (t−k+1, t−k+2,…, tn+1), is

(1)

where t0 ≤ t ≤ tn+1−(k−1). Each control point is associated with a basis function Ni,k, where

(2)

and

(3)

Ni,k(t) functions are polynomials of degree k−1. Cubic basis functions Ni,4 can be used for a
third degree B-spline. Knots must be series of monotonically increasing numbers. A more
detailed discussion on B-splines can be found in [24].

One useful property of the functions Ni,k(t) is that Ni,k(t) ≥ 0, for all i and Σi=0 Ni,k(t) = 1.
Considering the above properties, functions Ni,k(t) behave as blending functions and (1) is a
weighted average of the control points ci.
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B. Tensor Spline Interpolation
Given two SPD tensors P1 and P2, we can use the tangent direction specified at P1 with
respect to P2 by the unique geodesic (obtained using the Riemannian structure) between
them. Even though there is continuity of the interpolated tensors, there is lack of higher
order continuity. It is more natural to have a higher order continuity in the interpolant when
used to represent smoothly varying regions of tensors.

Recent work in [12] on continuous tensor field approximation achieves smoothness;
however, a Riemannian framework is not employed for tensor calculations. In this section,
we define tensor splines that are curves interpolating or approximating matrix valued
functions, constructed using the geometry of the space of SPD tensors. Note that we are
defining tensor-splines by doing weighted intrinsic averages on P(n) and choosing the
weight functions to be B-splines. As an illustration of interpolation on a 1-D grid of tensors,
Fig. 1(b) depicts the idea of using weight functions (B-splines here) to perform weighted
average of tensors using the Riemannian metric. This weighted averaging leads to the
desired degree spline interpolant (approximant when used in a fitting problem) of the
diffusion tensor data.

Let us assume that we have a set of N diffusion tensors (p0, p1, …, pN−1) on a one-
dimensional grid, and we need to interpolate between them. Linear (first degree)
interpolation on the tensor space can be achieved by simply computing points on the
geodesies connecting two consecutive diffusion tensors. Higher degree continuous
interpolation can be achieved by using a set of control points and a knot vector. A k − 1th
degree tensor spline that fits to our data requires N+k − 2 control points (c0, c1, … cN+k − 3)
that are also tensors and N + 2(k − 1) monotonically increasing knots (t−k+1,t−k+2, …,
tN+k− 2). A tensor S(t), where t ∈ [tj, tj+1), which is a point on a tensor spline, can now be
computed by generalizing (1) to the space of tensors. We can compute the value S(t) of the k
− 1th degree B-spline of tensors for a particular t value, by calculating a weighted intrinsic
average, Σ̃, of the control tensors ci, where the weights are the basis functions wi = Ni,k(t),
discussed earlier

(4)

The intrinsic weighted average (4) of tensors is defined using the Riemannian distance
instead of the Euclidean distance, and it is the minimizer of the function

(5)

where dist(·, ·) is the Riemannian geodesic distance. The weighted average can be computed
using a gradient descent algorithm that is an extension of the algorithm described in [3] for
computing the mean of tensors. The gradient of ρ(μ) is given by

(6)

Thus, the intrinsic weighted average of a set of diffusion tensors can be computed using the
following procedure:
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C. Tensor Spline Approximation
In order to fit a tensor spline to the diffusion tensor data, we have to approximate the control
tensors of such a spline. A tensor spline that fits to our data, minimizes the Riemannian
distance of the given tensors from the tensor spline curve

(7)

In (7), the Riemannian metric should be used for the distance calculation, since the tensor
space, where the data and control points live, is a curved manifold (convex cone). We need
to find a set of control points (c0, c1, …, cN − 1+k − 2) that form the spline S(t) which
minimizes the energy E. The gradient of E with respect to cj is then given by

(8)

The gradient of the square distance between S(ti) and pi with respect to S(ti) equals

(9)

where LogS(ti)(pi) is the Riemannian logarithmic map, which is a tangent vector at S(ti).
Since the gradient of the energy [see (8)] is with respect to cj, we need to express the
gradient in (9) by using tangent vectors at point cj. Taking this into consideration, (9) can be
approximated by the formula Λcj(pi, S(ti)) = Logcj(pi) − Logcj(S(ti)), so we obtain

(10)

Furthermore, the gradient of S(ti) with respect to cj in (8) is

(11)

Using (11) and (10) in (8), we obtain

(12)

Starting with an initial guess of the control tensors, we can update them by using the
gradient descent technique. The new values c′j of control tensors will be

(13)

where Exp(.) is the Riemannian exponential map. The initial guess of the control tensors can
be either the given data or the average tensor of the given tensors. The gradient descent
algorithm is summarized as follows:
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The time complexity for a single iteration of Algorithm 2 is of order O((kdc)N), where k is
the degree of the spline, d is the dimensionality of the dataset (for 3-D data d = 3) and c is
the number of iterations of Algorithm 2, and N is the given input data size (number of
tensors to be approximated). In the experiments that we performed, we found that Algorithm
2 converges in at most in five iterations (c ≤ 5), a CPU time of 9.37 s per iteration on a
Pentium 2.4-GHz processor for fitting a cubic (k = 3) tensor spline in a dataset of size 128 ×
128. As expected, the time complexity of Algorithm 2 increases as we increase the degree of
the spline k or the dimensionality of the dataset d. Note that we chose to provide this
machine independent measure of time complexity because execution time will depend on
the machine architecture and therefore is not a preferred measure.

The error introduced by the approximation of (10) can be large, if the tensor spline
approximation S(ti) is far from the target pi. When S(ti) tends (moves closer) to pi during the
spline fitting procedure, the error introduced by the approximation of (10) tends toward zero.
By setting a small threshold e on the difference between consecutive iterates, the outer loop
of Algorithm 2 will be iterated sufficient times in order for the error of (10) to be as small as
needed. Thus, the control tensors cj, which are obtained as the output of Algorithm 2, are
estimated by taking the true geometry of P(n) into account.

Tensor splines can be easily extended to higher dimensional tensor fields. For example,
consider the case of a 2-D N × M tensor field. A (k − 1)th degree tensor spline that fits to
our data requires (N + k − 2) × (M + k − 2) control tensors and (N + 2(k − 1)) × (M + 2(k −
1)) monotonically increasing (in both the dimensions) knots (t−k+1,−k+1, …, tN+k−+2,M+k−2).
Note that in this case the knots are vectors with two elements, one for each parametric
dimension. Finally, the new basis functions are formed by the tensor product of 1-D basis
functions Ni,j,k([t1t2]) = Ni,k(t1)Nj,k(t2).

D. Log-Euclidean Splines
Recently, Arsigny et al. [16] proposed a new log-Euclidean metric for tensor calculations. In
this framework, the diffusion tensors are first mapped using the matrix logarithmic map to
the space of the symmetric matrices Sym(n). Thereafter, the Euclidean norm is used in all
calculations in this space. Finally, by using the matrix exponential mapping, the computed
values are mapped back to the manifold P(n). Using the log-Euclidean metric we can also fit
a spline to the logarithmically mapped data in the space of symmetric tensors, and after that
we can map the interpolated/approximated symmetric tensors back to the space of SPD
tensors using the exponential mapping. In Section V, we provide a quantitative comparison
between tensor splines and splines using the log-Euclidean metric that we will call “log-
Euclidean splines.”

E. Robust Tensor Splines
The presence of outliers is common in DT-MRI data due to noise in the original data
obtained from the MR scanners [25]. A robust algorithm should reject these outliers from
further consideration in any processing algorithms applied to the dataset.

A robust function can be applied to the energy function, in order to weight the given data pi
appropriately. We can use a robust function that assigns weights in the interval [0, 1], where
weights that are almost zero imply rejection of the corresponding data point. Furthermore,
high weights should be assigned to the data points whose distance from the unknown spline
curve is small and on the other hand lower weights should be assigned to the data points
whose distance from the unknown spline is larger. Let us consider the following function
φ(x) = e−(x2)/(σ2), whose derivative ψ(x) has the aforementioned properties. By using the
above function φ, the energy function that we want to minimize can be written as
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(14)

The gradient of this energy with respect to the control tensors now becomes

In the above equation the quantity ψ(dist(S(ti), pi)), weights the given data points pi, leading
to a spline approximation that is robust to outliers. The distance function dist(.,.), as it was
previously mentioned, measures the Riemannian distance between the tensors.

IV. Application to Segmentation of DTI Data
In this section, we pose the DT-MRI segmentation problem in a Bayesian estimation
framework, which has many advantages over the deterministic segmentation schemes in that
it naturally allows for incorporation of any specific domain knowledge in the form of priors.
Moreover, estimates are provided along with the uncertainty in the estimate. Also, one can
get a “soft” segmentation, i.e., a probabilistic segmentation when necessary. Our
formulation of the segmentation problem is based on recent work on scalar-valued image
segmentation work reported by Rivera et al. [26].

We assume that the given DT-MRI dataset pi consists of K regions, where “i” is the lattice
index. Furthermore, we assume that each region is represented by a model Sk(ti), where k =
1 … K. There are different choices for the model, which can be either piecewise constant or
a smoothly varying tensor field model. In the space of diffusion tensors, the piecewise
constant model has a parameter θk which is a 3 × 3 SPD matrix. Therefore, for this model
the equation Sk(ti) = θk holds for all ti. In the case of smoothly varying tensor fields, we
chose a tensor product of tensor splines as our model Sk(ti), whose parameters are the
control tensors ci defined in Section III-A. The relation between the control tensors and the
tensor spline is given by (4).

Let bki be the label map, where bki = 1 indicates that the diffusion tensor at the ith lattice
point belongs to the kth region class and bki = 0 otherwise. Considering the above notation, a
diffusion tensor dataset can be modeled as being generated using a generative model given
by the following equation:

(15)

where εi is assumed to be an independent identically distributed noise process. In this
framework, the parameters of the models and the labels bki are assumed unknown and must
be estimated given a diffusion tensor dataset pi. The goal then is to estimate these unknowns
given the tensor field. A Bayesian framework has been popular in literature for solving such
problems and an efficient solution for the scalar field segmentation was previously presented
in [26]. Our formulation here extends their formulation to cope with tensor fields.

Let υki be the probability that the diffusion tensor pi was generated by the kth model. The
likelihood of the label field is then given by
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(16)

where c are the control tensors (parameters of the tensor splines). In the case of tensor-
valued images, we can define the probability υki as

(17)

where dist(.,.) is the Riemannian geodesic distance between two SPD tensors. If we can
estimate the marginal probabilities pki, the label field for a hard segmentation (assigns labels
in a yes/no fashion and not with a probability) can be estimated by the maximum posterior
marginals (MPM) estimator [27] which is defined as

(18)

By using the above label field estimator, the unknown variables of our problem are the
parameters of the models and the marginal probabilities pki. There are two ways to estimate
the marginals: a) the mean field approximation [28] and b) Gauss markov measure field
(GMMF) model [27]. The mean field approximation leads to algorithms that are rather slow
and sensitive to noise and the GMMF approach in [27] leads to significantly different (in the
sense of entropy) distributions from the true ones. In [26], Rivera et al. developed a clever
technique that controls the entropy of the solution distribution and constraints it to be closer
to the true distribution. Using the formulation presented in [26], we can efficiently estimate
the unknown parameters of the above mentioned GMMF model by minimizing the
following energy function:

where μ controls the entropy of the marginals, λ controls the smoothness of the label field,

and γi are Lagrange multipliers that were introduced to enforce the condition .

The purpose of the entropy control is to bias the posterior marginals estimates toward
distributions that have low entropy. Also, log υki is introduced instead of υki to make the
data term quadratically depend on the model parameters (tensor spline control vertices) c
and for the energy function to remain a quadratic positive definite function of the marginal
probability υ and μ < 2λ. For a detailed discussion on the nuances of this energy function
(for scalar fields that are also applicable here), we refer the reader to [26]. The energy can be
minimized using the expectation maximization (EM) procedure or a generalized EM [29].

In this segmentation algorithm, the number of labels K is not a hidden variable and is
predefined. This number can be set equal to or greater than the number of regions that a
neuroanatomist expects to find in a particular dataset.
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V. Experimental Results
This section is divided into two subsections. The first one contains experimental results
obtained by testing the approximation of a diffusion tensor field using tensor splines. In the
second subsection, the DT-MRI segmentation experiments performed using the proposed
algorithm are described.

A. Tensor Spline Approximation Experiments
In this section, we present several tensor spline approximation experiments with noisy
synthetic as well as real DT-MRI data. We also present comparisons with four other existing
methods to demonstrate the performance of our proposed tensor spline approximation
algorithm. We synthesized a tensor field on a 2-D lattice of size 33 × 33. For the generation
of this field, a realistic simulation of the diffusion-weighted MR signal using the Söderman-
Jönsson equation presented in [30] was performed. Using this process, at each voxel the MR
signal was simulated as a function of the angle θ between the applied diffusion gradient and
the orientation of the fiber. At each voxel of the 2-D synthetic field, the orientation of the
fiber was assumed to be tangent to circles centered at the lower left corner of the field.
Using this fiber structure, the diffusion-weighted MR signal attenuation was simulated for
21 orientations that correspond to the second-order tessellation of the icosahedron on a unit
hemisphere, using b-value = 1500 s/mm2. The diffusion tensor field was estimated from the
21 diffusion-weighted images using a linear least squares technique applied to the log
linearized Stejskal–Tanner equation [23]. This diffusion tensor field will be considered as
the ground truth field for the experiment described below.

Gaussian noise was added to the real and imaginary parts of the simulated diffusion MR
signal and then the magnitude signal computed from this noisy complex-valued data. From
this signal, we estimated the diffusion tensors as before and then subsampled it by a factor of
4. This process was repeated for different amounts of signal to noise ratios. The first column
of Fig. 2 depicts the primary eigenvector field of the 9 × 9 subsampled noisy tensor fields
corresponding to signal to noise ratios of 5.0 (top) and 3.0 (bottom). Our goal now is to
compare our tensor spline approximation and interpolation method against existing methods
in literature, as well as our own modifications of these techniques.

We first approximated (fitted) the noisy tensor fields by using four different techniques
including ours and then interpolated the approximation (fitted) results by a factor of 4. The
four methods that we employed were: 1) linear approximation of the elements of the SPD
tensors; 2) log-Euclidean geodesic approximation [16]; 3) Riemannian geodesic
approximation [3]; and 4) PDE-based anisotropic nonlinear diffusion [17] (Table I).
Following this, we present a table of results comparing our method with statistically robust
implementation of all the methods (except the PDE-based diffusion filter as its not a simple
matter to implement this filter in a robust framework). We also present the results of
comparison of a spline version of others’ work with our own, all in a robust framework. In
all these comparisons, as expected, our tensor splines algorithms outperformed the
competing methods.

We use two methods to measure the distance of the estimated tensor fields from the ground
truth tensor field: a) the Riemannian metric and b) the Frobenius norm defined as

, where A and B are two SPD matrices. These errors are computed
at each voxel and the mean (μ) and standard deviation (σ) of these errors (denoted by Riem.
μ, Forb. μ and Riem. σ, Forb. σ, respectively) are reported in Table I for the noisy dataset
corresponding to a signal-to-noise ratio of 3.0. As evident, the error is much smaller for our
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algorithm in comparison to the others. These results demonstrate the superior performance
of our algorithm over other existing methods.

Fig. 3 shows a real data example from an isolated rat hippocampus. The diffusion weighted
MR images for this example were acquired using the following protocol. This protocol
included acquisition of 22 images using a pulsed gradient spin echo pulse sequence with
repetition time (TR) = 1.5 s, echo time (TE) = 28.3 ms, bandwidth = 35 kHz, field-of-view
(FOV) = 4.5 × 4.5 mm, matrix = 90 × 90 with 20–30 continuous 200-μm-thick axial slices
(oriented transverse to the septotemporal axis of the isolated hippocampus). After the first
image set was collected without diffusion weighting (b ~ 0 s/mm2), 21 diffusion-weighted
image sets with gradient strength (G) = 415 mT/m, gradient duration (δ) = 2.4 ms, gradient
separation (Δ) = 17.8 ms, and diffusion time (Tδ) = 17 ms were collected. Each of these
image sets used different diffusion gradients (with approximate b values of 1250 s/mm2)
whose orientations were determined from the second-order tessellation of an icosahedron
projected onto the surface of a unit hemisphere. The image without diffusion weighting had
36 signal averages (time = 81 min), and each diffusion-weighted image had 12 averages
(time = 27 min per diffusion gradient orientation) to give a total imaging time of 10.8 h per
hippocampus. Temperature was maintained at 20 ± 0.2°C throughout the experiments using
the temperature control unit of the magnet previously calibrated by methanol spectroscopy.

In Fig. 3, the proposed tensor spline approximation algorithm is compared with the recently
proposed log-Euclidean metric based approximation algorithm [16], described earlier. Fig.
3(a) depicts the FA map of the original (noisy) and the approximated data. Note that the FA
map after the approximation is much smoother that the FA map prior the approximation
(3(a) bottom). Fig. 3(b) shows a 3-D view of the results using log-Euclidean geodesic
approximation (left) and nonrobust tensor spline (right) algorithms. Notice that in the tensor
spline approximation results the noise has been considerably smoothed out. This may be
attributed to the higher order smoothness imposed by the tensor spline developed in this
work.

B. DTI Segmentation Experiments
In this section, several segmentation experiments with noisy synthetic tensor fields as well
as real diffusion tensor data of an isolated rat hippocampus are presented. Validation results
are also presented to demonstrate the performance of our proposed algorithm for diffusion
tensor field segmentation under different amounts of noise in the data.

We synthesized several 2-D synthetic tensor fields of size 32 × 32, with different shapes of
regions and different anatomy of the diffusion tensor field in each region. All synthetic
tensor fields were generated by simulating the diffusion-weighted MR signal [30] as
described earlier in Section V-A. Fig. 4(a) and (b) present tensor fields consisting of two
piecewise constant regions: 1) a small square region in the center of the tensor field and 2)
the region forming the rest of the tensor field. The FA is 0.6 in both regions. In Fig. 4(a), the
tensor field within the regions is piecewise constant, while in Fig. 4(b) it is smoothly
varying. Finally, Fig. 4(c) consists of the following regions: 1) a ring with principal
eigenvectors tangent to circles centered in the lower left corner of the image; 2) two
triangular regions with horizontal principal eigenvectors; and 3) two triangular regions with
vertical principal eigenvectors. The last two regions have the same FA equal to 0.6, while
within the ring the FA is 0.8.

We segmented the three tensor fields of Fig. 4 using the proposed entropy controlled
segmentation algorithm described in Section IV. The parameters of the algorithm that we
used are λ = 1 and μ = 0.1. The segmentation results (boundaries between segmented
regions) are presented in Fig. 4. The results are as per expectation.
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In order to demonstrate the segmentation performance of our proposed algorithm under
partial voluming effects, we synthesized a 2-D field consisting of two rectangular regions;
the region on the left consists of fibers with orientations parallel to x-axis, and the region on
the right is composed of fibers with orientations parallel to y-axis (Fig. 5). Diffusion-
weighted images for this 2-D field were obtained by simulating the MR signal, similarly to
previous experiments. Then the diffusion-weighted images were averaged using a 10 × 10
kernel, which produces a single average measurement per image for every 10 × 10 pixels.
This process was repeated for different locations of the averaging kernel and each time the
corresponding tensor field was estimated from the averaged images (see illustration in Fig.
5). The estimated tensor fields were then segmented using our proposed algorithm. The
segmentation performance defined as the ratio of the correctly classified area over the total
area was computed for the pixels on the boundary between the two regions, and found to be
0.75. For the rest of the pixels (nonboundary pixels) this ratio was 1.0. Finally, we
synthesized a 320 × 320 tensor field similar to the one in Fig. 4(c), and then by following the
above averaging process we filtered the tensor field down to a) 32 × 32 and b) 64 × 64. After
that, the two obtained tensor fields were segmented using our algorithm and the
segmentation performance found to be 0.92 and 0.96, respectively. These high values
indicate the relative insensitivity of our algorithm to partial voluming.

In the following experiments, we used the real diffusion tensor dataset from an isolated rat
hippocampus, shown earlier in Fig. 3. Fig. 6 presents segmentation results on a 2-D slice
selected arbitrarily from the 3-D dataset. Fig. 6(a) depicts the fractional anisotropy (FA) map
segmentation obtained using the scalar field entropy-controlled segmentation algorithm
presented in [26]. Since the FA map does not contain any information about the orientation
of diffusion, as expected, its segmentation yields erroneous results when compared to the
expert’s hand segmentation shown as an overlay in Fig. 6(d), taken as the ground truth. This
example demonstrates that the tensor field segmentation obtained by segmenting a scalar-
valued function computed from the tensors would not suffice in achieving the desired
results. Fig. 6(b) depicts the segmentation result using a piecewise constant model in our
tensor field segmentation algorithm described earlier and Fig. 6(c) depicts the segmentation
result using a piecewise smooth segmentation model. Finally, in Fig. 6(d), we compare our
results (shown in the background) with a manually labeled segmentation, based on expert
knowledge of hippocampal anatomy (shown as an overlay).

There were some differences between expert manual segmentation and the automatic
segmentations of the rat hippocampus, although automatic segmentation based on the
smoothly varying tensor spline model better matched the expert manual segmentation than
the segmentation based on the piecewise constant model. Expert manual segmentation of the
rat hippocampus was based on previous knowledge of hippocampal cytoarchitecture
obtained from 2-D visualization of the hippocampus with contrast generated by
immunochemistry, various histological staining methods, and tracer studies [11]. The
differences appreciated and boundaries denoted by these older techniques offer only indirect
or inferential information about the orientations of neurons and glia within the hippocampus.
Thus, manual segmentation may differ significantly in certain hippocampal regions from
automatic segmentation based on the tensor model of fiber coherences in the rat
hippocampus. It must be further considered that study of the hippocampus using these new
methods may produce novel insight into the cytoarchitecture of different hippocampal
regions not previously known based on previous techniques.

Finally, we present results of segmenting the whole 3-D volume of the isolated rat
hippocampus using our segmentation algorithm with the smoothly varying tensor spline
representation of the regions. Fig. 7(a) presents a 3-D view of most of the regions detected
by the proposed algorithm. Finally, Fig. 7(b) shows different views of the molecular layer
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contained in the segmentation result shown in Fig. 7(a). To the best of our knowledge, this is
the first report on automatic segmentation of an isolated hippocapmus. The clinical
significance of an algorithm for automatic segmentation of an isolated hippocapmus has
already been discussed earlier.

VI. Discussion and Conclusion
Interpolation and approximation are fundamental problems in image analysis and arise in
many applications such as DT-MRI registration, DT-MRI segmentation, DT-MRI atlas
construction, etc. Scalar-valued and vector-valued image/function interpolation is quite
popular in literature. Splines have distinguished themselves as the key ingredient in
achieving these goals. To the best of our knowledge, there is no work to date on splines for
interpolation and approximation of matrix-valued (second-order tensor valued) datasets
using the Riemannian framework. In this paper, we presented a novel and robust spline
interpolation and approximation algorithm that we dub tensor-splines, given a noisy
symmetric positive definite tensor field. We evaluated the performance of our algorithms on
several synthetic and real diffusion tensor field datasets. Our algorithms performed fairly
accurately on all the datasets.

For the generation of all the synthetic datasets used in the experimental section, we
simulated the diffusion-weighted MR signal using the Söderman-Jönsson equation [30]. The
simulation performed by this equation is a simplified version of the process within a real
neural tissue, and it can be used for validation of the algorithms proposed in this paper.
Another advantage of using this simulation method is that the synthetic noise can be added
directly to the diffusion-weighted images, and it has the same characteristics as the noise in
real data.

A large amount of the noise that is present in the diffusion tensor datasets (synthetic and
real) was removed by approximating the datasets with a robust tensor product of cubic
tensor splines using the proposed tensor field approximation algorithm. We implemented
this algorithm using different metrics: a) Euclidean, b) log-Euclidean, and c) Riemannian. In
all our experiments, the Riemannian metric yielded the best results in approximating a given
tensor field. The robust function presented in Section III-E was employed in our
experiments, using for each metric the appropriate value for the parameter σ that yields the
best results for the metric. The choice of this particular robust function is justified by the fact
that it has been commonly used in literature. We have also performed experiments using
other robust functions [31] and finding only minor differences in the results of our
algorithm. In all our experiments we used cubic (degree = 3) tensor splines since continuity
higher than the second order cannot be detected in general by the human eye and this degree
of continuity has been commonly used.

An application of our tensor spline algorithm to segmentation of DT-MRI data was also
presented. In the context of DT-MRI segmentation, there are a handful of segmentation
techniques currently in literature, including work earlier from our own group. Most of these
techniques use the level-set framework for segmentation and mostly handle bimodal
situations i.e., images containing two classes of regions. In this paper, we presented a novel
extension of an efficient GMMF-based Bayesian technique for scalar-valued image
segmentation to the tensor valued case using our tensor spline model. DT-MRI segmentation
yields much more than what one would obtain with segmentation of contrast-based MRI. It
would reasonable to say that the former subsumes the later.

Automated segmentation of DT-MRI from an isolated hippocampus to date has not been
reported in literature. Shape and volume changes in different hippocampal regions are thus
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far the best surrogate markers of hippocampal disease in patients with epilepsy, Alzheimer’s
disease, depression, etc. [32], thus making these types of data extremely useful clinically.
We presented results of segmentation from an application of our algorithm to an isolated rat
hippocampus. We also presented visual comparison of our segmentation results to a
hippocampal atlas, showing satisfactory performance of our algorithm. Our future work will
be focused on applying our interpolation and approximation algorithms as a module in other
applications such as registration of DT-MRI, tractography, etc.
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Fig. 1.
(a) Tangent space of the manifold M of diffusion tensors at point p1. The tangent vector X
points to the direction of geodesic γ(t) between the points p1 and p2. (b) A cubic tensor
spline S(t), that approximates pis of a 1-D tensor field. The given points pi and the points of
the tensor spline S(t) are SPD matrices, elements of the Riemannian manifold M. Seven
control points ci and 11 knots ti are required. The association between basis functions Ni,4(t),
knots ti and given data points pi is displayed in this figure.
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Fig. 2.
Comparison of approximation methods using a SNR = 5.0 (top) and a SNR = 3.0 (bottom),
(a) Primary eigenvectors of the noisy tensor fields. The rest of the columns shows the error
in robust approximation using (b) Euclidean spline, (c) PDE interpolation, (d) log-Euclidean
spline, and (e) tensor spline. The Riemannian metric was employed for computing these
errors.
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Fig. 3.
Real DTI from an isolated rat hippocampus: (a) FA maps before (top) and after (bottom)
tensor spline approximation. (b) principal eigenvector field after log-Euclidean geodesic
approximation (left), and nonrobust tensor spline approximation (right).
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Fig. 4.
Segmentation of various synthetic tensor fields. Figures depict the estimated boundaries
between regions and the corresponding primary eigenvector fields.
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Fig. 5.
Illustration of segmentation under partial voluming effects. Top: averaging kernels at
different locations of the diffusion-weighted images. Bottom: corresponding estimated
tensor fields.
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Fig. 6.
2-D segmentation of an isolated rat hippocampus DT-MRI: (a) FA map segmentation using
algorithm in [26] (b) tensor field using piecewise constant models, (c) tensor field using a
smoothly varying representation of the regions, and (d) comparison of our results (shown in
the background) with a manually labeled image based on knowledge of hippocampal
anatomy (shown as an overlay). The index of the labels corresponds to: 1) dorsal
hippocampal commissure, 2) subiculum, 3) alveus, 4) stratum oriens, 5) stratum radiatum, 6)
stratum lacunosum-moleculare, 7) molecular layer, 8) hilus, X) mixture of CA3 stratum
pyramidale and stratum lucidum, Y) stratum oriens but ambiguous, 12) fimbria.

Barmpoutis et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
(a) View of the 3-D segmentation of an isolated rat hippocampus, (b) Different views of the
molecular layer from the segmentation in (a).

Barmpoutis et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 October 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Algorithm 1.
Intrinsic weighted mean of tensors.
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Algorithm 2.
Control tensors estimation.
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Table I

Approximation Errors in Various Algorithms

Riem. μ Riem. σ Forb. μ Forb. σ

Euc. Geodesic Appr. 12.2023 10.5576 37.2502 51.8160

Log-Euc Geodesic Appr. 6.5117 7.3565 7.7040 31.4381

Riem. Geodesic Appr. 6.5115 7.3563 7.7037 31.4378

PDE interpolation 8.8490 6.5481 6.3611 29.4992

Non-Robust Tensor Spline 3.8652 2.7202 0.5082 0.8581

Approximation errors using robust function

Robust Euc. Geodesic Appr. 8.6782 0.7521 0.9201 0.1002

Robust Log-Euc Geodesic Appr. 3.8912 2.3191 0.6328 0.928

Robust Riem. Geodesic Appr. 3.4711 2.2534 0.6192 0.795

Robust Tensor Spline Appr. 0.1373 0.0463 0.0015 0.0006

Approximation errors of robust splines using different metrics

Robust Euc. Spline Appr. 7.4655 0.4931 0.0988 0.0927

Robust Log-Euc Spline Appr. 1.4651 0.9996 0.0328 0.0318

Robust Tensor Spline Appr. 0.1373 0.0463 0.0015 0.0006
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