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Mounting an effective host immune response without incurring inflammatory injury requires 

the precise regulation of cytokine expression 1, 2. To achieve this, cytokine mRNAs are 

post-transcriptionally regulated by diverse RNA-binding proteins and microRNAs targeting 

their 3′ untranslated regions 3, 4. The Zcchc11 protein contains RNA-interacting motifs5, 

and it has been implicated in signaling pathways involved in cytokine expression 6. The 

nature of the Zcchc11 protein and how it influences cytokine expression are unknown. Here 

we show that Zcchc11 directs cytokine expression by uridylating cytokine-targeting 

microRNAs. Zcchc11 is a ribonucleotidyltransferase with a preference for uridine and is 

essential to maintaining the poly(A) tail length and stability of transcripts for interleukin-6 

(IL-6) and select other cytokines. The mir-26 family of miRNAs targets IL-6, and the 

addition of terminal uridines to the mir-26 3′ end abrogates IL-6 repression. While 78% of 

mir-26a sequences in control cells contained 1–3 uridines on their 3′ ends, less than 0.1% 

did so in Zcchc11 knock down cells. Thus, Zcchc11 fine tunes IL-6 production by 

uridylating mir-26a, which we propose to be an enzymatic modification of the terminal 

nucleotide sequence of mature miRNA as a means for regulating gene expression.

Zcchc11 is a member of the DNA polymerase β-like (pol β) nucleotidyltransferase 

superfamily 5 and it interacts with adaptor proteins in the Toll-like receptor (TLR) signaling 

pathway 6. Overexpression of a truncated form of Zcchc11 (containing amino acids 191 to 

625 of the 1644 amino acid protein, including only the first 2 of the 7 domains of interest 

identified in Fig. 1a) decreased expression of the cytokines IL-6 and TNF-α 6. Because the 
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degrees to which this truncation mutant conferred gain or loss of function were unclear, such 

an approach indicates that Zcchc11 mediates cytokine expression without illuminating the 

mechanism(s) by which it performed this function. The Zcchc11 protein contains domains 

capable of interacting with RNA, suggesting that the mechanism(s) for regulating cytokine 

expression may extend beyond its interaction with adaptors. As depicted in Figure 1a, these 

domains include a CCHH zinc finger, typically interacting with RNA or DNA; two poly(A) 

polymerase/2′–5′ oligoadenylate synthetase (PAP/25A) associated domains, common in 

RNA modifying enzymes 7; three CCHC zinc knuckles, often RNA-binding domains 8, 9; 

and a pol β domain, usually mediating nucleotidyltransferase activity 5. The putative pol β 

catalytic domain of Zcchc11 is highly conserved across genomes from a wide spectrum of 

eukaryotes (Fig. 1b). Altogether, this primary structure suggested that Zcchc11 might be a 

ribonucleotidyltransferase.

Several proteins with homology to Zcchc11 are categorized as non-canonical poly(A) 

polymerases, including the Caenorhabditis elegans protein defective in germ line 

development 2 (GLD-2) 10 and the Schizosaccharomyces pombe proteins caffeine-induced 

death protein 1 (Cid1) and Cid13 11, 12. To determine whether Zcchc11 possessed such 

activity, we generated recombinant epitope-tagged wildtype Zcchc11 as well as a mutant 

form (Zcchc11 DADA) in which two aspartate residues predicted to be essential to catalysis 

13 were mutated to alanines (Fig. 1b). Recombinant epitope-tagged Zcchc11 exhibited 

nucleotidyltransferase activity for all RNA substrates examined (Fig. 1c). In contrast, the 

DADA mutant exhibited no transfer of adenosine to RNA, implicating the pol β domain as 

responsible (Fig. 1c). Endogenous Zcchc11 immunoprecipitated from a human lung 

epithelial cell line (A549) also exhibited nucleotidyltransferase activity (Supplementary Fig. 

S1a). The radiolabeled product was sensitive to RNase digestion, confirming RNA as the 

substrate of the enzyme (Supplementary Fig. S1b). These data show that Zcchc11 is a 

ribonucleotidyltransferase enzyme whose activity is dependent on a conserved catalytic site.

Some pol β family members were recently identified as poly(U) polymerases 14, 15. Given 

this, we examined nucleotides other than ATP in Zcchc11 assays. Both endogenous (Fig. 

1d) and recombinant epitope-tagged (Supplementary Fig. S1c) forms of Zcchc11 displayed 

the greatest nucleotidyltransferase activity with UTP, followed by CTP, and then ATP and 

GTP. The inclusion of an ATP regenerating system, designed to circumvent ATP loss from 

potentially co-precipitating ATPases, did not enhance adenosine incorporation (data not 

shown). As with adenylation, the uridylation activity of Zcchc11 did not display RNA 

substrate specificity, evidenced by the labeling of diverse RNA moieties including even an 

RNA ladder (Fig. 1e). These results indicate that Zcchc11 catalyzes the non-selective, 

template-independent uridylation of RNA.

Although Zcchc11 mRNA was ubiquitous among mouse tissues (data not shown), Zcchc11 

protein was tissue-specific, most prominently expressed in the thymus, spleen, testes, and 

lung (Supplementary Fig. S1d). Zcchc11 was also expressed in human and mouse lung 

alveolar epithelial cell lines (A549 and MLE-15, respectively: Supplementary Fig. S1e). 

Expression of Zcchc11 in immune and mucosal cells pointed again to potential roles in 

cytokine regulation. Effective knockdown in A549 and MLE-15 cells by Zcchc11-targeted 

siRNA compared to control, non-targeting siRNA was confirmed by immunoblotting using 

Jones et al. Page 2

Nat Cell Biol. Author manuscript; available in PMC 2010 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different siRNAs specific to human or mouse Zcchc11 (Fig. 2a). Cell supernatants were 

collected from control or Zcchc11 siRNA-treated A549 cells stimulated with TNF-α, and 

cytokine expression was analyzed. A subset of cytokines, namely IL-6, VEGF, TGF-α, and 

RANTES, was substantially decreased by loss of Zcchc11 (Fig. 2b). In contrast, fractalkine, 

IP-10, MCP-1, G-CSF, and GM-CSF levels were not significantly affected, and IL-8 

concentrations were increased (Fig. 2b). These cytokine-specific effects were not unique to 

A549 cells, but were also observed in HEK 293T cells treated with control non-targeting or 

Zcchc11 targeting siRNA prior to TNF-α treatment (data not shown). The effects of 

Zcchc11 knockdown on IL-6 elaboration by A549 cells was examined over a time-course 

after TNF-α. Zcchc11 depletion led to decreased IL-6 at all time points examined, with 

differences between groups increasing over time (Fig. 2c). Zcchc11-dependent effects on 

IL-6 expression were not unique to TNF-α stimulation, as Zcchc11 depletion similarly 

diminished IL-6 production elicited by Eschericia coli (Supplementary Fig. S2a). As with 

results obtained in human A549 cells, IL-6 expression was decreased in murine MLE-15 

cells by knockdown using a different siRNA targeting mouse Zcchc11 (Fig. 2d). Thus, these 

results were not specific to a given siRNA sequence and were consistent across species and 

stimuli.

To determine whether Zcchc11 influenced cytokine expression at the mRNA level, we first 

measured steady-state transcripts. IL-6 mRNA was decreased by Zcchc11 knockdown (Fig. 

2e). Cytokine transcript stability was subsequently assessed, showing mRNA half-life for 

IL-6 to be decreased by Zcchc11 knockdown (Fig. 2f). The effects of Zcchc11 knockdown 

on the stability of transcripts for other cytokines generally mirrored the effects of Zcchc11 

knockdown on cytokine protein content (Supplementary Fig. S2b). These data suggest that 

Zcchc11 mediates cytokine expression at the posttranscriptional level by influencing mRNA 

stability.

The poly(A) tail length of eukaryotic mRNAs is a critical determinant of transcript stability 

and translational efficiency 16, 17. By any of three independent measurement methods 18, 

the poly(A) tails on IL-6 mRNA were shortened due to Zcchc11 knockdown (Figs. 2g and 

Supplementary Fig. S2c,d). Other Zcchc11-dependent cytokines examined also 

demonstrated shorter poly(A) tails due to Zcchc11 knockdown (Supplementary Fig. S2e) 

whereas tail lengths for cytokines not decreased at the protein or mRNA stability levels were 

not shortened by Zcchc11 knockdown (Supplementary Fig. S2f). In summary, decreasing 

Zcchc11 results in shorter poly(A) tails on only those cytokines whose transcript stability 

and maximal protein expression require Zcchc11. Poly(A) tail length therefore appears to be 

the step at which Zcchc11 directly or indirectly mediates cytokine expression.

Because of its uridyltransferase activity, we considered whether Zcchc11 might uridylate the 

3′ polyadenylate terminus of mRNAs, as was observed for the Zcchc6 homolog of Zcchc11 

14. IL-6 transcripts were isolated, cloned, and sequenced from control and Zcchc11 

knockdown A549 cells, but no terminal uridines were observed (Supplementary Fig. S3). 

Given these results and the enzymatic activity of Zcchc11, we considered alternative RNA 

substrates that could influence transcript poly(A) tail length and stability.
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mRNA deadenylation and degradation can be stimulated by miRNAs 19, 20, leading us to 

reason that the RNA-modifying Zcchc11 enzyme may alter cytokine expression through an 

miRNA-dependent mechanism. Support for this hypothesis was precedented by observations 

that miRNAs often contain untemplated nucleotides on their 3′ ends, primarily adenosines or 

uridines 21–23. The cytoplasmic poly(A) polymerase GLD-2 24, a relative of Zcchc11, is 

capable of adenylating the 3′ end of mature miRNA, but no enzyme has yet been identified 

as responsible for the uridylation of mature miRNA. Analyses using TargetScan 25–27 

revealed that the 3′ untranslated region (UTR) of IL-6 mRNA contains a highly conserved 

region potentially targeted by the mir-26 family of microRNAs (Fig. 3a), lying in close 

proximity to an AU-rich region and accessible within the predicted secondary structure of 

IL-6 mRNA, characteristics positively associating with miRNA-mediated repression 28. 

Prior studies indicated that mir-26b in naïve T cells contains non-genomic uridines on the 3′ 

end 29, supporting the postulate that miRNAs in this family including mir-26b in particular 

may be modified in the proposed fashion. Northern analyses demonstrated that mir-26b is 

expressed in A549 cells, with no effect of Zcchc11 knockdown on its content (Fig. 3b). 

Transfection of A549 cells with mir-26b mimetics decreased TNF-induced IL-6 expression 

(Fig. 3c), demonstrating that this miRNA can repress IL-6. Complementarily, blocking 

endogenous mir-26b using a mir-26b-antisense inhibitor 30, 31 increased IL-6 expression 

(Fig. 3d). Blockade of endogenous mir-26a also increased IL-6 expression (Supplementary 

Fig. S4a). Taken together, these gain-of-function and loss-of-function approaches 

demonstrate that this family of miRNAs targets IL-6. Because the mir-26 mimetics showed 

less of a repressive effect on IL-6 than did Zcchc11 knockdown, mir-26 may be but one of 

multiple miRNAs potentially modified by Zcchc11 to regulate IL-6 expression.

Zcchc11 was capable of uridylating mir-26b in vitro (Figure 3e). The enzyme showed a 

preference for the single-stranded RNA in comparison with the duplex, and this activity was 

abolished by point mutations in the nucleotidyltransferase domain (Figure 3e). Thus, 

Zcchc11 directly uridylates mature, single-stranded microRNAs including mir-26b. To our 

knowledge, there is no prior evidence that sequence variations in the 3′ ends of miRNAs 

impact their capability to repress targeted transcripts. Interestingly, we observed that 3′ end 

uridylation of mir-26b mimetics abrogated repression of IL-6 by this miRNA (Figure 3f). 

Uridylation of mir-26a mimetics also exhibited a decreased ability to repress IL-6 

expression (Supplementary Fig. S4b). To test whether this was unique to the mir-26 

targeting of IL-6, we transfected cells with uridylated mir-16 mimetics and assessed VEGF 

concentrations in the supernatant after TNF-α stimulation. We observed strong repression of 

VEGF by mir-16, as previously reported32, but this repression was not attenuated by mir-16 

uridylation (Supplementary Fig. S4c). Additionally we sought to determine whether 

oligouridine tracts at miRNA 3′ termini are capable of increasing IL-6 expression 

independent of sequence specificity, such as by acting as ligands for TLR7 and TLR8 33. 

We found no differences in IL-6 production in the supernatants of TNF-stimulated cells 

treated with uridylated species of mir-16 (Supplementary Fig. S4d). Taken together, these 

data suggest that uridylation of IL-6 mRNA-targeting miRNAs may be the mechanism by 

which Zcchc11 influences IL-6 expression.
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We next determined whether the influences of this enzyme and miRNA on IL-6 expression 

involved direct interactions with the 3′-UTR of the IL-6 transcript. The IL-6 3′-UTR was 

sufficient to reduce protein expression in a luciferase reporter assay (Figure 4a). 

Importantly, this repressive effect of the IL-6 3′-UTR was exacerbated by Zcchc11 

knockdown (Figure 4a). Further, the overexpression of Zcchc11 increased expression of the 

IL-6 3′-UTR-associated gene (Figure 4b). Mutating the nucleotidyltransferase domain of 

Zcchc11 significantly diminished these effects (Figure 4b). Thus, the ability of Zcchc11 to 

enhance IL-6 expression is mediated by the 3′-UTR and is dependent upon its 

nucleotidyltransferase activity.

mir-26b gain of function further diminished expression associated with the IL-6 3′UTR 

(Figure 4c). The addition of terminal uridines to this miRNA decreased its repressive 

activity for the IL-6 3′ UTR (Figure 4c). Importantly, both the decreased expression driven 

by mir-26b and the counteracting increased expression resulting from its uridylation were 

abrogated by mutation of the predicted miRNA target site within the 3′-UTR (Figure 4d). 

Overall these results demonstrate that the effects observed are direct results of miRNA 

interactions with the 3′UTR.

Altogether, our data strongly suggest that Zcchc11 influences IL-6 expression by the 

untemplated uridylation of mir-26b or related IL-6 3′-UTR-targeting miRNAs. We thus deep 

sequenced small RNAs isolated from control and Zcchc11 knockdown cells to assess 3′ 

terminal modifications of mir-26 family members. In A549 cells, mir-26a sequences were 

far more abundant than mir-26b (7,068 and 235 sequences recovered, respectively). Of the 

mir-26a sequences collected from control cells, the majority (74%) were the 22-nucleotide 

sequence reported in Figure 3a, ending in a single uridine which could be genomically 

encoded. An additional 4% of sequences contained 2 or 3 uridines rather than the single 

uridine at the end, which must necessarily represent untemplated uridylation (Fig. 4e and 

Supplementary Fig. S5).

The Zcchc11 knockdown cells demonstrated remarkably different results in that out of 

10,306 mir-26a sequences collected, none (0%) were the sequence reported in Figure 3a. 

Instead, the majority (67%) were 21 nucleotides in length and missing the terminal uridine 

(Fig. 4e), suggesting dicer cleavage of the mir-26a pre-miRNA at this nucleotide followed 

by Zcchc11-mediated uridylation in the control cells. For mir-26a sequences with 

definitively non-genomic uridines in the Zcchc11 knockdown cells, only 2 (0.02%) 

sequences ended in UU and none (0%) in UUU. These data indicate that Zcchc11 mediates 

the addition of 1 to 3 uridines to the 3′ terminus of mir-26a, defining a role for Zcchc11 in 

miRNA end modification.

Most (33%) of the remaining mir-26a sequences in the knockdown cells ended in UA (Fig. 

4e), also observed in the control cells albeit with lesser frequency (8%). One possible 

explanation for such a pattern could be an enzyme which adds UA residues to microRNAs, 

potentially competing with Zcchc11 for mir-26a modification. Alternatively, since 

adenylation of miRNAs increases miRNA stability 24, it is conceivable that mir-26a that 

had been uridylated by Zcchc11 and then adenylated by GLD-2 or some other enzyme, but 
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not non-adenylated forms of uridylated Zcchc11, may persist from before Zcchc11 was 

knocked down.

Not only were mir-26b sequences less common than mir-26a, but the former also showed a 

distinct pattern of non-genomic end modification, with UA ends in 99% and 96% of mir-26b 

sequences from control and knockdown cells, respectively (Supplementary Fig. S6). Based 

on prior studies showing non-genomic uridines but not UA additions on mir-26b in T cells 

29, we suggest that the modifications of miRNAs is context-dependent. The identity of 

putative UA-adding enzyme or adenylating enzymes in A549 cells and the significance of 

these nucleotide additions for mir-26b function remain to be determined.

The addition of non-templated nucleotides, most prominently uridine and adenine, at the 3′ 

terminal ends of miRNAs has been observed in multiple species 34, 21, 35, 22, 23, 36, 37. 

The mechanisms determining which miRNAs are modified by Zcchc11, and under which 

circumstances, remain important avenues for future study. To our knowledge, these studies 

provide the first identification of an enzyme responsible for the untemplated uridylation of 

mature miRNA. Such miRNA modifications are not simply by-products of sloppy 

processing, but rather they impart functional differences that attenuate miRNA-targeted 

repression. We further demonstrate this to be a means of post-transcriptionally regulating 

cytokine expression, potentially relevant to inflammation and immunity.

Methods

Cell Culture and Transfection

Human lung epithelial A549 cells, human embryonic kidney 293T (HEK 293T), and murine 

lung epithelial (MLE-15) cells were transiently transfected with expression plasmids for 24 

hours. Cells were grown in DMEM (if HEK 293T or MLE-15) or Ham’s F12 (if A549) 

supplemented with 10% heat inactivated fetal bovine serum, penicillin, and streptomycin. 

siRNA knockdown of Zcchc11 was performed in epithelial cells using DharmaFECT 1 

reagent (Dharmacon). HEK 293T cells were transfected with expression plasmids using 

SuperFect reagent (Qiagen). To target human Zcchc11, the annealed sense 

CAACAGACAUGUACAGAUAUU and antisense UAUCUGUACAUGUCUGUUGUU 

siRNAs were used for 48 hours. To target mouse Zcchc11, the annealed sense 

GCAAAUCUCCUUUAACAUUUU and antisense AAUGUUAAAGGAGAUUUGCUU 

siRNAs were used for 48 hours. Transfection with siCONTROL non-targeting siRNA #1 or 

#2 (Dharmacon) were used as negative controls in siRNA experiments and all siRNAs were 

used at a final 100 nM concentration. For luciferase experiments, IL-6 3′ UTR reporter 

plasmids were cotransfected with either siRNA or miRNA mimetics for 48 hours using 

Lipofectamine 2000 as per manufacturers instruction (Invitrogen). phRL-TK (Promega) was 

used as a transfection efficiency control and both firefly and Renilla luciferase activity was 

determined with the Dual Luciferase Reporter Assay System (Promega). For cell infections, 

A549 cells treated with either nontargeting or Zcchc11 siRNA for 48 hours, were cultured in 

the presence of 5 × 108 CFU of E. coli for 24 hours in complete media. The supernatants 

were collected and subsequently assayed for IL-6 protein by ELISA.
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Plasmid Construction and Mutagenesis

Zcchc11 (accession # NM_175472) was RT-PCR amplified from RNA isolated from 

C57BL/6 mouse lungs. Full length sequences were Flag-tagged and mutagenized using the 

QuikChange site-directed mutagenesis kit (Stratagene). For luciferase assays, the entire 

human IL-6 3′ UTR was PCR amplified from genomic DNA and cloned into the pMIR-

REPORT™ Luciferase reporter vector (Ambion) 38. The IL-6 3′UTR mutant contains two 

adenosines that were changed from uracil by site-directed mutagenesis to disrupt the first 

two mir-26 seed pairing with the target IL-6 sequence.

Nucleotidyltransferase Assays

Flag-tagged WT and DADA mutant Zcchc11 (immunoprecipitated from transfected HEK 

293T cells 39) or endogenous Zcchc11 (immunoprecipitated from A549 cells) were 

incubated with RNA substrates and then electrophoresed in 6% TBE-Urea polyacrylamide 

gels. Endogenous Zcchc11 was immunoprecipitated after lysis (50 mM Tris HCl, pH 8.0, 

150 mM NaCl, and 1% NP-40) using a goat polyclonal anti-Zcchc11 antibody (Imgenex). 

Prewashed protein G Dynabeads (Invitrogen) were used for magnetic immunoprecipitations. 

Immunoprecipitates (10 μL, estimated as 50–150 ng Zcchc11) were incubated for 30 

minutes at 37 oC in a total volume of 50 μl with 0.13 mM [α-32P] NTP (final concentration) 

and 1 μg yeast tRNA (Ambion), A15 oligoribonucleotide (Invitrogen), or human RNA as 

substrates, or vehicle, together with 40 units RNAsin (Promega) in poly(A) polymerase 

buffer containing 25 mM Tris HCl pH 7.0, 50 mM KCl, 0.7 mM MnCl2, 1 mM MgCl2, 0.2 

mM EDTA, 100 μg/ml acetylated BSA, and 10% glycerol (USB). Radiolabeled RNA was 

purified using Sephadex G-25 Quick Spin Columns (Roche). Samples were electrophoresed 

in 6% TBE-Urea polyacrylamide gels. Gels were dried under vacuum and exposed to 

radiographic film. Human non-coding RNA and poly(A) mRNA was fractionated using 

oligo(dT) cellulose from A549 cell total RNA using the Poly(A) Purist mRNA purification 

kit (Ambion).

Measuring mRNA and Protein

Human and murine cytokine and Zcchc11 mRNA contents were measured using real-time 

RT-PCR. Total RNA was extracted with Trizol (Life Technologies), and real-time RT-PCR 

was performed using the iScript One-Step RT-PCR Kit for Probes (Biorad) and the iCycler 

iQ Real-Time PCR detection system (Biorad). Probes contained the reporter dye 6-FAM at 

the 5′ end and Black Hole Quencher-1 at the 3′ end. For each sample, fold induction (vs. 

control siRNA) was normalized to the content of 18S rRNA 40. For immunoblotting, 20–45 

μg protein in lysates from C57BL/6 mouse organs or cell cultures in a buffer supplemented 

with 1X complete protease inhibitors (Roche) were subjected to 3–8% tris-acetate SDS-

PAGE and electroblotted onto Immobilon P transfer membranes. Antibodies used were 

against Flag M2 (Sigma), β-actin or pan actin (Cell Signaling), or a peptide from the C 

terminus of human and mouse Zcchc11 (Imgenex).

mRNA Decay, Northern, and Poly(A) Tail Length Analysis

Prior to RNA collection, A549 cells were transfected with siRNA for 48 hours and 

stimulated with TNF-α (10 ng/ml) for 1 hour. Transcription was inhibited when indicated 
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using 5 μg/ml actinomycin D following the 1 hour TNF-α exposure. mRNA was quantified 

using real-time RT-PCR. mRNA poly(A) tail length was assessed by H-northern, RACE-

PAT, and LM-PAT as described 18. For H-northern assays, 20μg of total RNA were 

digested with RNase H after hybridization with an IL-6-targeting anti-sense oligonucleotide 

(5′ GTGTCCTAACGCTCATACTTTT 3′). Select samples also included oligo(dT12–18) for 

digestion of the poly(A) tails, as indicated. After digestion, RNA was electrophoresed on 6% 

polyacrylamide urea gels and transferred to nylon membranes. Membranes were hybridized 

to a 32P-labeled IL-6 3′UTR-targeting probe and exposed to radiographic film and 

densitometry (NIH ImageJ). For amplifying this 3′UTR probe, primers were sense 

5′AAATATGTGAAGCTGAGTTAATTTATGTAAG 3′ and antisense 5′ 

AAAATGCCATTTATTGGTATAAAAACC 3′. For RACE-PAT, 1 μg of total RNA was 

used for RT with an adaptor primer oligo(dT) anchor. PCR amplification products with the 

adaptor reverse primer and a forward primer specific to IL-6 mRNA (5′ 

CTTTGTTTCAGAGCCAGATCATTTCTTG 3′) were visualized on 2% agarose gels 

stained with ethidium bromide. For LM-PAT, 300 ng total RNA was saturated with 

phosphorylated oligo(dT12–18) and ligated with 20 Weiss units T4 DNA ligase (Promega) 

while annealed to mRNA poly(A) tails. A second ligation was sequentially performed with 

the addition of an adaptor primer oligo(dT12) anchor in five fold abundance over 

oligo(dT12–18) at 14 °C for 2 hours. The oligo-primed mRNA was then reverse-transcribed 

with 40 units of AMV RT (Promega). All enzymes were heat inactivated and RT cDNA was 

used for PCR amplification using an mRNA specific sense primer and the adaptor primer 

oligo(dT12).

Primer sequences

For qRT-PCR analysis, primer and probe sequences were as follows: IL-6, sense 

5′TGCAATAACCACCCCTGACC 3′, antisense 5′ATGCCCATTAACAACAAC AATCTG 

3′, and probe 5′ACCACAAATGCCAGCCTGCTGACG 3′. IL-8 sense 

5′CGGAAGGAACCATCTCACTCTG 3′, antisense 5′AGAAATCAGGAAGGC 

TGCCAAG 3′, and probe 5′ TGACTTCCAAGCTGGCCGTGGCTC 3′. VEGF-A sense 

5′TGAGATCGAGTACATCTTCAAGCC 3′, antisense 5′ CTGAGGTTT 

GATCCGCATAATCTG 3′, and probe 5′ CCTGTGTGCCCCTGATGCGATGCG 3′. G-

CSF sense 5′ TTCCTGGAGGTGTCGTACCG 3′, antisense 5′ TCCGTT 

CTGCTCTTCCCTGTC 3′, and probe 5′ TTCTACGCCACCTTGCCCAGCCCT 3′. GM-

CSF sense 5′ ATCTCAGAAATGTTTGACCTCCAG 3′, antisense 5′ TTC 

AAAGGTGATAATCTGGGTTGC 3′, and probe 5′ AGCCGACCTGCCTACAGA 

CCCGCC 3′. TGF-α sense 5′ TTCGCTCTGGGTATTGTGTTG G 3′, antisense 5′ 

GGCAGTCATTAAAATGGGACACC 3′, and probe 5′ CCACGGGCGGGTCTG 

CACTCAGCG 3′. Murine Zcchc11 sense 5′ AGAGTGAACTTCGTCTCTTCC 3′, antisense 

5′ AACCATACAACCTCAGTGAACATTC 3′, and probe 5′ TCCTTC 

CTCTGCTCACTTGGCTGC 3′. For H-northerns, the IL-6 mRNA probe used for RNase H 

digestion was 5′ GTGTCCTAACGCTCATACTTTT 3′. For amplifying an IL-6 3′ UTR 

specific probe used in H-northerns, primers were sense 5′AAATAT 

GTGAAGCTGAGTTAATTTATGTAAG 3′ and antisense 5′ AAAATGCCATTTATT 

GGTATAAAAACC 3′. For IL-6 RACE-PAT analysis IL-6 sense primer 5′ CTT 
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TGTTTCAGAGCCAGATCATTTCTTG 3′ and antisense adaptor primer 5′ 

GCGAGCTCCGCGGCCGCG-T12 3′ were used. The same antisense adaptor primer was 

used for LM-PAT and for mRNA specific sense primers we used 5′ 

AATGGAAAGTGGCTATGCAGTTTGAATATC 3′ (IL-6), 5′ GTTATCATT 

TATTTATTGGTGCTACTGTTTATCCG 3′ (VEGF-A), 5′ CTGTAATGTGTTAAT 

GTGATTAGCAGTTATTTTCC 3′ (TGF-α), 5′ GGGAGCTGCTCTCTCATGAAA CAAG 

3′ (GM-CSF), and 5′ TTAGAACTATTAAAACAGCCAAAACTCCACAG 3′ (IL-8).

MicroRNA Isolation, Cloning, and Northern Analysis

Total RNA was extracted with Trizol (Invitrogen) and subsequently used to further 

purification using the mirVana™ miRNA isolation kit as per manufacturers instruction 

(Ambion) to yield small RNAs < 200 nt in length. Small RNAs were pooled from 4 

independent Control and Zcchc11 knockdown A549 cells treated with TNF-α for 3 hours for 

the library. Detailed methods on library cloning are available upon request. For northern 

blotting, 1–2 μg of small RNAs were loaded per well of 15% PAGE urea gels and 

transferred to Brightstar-Plus Nylon membranes. Specific small RNAs were detected with 

polynucleotide kinase 32P-labeled antisense oligonucleotides: 5′ 

GCCATGCTAATCTTCTCTGTATC 3′ (U6) and 5′ ACCTATCCTGAATTACTTGAA 3′ 

(mir-26b).

Deep sequencing

Short RNA cDNA libraries were run on an Illumina genome analyzer, and sequence was 

produced from IPAR data using Illumina pipeline 1.3.2. Individual reads were extracted 

from linker sequence, identical reads were collapsed to sequences, and the sequences were 

queried against the human mature miRNA database from miRBase (release 13.0) using the 

BLAST algorithm. Analyses of mir-26a end modification included all sequences which 

demonstrated complete fidelity across the first 21 mir-26a nucleotides and were free of 

contamination by sequences from the ligated adaptors.

MiRNA Mimetics and Inhibitors

Transient transfections of A549 cells were performed as described above with the annealed 

mir-26b sense (miRBase accession MIMAT0000083) UUCAAGUAAUUCAGGAUAGGU 

and antisense CCUAUCCUGAAUUACUUGAAUU, with mir-26bU sense 

UUCAAGUAAUUCAGGAUAGGUU and antisense 

CCUAUCCUGAAUUACUUGAAUU, or with mir-26bUUU sense 

UUCAAGUAAUUCAGGAUAGGUUUU and antisense 

AACCUAUCCUGAAUUACUUGAAUU. For mir-26a, annealed sense (miRBase accession 

MIMAT0000082) UUCAAGUAAUCCAGGAUAGGC and antisense 

CUAUCCUGGAUUACUUGAAGC, with mir-26aU sense 

UUCAAGUAAUCCAGGAUAGGCU and antisense 

CCUAUCCUGGAUUACUUGAACU, with mir-26aUUU sense 

UUCAAGUAAUCCAGGAUAGGCUUU and antisense 

AGCCUAUCCUGGAUUACUUGAAUU. Duplexes and siCONTROL non-targeting 

siRNA #1 were purchased from Dharmacon. For mir-26b inhibition, miRIDIAN inhibitors 
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specific to mir-26b and mir-26a2 were used to transfect A549 cells as described above along 

with the miRIDIAN microRNA inhibitor negative control #1 (Dharmacon).

Additional Methods and Reagents

Recombinant human TNF-α and matched antibody sets for ELISAs were from R&D 

Systems. The human cytokine/chemokines 30-plex immunoassay (Linco) was performed 

using Luminex100 on supernatants collected from A549 cells treated with nonspecific and 

Zcchc11 targeting siRNA and subsequently stimulated with TNF-α (10 ng/ml) for 24 hours. 

Primary human samples were provided by Drs. Stephanie Shore (HSPH) and Lester Kobzik 

(HSPH).

Statistics

Data were presented as means and standard errors. Statistical analyses were performed on 

data collected over at least 3 independent experiments. For comparisons across more than 2 

groups (e.g., multiple cytokines or time-points), analyses were performed using ANOVA. 

Data that failed Levene’s test for homogeneity of variance were log-transformed prior to 

analyses. For comparisons of 2 groups, analyses were performed using t tests. Differences 

were considered statistically significant when P < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Zcchc11 is a uridyltransferase
a, Key structural and catalytic domains of Zcchc11. b, The catalytic core of Zcchc11 is 

highly conserved among mammals and lower organisms. Three highlighted aspartates (two 

of which were mutated to alanines in the DADA construct, as indicated) are essential for pol 

β nucleotidyltransferase activity. c, Zcchc11 but not the DADA mutant (immunopurified 

using a Flag tag) transferred adenosines onto RNA substrates. Total RNA was visualized by 

SYPRO Green II staining (left) and labeled RNA was visualized using autoradiographic film 

(right). nc, non-coding. d, Nucleotide specificity, showing ability of endogenous Zcchc11 

(immunoprecipitated from A549 cells) to transfer 32P-labeled ATP, CTP, GTP, or UTP to 

yeast tRNA substrate. e, Flag-tagged Zcchc11 transferred 32P-uridine to diverse substrates 

including a 100 bp RNA ladder, total RNA isolated from control or Zcchc11 siRNA treated 

A549 cells, or yeast tRNA. Total and radiolabeled RNA were visualized as in 1c.
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Figure 2. Zcchc11 knockdown alters cytokine mRNA stability and expression
a, siRNA-targeted depletion of Zcchc11 (Z) but not β-actin (β) in A549 and MLE-15 cells 

was confirmed by immunoblot. b, A549 cells transfected with nonspecific or Zcchc11-

targeting siRNA were stimulated with TNF-α and supernatants were analyzed using a 

multiplex bead assay. The effect of Zcchc11 knockdown was indicated as “% Control,” with 

100% equal to that observed after nontargeting transfection. “ns,” not significantly different 

(P>0.50 for each; N=5) from control (100%). *, significantly different from control 

(Factorial ANOVA and Bonferroni post hoc test, P<0.000001 for each; N=5). c, IL-6 protein 

concentrations in the supernatant of A549 cells treated with nonspecific and Zcchc11 siRNA 

was assessed by ELISA at 0, 1, 6, and 24 hours after stimulation with 10 ng/ml TNF-α. 

*significant effects of Zcchc11 siRNA on IL-6 at both 6 (P=0.01) and 24 (P=0.0002) hours 

(Factorial ANOVA and Bonferroni post hoc test; N=3–4). d, IL-6 protein concentrations 

were also assessed in control and Zcchc11 knockdown groups in MLE-15 cells by ELISA 

after 24 hour incubations with or without mouse TNF-α. *, significant effect of Zcchc11 

siRNA (P=0.001; t test; N=3). e, IL-6 mRNA levels were assessed by real-time RT-PCR at 

the indicated time points in TNF-α (10 ng/ml) stimulated A549 cells treated with 
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nonspecific and Zcchc11 targeting siRNA. Each time point represents the mean and SEM 

from N=3 independent experiments. Asterisks indicate statistical significance of P < 0.05. f, 
IL-6 mRNA stability in A549 cells stimulated with TNF-α for 1 hour, using actinomycin D 

to halt transcription. *, P=0.0007 (Factorial ANOVA; N=3). g, IL-6 poly(A) tail length was 

determined by LM-PAT to be decreased in Zcchc11 knockdown A549 cells stimulated with 

TNF-α for 1 hour. PCR products were electrophoresed in an agarose gel and visualized with 

ethidium bromide staining.
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Figure 3. Mir-26 family regulates IL-6 expression
a, The mir-26 target sequence in the 3′ UTR of IL-6 is conserved across multiple 

mammalian species. The human mir-26a and mir-26b indicated was consistent across clones 

from A549 cells (i.e., with no non-genomic modifications shown). Seed sequence pairing is 

indicated by lines. b, mir-26b content was unaffected by Zcchc11 siRNA. RNA was 

collected 0, 1, and 6 hours after TNF-α stimulation of A549 cells, and mir-26b was detected 

using Northern hybridization and quantified by densitometry (P=0.95, t test; N=3). c, 

Transfection with mir-26b mimetics decreased IL-6 from A549 cells stimulated with TNF-α 

for 24 hours. *, P=0.005 (paired t test; N=3). d, Oligonucleotide inhibition of endogenous 

mir-26b increased TNF-induced IL-6 expression from A549 cells. *, P=0.004 (paired t test; 

N=3). e, Zcchc11 but not the DADA mutant (immunopurified using a Flag tag) preferred to 

uridylate small single stranded RNA versus double stranded RNA. Total RNA was 

visualized by SYPRO Green II staining (left) and labeled RNA was visualized using 

autoradiographic film (right). f, Increasing uridylation of mir-26 caused enhanced IL-6 

production from TNF-stimulated A549 cells. * P=0.042 vs. mir-26b, and ** P=0.025 vs. 

mir-26b-U and P=0.001 vs. mir-26b (Factorial ANOVA and Bonferroni post hoc test; N=3).
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Figure 4. Zcchc11-dependent uridylation of mir-26 abrogates IL-6 mRNA silencing
a, Zcchc11 knockdown decreased luciferase expression from a reporter construct containing 

the IL-6 3′UTR. * P=0.037 (t test; N=3). b, Overexpression of Zcchc11 increased luciferase 

expression driven by the IL-6 3′UTR reporter vector and this increase was attenuated by the 

nucleotidyltransferase null Zcchc11 mutant (DADA). * P=0.0019 (paired t test; N=5). c, 
mir-26 drove down IL-6 3′UTR-dependent luciferase expresssion, which was inhibited by 

mir-26 uridylation. * P=0.006 vs. control mimetic, † P=0.043 vs. mir-26 (one-way ANOVA 

and Bonferroni post hoc test; N=4). d, mir-26 did not affect expression from a construct 

containing a version of the IL-6 3′UTR in which 2 nucleotides targeted by the mir-26 seed 
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sequence were changed. Neither the addition of mir-26b nor its uridylation had any 

significant effect (P=0.73, one-way ANOVA; N=4). e, Zcchc11 knockdown resulted in a 

loss of uridines at the 3′ termini of mir-26a. All sequences included in mir-26a analyses 

share 100% fidelity through the first 21 nucleotide mature miRNA sequence.
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