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background: Transplantation of ovarian tissue is, at present, the only clinical option available to restore fertility using cryopreserved
ovarian tissue. More than 30 transplantations of cryopreserved tissue have been reported, and six babies have been born, worldwide, fol-
lowing this procedure. Despite these encouraging results, it is essential to optimize the procedure by improving the follicular survival,
confirming safety and developing alternatives. Here, we review the different factors affecting follicular survival and growth after grafting.

methods: Relevant studies were identified by searching Pubmed up to January 2009 with English language limitation. The following key
words were used: (ovarian tissue or whole ovary) AND (transplantation) AND (cryopreservation or pregnancy). Using the literature
and personal experience, we examined relevant data on the different exogenous and clinical factors affecting follicular development after grafting.

results: Clinical factors such as the patient’s age and the transplantation sites influenced the lifespan of the graft. A heterotopic transplan-
tation site is not optimal but offers some advantages and it may also promote the hormonal environment after a combined heterotopic and
orthotopic transplantation. Exogenous factors such as antioxidants, growth factors or hormones were tested to improve follicular survival;
however, their efficiency regarding further follicular development and fertility potential remains to be established.
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conclusion: Additional evidence is required to define optimal conditions for ovarian tissue transplantation. Alternatives such as whole
ovary or isolated follicles transplantations require further investigation but are likely to be successful in humans in the future.
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Introduction
Major advances in oncological treatments and diagnosis have resulted
in a marked improvement in the survival of children and young adults
with cancer over the last decade. Chemotherapy treatments including
alkylating agents as well as radiotherapy may unfortunately compro-
mise future fertility (Meirow, 2000; Lobo, 2005). The risk of prema-
ture ovarian failure depends on various factors such as the age of
the patient, the type and the dose of cytotoxic therapy. Alkylating
agents, imposing the highest risk in causing ovarian failure, induce fol-
licular depletion in an exponential proportion to increasing doses.
Among premenopausal women treated with alkylating agents for
breast cancer, it has been estimated that up to 68% of them faced pre-
mature ovarian failure after treatment. Aggressive treatment with
cytotoxic chemotherapy and radiotherapy for lymphoma results in
ovarian failure in 38–57% of the patients (Meirow and Nugent,
2001). Conditioning regimen for bone marrow transplantation rep-
resents the most gonadotoxic regimen, with an ovarian failure rate
after treatment exceeding 90% (Meirow, 2000). Radiotherapy is also
recognized to cause destruction of the follicular pool, with an LD50
of human oocyte ,2 Gy (Wallace et al., 2003). The effective sterilizing
dose at which ovarian failure occurs immediately after treatment in
almost all the patients is estimated at ,20 Gy, when pelvic radiother-
apy doses for intra-abdominal tumour, including gynaecological
cancer, ranged from 25 to 50 Gy (Meirow and Nugent, 2001;
Chemoradiotherapy for cervical cancer Meta-Analysis Collaboration,
2008; Wo and Viswanathan, 2009).

On the other hand, restoration of the ovarian function does not
always ensure normal fertility after oncological treatments. The
chance of spontaneous pregnancy in women treated after 25 years
of age has been estimated to be only 5% (Lobo, 2005).

Because fertility preservation is of great concern for young women
diagnosed with cancer, the possibility of treatment-related infertility
should systematically be brought up by physicians in collaboration
with gynaecologists at the time of diagnosis (Langeveld et al., 2004;
Thewes et al., 2005; Lee et al., 2006). According to the type of the
disease and the health state of the patient, various options to preserve
fertility have been proposed (Donnez et al., 2006; Demeestere et al.,
2007). Many young cancer patients desiring fertility preservation may
not have access to the technologies used for Assisted Medical Pro-
creation such as embryo or oocytes cryopreservation because of
their oncological context and/or personal situation. These options
impose a 2–4 week delay before oocyte collection that is often not
compatible with the urgency to treat the cancer, and this procedure
must be performed before beginning chemotherapy. Oocyte retrieval
after even one round of chemotherapy is not practicable because of
the dramatic reduction of IVF efficiency, as well as the increased risk
of aneuploidy due to this treatment (Dolmans et al., 2005).

Cryopreservation of ovarian tissue is a promising experimental
technology, presenting with several advantages. It allows the storage
of a large number of primordial and primary follicles, can be rapidly
performed at any time of the menstrual cycle and is the only available
option to preserve fertility in children (Nugent et al., 1997; Donnez
and Bassil, 1998; Oktay, 2001; Poirot et al., 2002, 2007; Demeestere
et al., 2003; Dudzinski, 2004; Oktay and Sonmezer, 2004; Oktay et al.,
2004; Donnez et al., 2006; Lee et al., 2006; Meirow et al., 2007a;
Moffa et al., 2007; Weintraub et al., 2007). The procedure is proposed
as a fertility preservation option for various indications in a growing
number of centres around the world. In our institution, breast and
haematological cancers represent two-thirds of the indications
(Fig. 1, unpublished data). The ovarian tissue cryopreservation pro-
cedure benefits those not only with oncological diseases, but also

Figure 1 Indications for ovarian tissue cyopreservation in Erasme Hospital from 1999 to 2008 (n ¼ 133).
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with benign diseases such as drepanocytosis or thalassaemia that
require conditioning regimen for bone marrow transplantation
(Sonmezer et al., 2005). Patients affected by autoimmune diseases
such as lupus nephritis, genetic disorders associated with premature
ovarian failure, or benign ovarian diseases requiring oophorectomy
may also be concerned with fertility preservation (Hreinsson et al.,
2002; Demeestere et al., 2003; Gidoni et al., 2008; Huang et al.,
2008a; Oktay and Oktem, 2008). These non-oncological conditions
represent nearly 20% of the indications in our population of patients
requiring fertility preservation (Fig. 1). Finally, healthy women
who chose to delay childbearing for professional or personal
reasons may also wish to retain their fertility (Tao and Del Valle,
2008).

Although the freezing-thawing procedure of ovarian tissue is now
relatively well established, the use of the cryopreserved ovarian
cortex in order to restore fertility remains a challenge. Orthotopic
or heterotopic transplantation is currently the only available option
to restore fertility using cryopreserved ovarian tissue. Alternatives
such as in vitro follicular culture require additional research before
becoming available for humans (Hovatta, 2000; Picton et al., 2008).
To date, 43 women who underwent cryopreserved or fresh ovarian
tissue transplantations have been reported in the literature, leading
to the restoration of spontaneous cycles for several months in
almost all cases (Bedaiwy et al., 2008). Restoring fertility after auto-
transplantation of cryopreserved ovarian tissue has been recently
achieved, and five healthy babies were born following this procedure
(Donnez et al., 2004; Meirow et al., 2005; Demeestere et al., 2007;
Andersen et al., 2008). Pregnancies have also been obtained after het-
erologous transplantation of fresh or cryopreserved cortical tissue
between twins discordant for premature ovarian failure (Silber et al.,
2005, 2008a; Silber and Gosden, 2007). Despite these encouraging
results, some important concerns still limit the application of the pro-
cedure and its success. Besides the age of the patient at tissue collec-
tion, a key factor is the ischemic injury occurring during the time
necessary for the revascularization of the transplanted tissue from
the support vessels. This affects follicular survival as well as the life
span of the ovarian tissue after transplantation, which are both corre-
lated with the fertility restoration potential.

This review will provide insight into these different factors that affect
follicular development and fertility restoration after ovarian tissue
transplantation.

Methods
A MEDLINE search was performed to identify articles published in the
English language dealing with ovarian tissue and whole ovary transplan-
tation in both animals and humans. Relevant articles up to January 2009
were selected and checked for previously unidentified articles. The follow-
ing keywords were used: (ovarian tissue or whole ovary) AND (transplan-
tation) AND (cryopreservation or pregnancy).

Selection criteria and outcomes of interest: We reviewed all literature
focused on ovarian tissue and whole ovary transplantation and
selected relevant articles based on their originality and innovating charac-
teristics. Articles and recent reviews were classified by human and
animals experiments. Outcomes of interest were pregnancies, vasculari-
zation and factors affecting further follicular development after
transplantation.

Ischemic injuries after ovarian
tissue transplantation without
vascular anastomosis
Because transplantation of fragments of ovarian cortex is performed
without vascular reanastomosis, perfusion of the tissue depends on
the growth invasion of new blood vessels. The time needed to
achieve an adequate perfusion of the transplanted tissue is critical
for the follicular survival and the functional longevity of the graft. In
mice, initial perfusion of the autograft (revealed with Evan’s blue dye
injection) is observed 3 days post-transplantation (Nugent et al.,
1998). The first stage of neovascularization is detected within 48 h
in autologous immature transplanted rat ovaries and the tissue is
revascularized and functional after 1 week (Dissen et al., 1994).
Using MRI and histology, functional vessels have been detected
within ectopic xenotransplanted rat ovarian tissue after only 7 days
(Israely et al., 2004). In humans, the neovascularization process was
observed after only 3 days following ovarian tissue transplantation
onto a chick chorioallantoic membrane (Martinez-Madrid et al., 2009).

The integrity of the stroma is also essential for the neovasculariza-
tion process and follicular survival after graft. Primordial follicles can
tolerate ischemia for at least 4 h during tissue transport (Schmidt
et al., 2003), whereas stromal cells surrounding the follicles appeared
to be more sensitive to ischemia compared with primordial follicles
(Kim et al., 2004a).

Consequences on the follicular pool
The ischemic injury occurring directly after transplantation without
vascular anastomosis is involved in the dramatic follicular depletion
observed in grafted ovarian tissue. At least 25% of the primordial fol-
licles are lost as a result of cryopreserved xenografts of human ovarian
tissue into mice (Newton et al., 1996; Nisolle et al., 2000). Others
estimated that ischemic injury during autograft processes induces the
depletion of 60–95% of the follicular reserve, including the loss of vir-
tually the entire population of growing follicles (Candy et al., 1997;
Aubard et al., 1999; Baird et al., 1999; Aubard, 2003; Liu et al.,
2008). This phenomenon is associated with a dramatic reduction of
the graft size and a significant fibrosis in most grafts (Kim et al.,
2002). This follicular depletion observed after ovarian tissue transplan-
tation is a main concern, especially in humans and large animal species
that have a dense ovarian cortex, as it may affect the follicular growth
dynamic, the hormonal environment and the fertility restoration
potential.

Consequences on graft function
In sheep, oestrus cycles were maintained until 22 months after ovarian
tissue transplantation (Baird et al., 1999). Salle et al. (2003) observed
gestation for more than 2 years after hemi-ovary autograft in ewes.
Experiments in sheep, however, have shown that the autograft
resulted in a 3- to 4-fold increase in FSH during the oestrus cycle,
possibly due to a deficiency in inhibin A production by the growing fol-
licles (Campbell et al., 2000). An inhibin deficiency, associated with an
elevation of FSH level, could explain the granulosa cell hyperplasia
observed in the grafted tissue during the re-establishment of follicular
development (Callejo et al., 2003). Low anti-Müllerian hormone levels,
normally produced by the pool of developing follicles in intact ovaries,
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also promote massive follicular recruitment after ovarian tissue trans-
plantation (Visser and Themmen, 2005).

This hormonal environment reflects a poor ovarian reserve that
could affect the natural fertility capacity and the response to gonado-
trophin stimulation. In humans, follicular depletion and cortical injury
lead to a ‘poor responder’ status after transplantation. Both hormonal
profiles and follicular dynamics observed after transplantation in
humans are indeed in agreement with experiments in large
mammals. It is established that an optimal hormonal environment is
associated with a higher response rate during the IVF cycle
(Broekmans et al., 2006).

Follicular development and restoration of ovarian function usually
occurs 4–5 months after a transplantation procedure (Donnez
et al., 2006), as more than 120 days are necessary to initiate follicular
growth and approximately 85 days to reach final maturation stage
from a pre-antral follicle (Gougeon, 1996). Ovarian function after
transplantation remains for a few months to more than 5 years
(Oktay and Karlikaya, 2000; Callejo et al., 2001; Radford et al.,
2001; Schmidt et al., 2005; Donnez et al., 2006; Demeestere et al.,
2007; Oktay and Oktem, 2008). Despite the restoration of regular
menstruation cycles, high basal FSH levels are usually observed after
ovarian tissue transplantation in women, reflecting the poor ovarian
reserve (Donnez et al., 2005). Persistence of high FSH concentrations
most likely contributes to poor oocyte quality and an inadequate
maturation stage (Tryde Schmidt et al., 2004). Recently, a large pro-
spective study showed that a basal FSH level greater than 8 IU/l
was a strong negative predictor of spontaneous pregnancy in a
general subfertile population, even after taking into consideration
the age and the cycle length (Van der Steeg et al., 2007). Scarce preg-
nancies described after ovarian transplantation were obtained during
an adequate menstrual cycle (Donnez et al., 2004; Meirow et al.,
2005; Demeestere et al., 2006, 2007; Silber et al., 2008b). These
case reports well illustrate the importance of achieving an optimal hor-
monal environment by improving the vascularization process and by
grafting sufficient amounts of ovarian tissue.

Consequences on fertility restoration
Although restoration of long-term fertility after ovarian tissue grafts
and normal reproductive performance have been reported in mice
(Candy et al., 2000), most authors describe a lower fertility rate
after ovarian transplantation compared with non-grafted animals
(Gunasena et al., 1997; Aubard et al., 1999; Almodin et al., 2004a;
Liu et al., 2008; Sauvat et al., 2008). Caution should be taken concern-
ing studies on mice, as ovariectomy procedures can result in incom-
plete removal of the host ovary. Some authors evaluate that 3–36%
of the litter obtained from grafted animals could be derived from
the remaining ovarian host fragments (Sztein et al., 1998; Candy
et al., 2000) and a suitable (non-graft) control should be always
employed to validate studies on mice.

Decreases in the fertility rate after transplantation is actually directly
correlated with follicular depletion induced by the ischemic processes,
however, others factors may be involved. The reduction in litter size
may be linked to abnormal epigenetic status. In mice, methylation
status of H19 and LIT1 genes, both sensitive to external conditions,
were not modified after ovarian transplantation (Sauvat et al., 2008).
Despite the correct imprinting of at least two genes, the reduction

in the litter size observed in most studies could also reflect spon-
taneous miscarriages due to malformations linked with imprinting
genes.

Factors affecting graft function
after ovarian tissue
transplantation

The cryopreservation procedure
The tolerance of human ovarian tissue to the freezing-thawing pro-
cedure has been now well studied, with a follicular survival rate reach-
ing 70–80% after slow freezing with appropriate cryoprotectants
(Hovatta et al., 1996; Gook et al., 2000; Fabbri et al., 2003; Hreinsson
et al., 2003; Maltaris et al., 2006a). The slow-freezing cryopreservation
procedure may, however, influence the reproductive outcome after
graft.

Although some authors did not observe differences in the litter size
between cryopreserved and fresh mouse ovarian grafts (Gunasena
et al., 1997; Candy et al., 2000; Shaw et al., 2000), others have
suggested that cryopreservation procedure before grafting reduced
litter size (Sztein et al., 1998). Immature follicles can be cryopreserved
without subsequent DNA fragmentation (Demirci et al., 2002), but
the integrity of the granulosa cell structure and function after
this process has been questioned (Siebzehnrubl et al., 2000;
Navarro-Costa et al., 2005). Using microarray technologies, abnormal
gene expression in the granulosa cells has been reported after cryo-
preserved tissue transplantation compared with normal unmanipu-
lated tissue (Lee et al., 2008). Whether the higher rate of apoptosis
and the abnormal gene expression observed in this study can be
attributed directly to the cryopreservation procedure or to the trans-
plantation remains to be seen.

Others also describe a decrease in the number of growing follicles
after 5 days of culture of frozen-thawed 1-day-old mouse ovaries com-
pared with fresh cultured tissue (Choi et al., 2007). This may be
caused by the apoptosis and necrosis phenomenon observed after
cryopreservation. Despite the lower development rate of primordial
follicles, no significant difference was observed between the level of
mRNA expression of markers such as growth differentiation factor
GDF-9, inhibin-a or ZP3 for the developing follicle in fresh and
frozen-thawed ovaries cultured for 5 days (Choi et al., 2007).

The xenograft model, frequently used as an experimental model to
evaluate follicular viability and oocyte competence after transplan-
tation (Newton et al., 1996; Oktay et al., 1998, 2000; Nisolle et al.,
2000; Gook et al., 2001, 2005; Van den Broecke et al., 2001; Kim
et al., 2002, 2005; Maltaris et al., 2006b), has also been described in
the study of factors affecting the neovascularization process. Active
angiogenesis was demonstrated 24 days after a human tissue xenograft
into nude mice (Nisolle et al., 2000), but fibrosis relative to the surface
area was significantly higher after xenotransplantation of cryopre-
served tissue compared with fresh tissue xenotransplantation. This
difference did not, however, affect follicular depletion rate or the vas-
cularization process. In conclusion, the effect of the cryopreservation
of ovarian tissue on the follicular developmental ability and oocyte
competence requires further elucidation.
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Vitrification procedure has been newly applied to ovarian tissue
cryopreservation as an alternative approach to the slow-freezing
method in various species such as in mice (Chen et al., 2006b;
Aerts et al., 2008), sheep (Bordes et al., 2005; Wang et al., 2008),
dogs (Ishijima et al., 2006), bovines, pigs (Gandolfi et al., 2006) and
humans (Huang et al., 2008b; Wang et al., 2008). This promising tech-
nique may have the advantage of preserving the stromal cells, the col-
lagen bundles, the intercellular space as well as the primordial follicles
(Chen et al., 2006b; Wang et al., 2008), but the efficiency and the
safety of this procedure should be proved before clinical use.

The clinical factors
The life span of the heterotopic or orthotopic graft is likely to be influ-
enced by several clinical factors such as the age of the patient at the
time of cryopreservation, the previous gonadotoxic treatment and
the volume of ovarian tissue transplanted. A correlation between
theses factors and the life span of the graft is not always easy to estab-
lish. Previous chemotherapy before the cryopreservation procedure
and the localization of the ovarian graft could interact with the revas-
cularization process of the transplanted tissue. Blood vessel injuries
and cortical fibrosis have both been implicated in the follicular loss
phenomenon induced by chemotherapy (Meirow et al., 2007b).
These cortical injuries could also influence the neovascularization pro-
cesses after ovarian tissue transplantation for patients receiving che-
motherapy prior to the cryopreservation procedure.

Through cortical injury, both the ovarian tissue cryopreservation
procedure itself and previous chemotherapy may interfere with neo-
vascularization process after transplantation, inducing higher fibrosis
rates in the graft.

Role of exogenous factors
Multiple attempts have been reported to shorten the ischemic period
and increase the viability and fertility potential after ovarian graft
(Table I).

Antioxidants factors
During ischemia-reperfusion processes, oxygen free radicals constitute
the most important component that induces damage of the cell mem-
brane proteins and decreases mitochondrial function and lipid peroxi-
dation (Kupiec-Weglinski and Busuttil, 2005). Endogen antioxidant
molecules are able to neutralise these oxygen free radicals produced
in excess during the ischemic process. This system, however, can be
rapidly overwhelmed. During solid organ transplantation, exogen anti-
oxidants are used to quench free radicals and preserve organs. Both
ascorbic acid and mannitol have been shown to be effective in redu-
cing surgically-induced ovarian ischemic injury in a rat model (Sagsoz
et al., 2002). A potential benefit of antioxidants administration was
also tested during ovarian tissue transplantation. Local antioxidant
injection of vitamin E before graft could improve follicular survival
rate (Nugent et al., 1998), but these results were not confirmed by
others (Weissman et al., 1999). Other antioxidants such as melatonin
and oxytetracycline locally administered during intraperitoneal rat
ovarian graft were effective to reduce ovarian necrosis (Sapmaz
et al., 2003). Kim et al. (2004a) evaluated the efficiency of ascorbic
acid to reduce apoptosis of primordial follicles and stromal cells

after deprivation of bovine ovarian cortex blood supply for up to
48 h. They showed that stromal cells were more sensitive to ischemic
injury than primordial follicles, and that apoptosis was reduced when
the tissue was incubated with ascorbic acid up for to 24 h, but not
later.

No beneficial effect of antioxidant agents on the follicular survival
rate after ovarian transplantation has been yet demonstrated. More-
over, the use of these agents should be further investigated in vitro
and in vivo to guarantee their safety.

Growth factors
Multiple growth factors such as fibroblast growth factor, transforming-
growth factor (TGFb-a) or vascular endothelial growth factor (VEGF)
are involved in the invasion of the tissue by new vessels. The invasion
of the rat cortex by vessels 48 h after a graft is associated with a 5- and
10-fold increase in the expression of mRNA in the outer cortex for
TGFb1 and VEGF, respectively (Dissen et al., 1994). Surprisingly,
angiogenic factors such as VEGF failed to have beneficial effects on
primate graft function (Schnorr et al., 2002). In contrast, erythropoie-
tin (EPO) may enhance the survival of transplanted tissue, as it pro-
motes the differentiation and proliferation of erythroid progenitor
cells as well as preventing apoptosis (Suzuki et al., 2008). The effect
of growth factors is still controversial but recent results are encoura-
ging. Their beneficial effect on further follicular development or fertility
restoration should be confirmed.

Hormonal factors
Gonadotrophin administration, starting immediately after ovarian
tissue transplantation for 3–4 days with the aim of up-regulating
VEGF mRNA levels, did not improve the primordial or growing fol-
licles survival rate in the grafts compared with untreated recipients
(Nugent et al., 1998; Imthurn et al., 2000). Imthurn et al. (2000) eval-
uated the effect of 4 days of intraperitoneal administration of gonado-
trophins (recombinant human FSH and LH, 3 IU) beginning 2 or 4 days
prior to, or on the day of the ovarian tissue graft at a poorly vascu-
larised site (the abdominal wall). They showed that gonadotrophins
stimulation 2 days before and 2 days after grafting increased the
total number of growing follicles in the graft. Wang et al. (2002a)
showed an increase in the growing follicular population when gonado-
trophins (human menopausal gonadotrophin, hMG, 5 IU/d) were
administered to recipients 4 days before the graft compared with
untreated grafted recipients. Angiogenic factors as VEGF, up-regulated
by gonadotrophins, may be required to be present in effective
amounts before transplantation to be efficient.

Furthermore, hormonal pretreatment of the donor before ovary
removal appears to also have a beneficial effect on the growing
viable population after grafting into recipients (Imthurn et al., 2000).
It was suggested that gonadotrophins stimulation (hMG or urofollitro-
phin) of the recipients 1 or 2 weeks after human tissue xenograft
promotes follicular development, however, it seems to contempora-
neously deplete primordial follicles pool (Van den Broecke et al.,
2001; Maltaris et al., 2007a). In a porcine tissue xenograft model,
others showed that gonadotrophin administration (FSH) improves
the meiotic competence of the oocytes collected by supporting
oocyte growth (Kaneko et al., 2006).
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Table I Different options investigated in order to reduce ischemic injuries during ovarian tissue transplantation without vascular anastomosis

Donor/recipient Graft site Effect References

Vitamin E Human/mice, Mice/mice Kidney caps. Improve survival rate, reduction of lipid peroxide and malondialdehyde Nugent et al. (1998)
Mice/mice Not precise No beneficial effect Weissman et al. (1999)

Melatonin Oxytetracyclin Rat/rat ip Reduce ovarian necrosis Sapmaz et al. (2003)

VEGF Monkey/monkey sc Decrease graft viability Schnorr et al. (2002)
Human/mice ip No vascularization improvement Donnez et al. (2006a)

Androgen (male or testosterone treated hosts) Human/mice sc Increase follicular development after stimulation Weissman et al. (1999)
Hamster/hamster Kidney caps. Increase follicular population Arrau et al. (1983)
Mice/rat Kidney caps. Increase oocyte yield after stimulation Snow et al. (2002)
Mice/mice Kidney caps. Implantation rate, fetal development unaffected Waterhouse et al. (2004)

Gonadotrophins after graft (recipient) Mice/mice Kidney caps. No difference in follicular survival Nugent et al. (1998)
Mice/mice abd. wall No difference compared with untreated recipients Imthurn et al. (2000)
Human/mice sc/kidney caps. Earlier initiation of follicular development Van den Broecke et al. (2001)
Human/mice Neck muscle Depletion of primordial follicles Maltaris et al. (2007a)
Human/mice Kidney caps. Promote follicular growth Oktay et al. (1998)

Gonadotrophins before graft (recipient) Mice/mice sc Increase of the growing follicles survival Wang et al. (2002a)
Mice/mice abd. wall Increase of the growing follicles survival Imthurn et al. (2000)

GnRHa (+GnRH) Human/mice im No or detrimental effect on follicular loss prevention Maltaris et al. (2007b)

GnRHa þ estradiol Sheep/sheep Ovarian pedicle No difference in the number of primordial follicle, reduce follicular growth Campbell et al. (2000)

Graft into granulation tissue Rat/mice im Improve graft perfusion and follicular survival Israely et al. (2006)

EPO Dog/mice Ov. bursa Enhanced follicular survival Suzuki et al. (2008)

sc: subcutaneous; ip: intraperitoneal; im: intramuscular; abd, abdominal; ov: ovarian; caps.: capsule; VEGF: vascular endothelial growth factor; EPO: erythropoietin; GnRH: gonadotrophin releasing hormone.
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Stimulation with FSH was favourable and required after human
tissue xenograft to sustain long-term follicular development beyond
the two layers stage in a model using hypogonadic SCID mice
(Oktay et al., 1998, 2000). Using another mice strain, however,
Gook et al. (2001) reported follicular development up to the antral
stage after xenograft into non-hypogonadic SCID mice without
exogenous gonadotrophin stimulation.

Elevated endogen gonadotrophin secretion, due to the ovarian
failure status before the graft, could also increase the growing follicular
proportion but may have a direct toxic effect (Flaws et al., 1997),
depleting the primordial follicular pool of the grafted tissue. GnRH
agonist, administered to reduce endogenous gonadotrophin levels,
surprisingly failed to prevent follicular depletion (Maltaris et al.,
2007b) and even severely retarded the re-establishment of normal
follicle development (Campbell et al., 2000). The effect of endogenous
and exogenous gonadotrophins thus appears to differ.

The results from animal studies lead to options for different
approaches in humans. The injection of FSH directly into the subcu-
taneous site along with an aspirin regimen for 7 days after a heteroto-
pic transplantation procedure was attempted in humans to improve
the revascularization process (Oktay et al., 2003). In contrast,
Donnez et al. (2006, 2007) suggested the administration of oestro-
progesterone tablets before the transplantation along with a GnRH
antagonist at the time of the procedure in order to reduce endogen
gonadotrophins levels. Meirow et al. (2005) proposed to administer
oestro-progesterone tablets during the first post-transplantation
month. Another option was to avoid any hormonal treatment after

the transplantation procedure (Tryde Schmidt et al., 2004; Schmidt
et al., 2005; Demeestere et al., 2006, 2007).

In conclusion, animal experiments show that gonadotrophin stimu-
lation of a recipient or donor initiated at a reasonable time before and
continued to suboptimal sites after grafting could have a positive effect
on the viable growth follicle rate, but the impact on the long-term
ovarian function and fertility of such treatment must be further inves-
tigated. The position regarding hormonal treatment before and after
ovarian tissue transplantation in human is variable and not yet
standardize.

Mechanical factors
Angiogenesis can also be mechanically stimulated by triggering
endogenous processes of new vessel formation. After injury, the
inflammatory phase allows collagen deposits to occur although angio-
genesis helps to sustain new tissue formation. This physiological
phenomenon was used by Donnez et al. (2004) and later by ourselves
(Demeestere et al., 2006), inducing neovascularization by creating a
peritoneal pocket or longitudinally opening the ovary at the ovarian
tissue transplantation sites 1 week before the transplantation pro-
cedure (two steps laparoscopy) (Fig. 2). Animal experiments con-
firmed that the ovarian grafts transplanted into granulation tissue
were already perfused at least 24 h prior the intact control grafts
(Israely et al., 2006).

To date, most experiments evaluating different treatments using
animal models failed to clearly prevent follicular loss during the

Figure 2 Diagram illustrating the different steps of the cryopreserved ovarian tissue transplantation procedure in human by two-step laparoscopy.
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ischemic period and increase fertility potential. In humans, the limited
number of patients as well as the heterogeneity of the procedure led
to the difficult evaluation of the efficiency of the different treatments.
The optimal environment before and after transplantation in humans
needed to achieve a high follicular survival in the transplanted
ovarian tissue remains unclear and needs to be further investigated.

Ovarian transplantation sites:
heterotopic or orthotopic
The choice of the transplantation sites constitutes an essential factor
involved in future graft viability and in the subsequent oocyte compe-
tence. Ovarian tissue can be transplanted back to the original site
(orthotopic) or to alternative sites (heterotopic). For each site, clinical
considerations such as the possibility of natural conception, ease of the
procedure, convenient access for oocyte collection and the volume of
tissue transplanted must be taken into consideration (Table II).

Animal experiments
Animal experiments allow comparison of the follicular development
potential at the different orthotopic and heterotopic sites after
ovarian tissue autograft or xenograft. Using the xenograft model,
Israely et al. (2003) showed that subcutaneous transplantation of rat
ovaries into mice is followed by pericyte loss associated with tissue
damage, whereas i.m. transplantation allows vascular maintenance
and better follicular preservation. In rabbit, histology and ultrastruc-
ture of grafted fresh and cryopreserved ovarian tissue into the
mesometrium, the ovarian bursa, or the ovary are comparable
(Deng et al., 2007).

Other studies concluded that ovarian bursa or kidney capsule sites
were more favourable than subcutaneous or intraperitoneal sites
(Imthurn et al., 2000; Callejo et al., 2002; Risvanli et al., 2006; Yang
et al., 2006). In rat, the subcutaneous site displays fewer primary fol-
licles and corpus luteum than the subperitoneal site (Risvanli et al.,
2006). In mice, the grafts placed in subperitoneal pockets contained
significantly fewer growing follicles (12%) than non-grafted ovaries
and ovaries grafted under the kidney capsule (70%), showing that
the transplantation of an ovary to the untreated inner side of the
lateral abdominal wall was suboptimal (Imthurn et al., 2000). Subcu-
taneous grafted ovaries also have a lower oocyte yield compared
with those placed under the kidney capsule or in the bursal cavity
(orthotopic site) in this species (Yang et al., 2006). Compared with
the kidney capsule site, ovarian tissue graft in the back muscle in

mice has recently been shown to have a better follicular survival
rate (Soleimani et al., 2008).

Considering the endocrine function, no differences in estradiol or
FSH levels were observed after 6 months follow-up of rat transplan-
tation at the subcutaneous or intraperitoneal site (Callejo et al., 1999).

As the primary indication for the ovarian tissue transplantation is to
restore fertility of women and children facing premature ovarian failure
as a result of cancer treatments, the evaluation of the oocyte compe-
tence and the normal embryo development after ovarian tissue grafts
in various sites constitutes an essential prerequisite for human
application.

To date, animal experiments have clearly shown that, depending on
the graft site, oocytes collected from graft ovarian tissue have a lower
embryo developmental potential than controls (Gunasena et al., 1997;
Aubard et al., 1999; Snow et al., 2002; Waterhouse et al., 2004; Yang
et al., 2006). The 2-cell cleavage rate from the in vitro matured oocytes
was higher when oocytes were derived from graft in the bursal cavity
compared with other heterotopic sites. The implantation rate did not
differ regarding the graft sites (Yang et al., 2006). Orthotopic as well as
heterotopic sites (kidney capsule) led to the birth of normal live young
(Table III). One malformed mouse fetus born after fresh ovarian tissue
transplantation was reported (Shaw et al., 2000). Vitrification has been
also used as an ovarian tissue cryopreservation method and young
have been obtained after grafting in different species (Bordes et al.,
2005; Chen et al., 2006a; Hasegawa et al., 2006; Bagis et al., 2008).
Bordes et al. (2005) reported four lambs born following ovarian
tissue vitrification and graft, from which one had a malformation of
the leg and oesophagus.

A few reports of live young, obtained after in vitro fertilization of
oocytes derived from ovarian tissue grafted subcutaneously, were
described in monkey (Lee et al., 2004) and mice (Yang et al., 2006).
Embryos were obtained after in vitro fertilization of oocytes collected
from ovarian tissue were transplanted subcutaneously in sheep,
however, they failed to reach the blastocyst stage (Aubard et al.,
1999).

Human experiments
Ovarian xenografts into mice provide a valuable experimental model
to study the follicular developmental potential of tissue samples
taken from various large mammals including humans (Aubard,
2003). This technique could also be useful to evaluate the gonadotoxi-
city of various drugs (Oktem and Oktay, 2007) or for the conservation
of rare and endangered species (Paris et al., 2004). Most experiments
using xenotransplantation of human ovarian tissue into mice also show
a difference in the number of resting follicles when grafts are located

.............................................................................................................................................................................................

Table II Advantages and disadvantages of heterotopic and orthotopic sites for ovarian tissue transplantation

Heterotopic site (subcutaneous) Orthotopic site

Advantages No limitation of the number of fragments transplanted Possibility of natural conception
Easy transplantation procedure Restoration of fertility demonstrated
Easy access for follicular monitoring and oocytes collection Favourable environment for follicular development

Disadvantages Restoration of fertility not yet demonstrated Number of fragments transplanted limited by the ovarian size
IVF procedure required Invasive transplantation procedure
Effect of the local environment on the oocyte quality is unknown
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Table III Pregnancies and young obtained since 1990 after transplantation of fresh and cryopreserved ovarian tissue in animal models

Species Graft site Tissue transplanted Pregnancy
rate

Total number of
pregnancies

Live birth References

Mice Ov. bursa SF Suspend tissue in fibrin clot 80% (4/5) 5 pups 6 implants Normal Carroll and Gosden (1993)
Ov. bursa SF 86% – Normal Cox et al. (1996)
Ov. bursa Fresh/SF 100%/72% .50 litters Normal Gunasena et al. (1997)
Ov. bursa Fresh/SF 70%/57% 41 pups Normal Sztein et al. (1998)
Ov. bursa Fresh/SF 92%/83% – Normal Candy et al. (2000)
Ov. bursa Fresh/SF 57%/57% 4 litters/4 litters 1 malformation Shaw et al. (2000)
Kidney caps. Fresh 33–66% (IR) 19 pups Normal Waterhouse et al. (2004)
sc Fresh 70% (IR) 2 F (day 15) þ 4 pups Low FW Yang et al. (2006)
Ov. bursa 65–100% (IR) 8 F (day 15) þ 14 pups Normal
Kidney caps. 53–100% (IR) 9 F (day 15) þ 3 pups Normal
Ov. bursa DCV/CV/SF/fresh 83/33/60/93% .100 pups – Chen et al. (2006b)
Ov. bursa Fresh/SF 70%/87% ,100 litters – Liu et al. (2008)

Rat Ov. bursa SF 72% (13/18) – Normal Aubard et al. (1998)

Rabbit Ov. bursa Fresh (allo- or autograft) 53% (9/17) 16 litters – Petroianu et al. (2002)
Intracortical sowing
(ovary)

SF 100% (5/5) 7 gestations (22 young) Normal Almodin et al. (2004a)

Ov. bursa Fresh (allo- or autograft) 37.5–62.5% 44 litters – Petroianu et al. (2006, 2007)

Mice/rat Kidney caps. Fresh (xenograft) 24.2–37.5% (IR) 5 pups Normal Snow et al. (2002)

Sheep Ov. pedicle Fresh/SF – 1 lamb/1 lamb Normal Gosden et al. (1994)
Ov. pedicle SF – Triplet Normal Baird et al. (1999)
Intracortical sowing
(ovary)

SF 100% (2/2) 4 lambs (1twin) Normal Almodin et al. (2004b)

Ov. pedicle SF 66% (4/6) 11 lambs 5 neonatal death, no congenital
abnormalities

Salle et al. (2002, 2003)

Ov. pedicle Vitrified 50% (3/6) 4 lambs 1 malformed Bordes et al. (2005)

Monkey sc Fresh 100% (1/1) 1 young Normal Lee et al. (2004)

Ov.: Ovarian; caps.: capsule; sc: subcutaneous; IR: implantation rate; FW: fetus weight; SF: slow freezing; CV: conventional vitrification; DCV: direct cover vitrification; F: fetuses.
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subcutaneously or under the kidney capsule (Abir et al., 2003;
Hernandez-Fonseca et al., 2004), with some exceptions (Van den
Broecke et al., 2001). After an average of 24 days, the degree of fibro-
sis and the relative surface of the capillaries do not differ when intra-
peritoneal and subcutaneous human ovarian xenografts into mice
were compared (Nisolle et al., 2000).

Concerning autotransplantation, the first orthotopic transplantation
of cryopreserved ovarian tissue was reported by Oktay (Oktay and
Karlikaya, 2000). Since that time, different sites have been investigated
in humans to restore ovarian function and fertility. Orthotopic sites
included ovarian tissue transplantation in the peritoneum of the
ovarian fossa and/or to the remaining ovary (Fig. 2, personal data).
Because of the low invasive surgical aspect and its easy access, the
subcutaneous site (the abdominal wall or forearm) is regularly
chosen as the heterotopic site and is sometimes associated with trans-
plantation at the orthotopic site (Callejo et al., 2001; Oktay et al.,
2001, 2003; Wolner-Hanssen et al., 2005; Demeestere et al., 2006;
Oktay, 2006) (Fig. 2, personal data). Other heterotopic sites were
also tested in humans, such as the uterus, rectus abdominal muscle
(Callejo et al., 2001; Kim et al., 2004b), the space between the
breast tissue and superficial fascia of the pectoralis muscle (Kim
et al., 2004b) as well as the subperitoneal tissue beneath the abdomi-
nal fascia between the umbilicus and the pubic bone (Rosendahl et al.,
2006). Heterotopic sites were shown to be effective to restore
ovarian function but no clinical pregnancy has been reported from
oocyte collected, despite the fact that embryos were obtained and
transferred (Oktay et al., 2001, 2004; Demeestere et al., 2006).
Nevertheless, Rosendahl et al. (2006) recently showed that an
ovarian graft at a heterotopic site could result in the production of
mature fertilizable oocytes capable of initiating pregnancy (biochemical
pregnancy) (Rosendahl et al., 2006).

In all the cases of birth reported after transplantation of ovarian
tissue, the fertilized oocytes originated from tissue transplanted at
the orthotopic site: to the peritoneum in the ovarian fossa (Donnez
et al., 2004) or to the remaining ovary (Meirow et al., 2005;
Demeestere et al., 2007; Andersen et al., 2008; Silber et al., 2008a).

Regarding the influence of the ovarian site in humans, additional
interesting observations can be drawn from previously published
reports as a result of the ability to compare long-term follicular activi-
ties at different sites (subcutaneous, peritoneal and ovary) in the same
patient (Demeestere et al., 2006, 2007). Over the 14 documented
post-transplantation cycles, follicles �15 mm diameter at the time
of ovulation were observed in 7, 29 and 64% of the cycles at the per-
itoneal, subcutaneous and ovarian sites, respectively, although the
volume of the tissue transplanted at the ovarian site was 2- to
3-fold smaller than at the other sites (personal data). The follicular
development is also delayed at the subcutaneous site compared
with the ovarian site in the case of concomitant transplantation
(Table IV). In contrast, when subcutaneous ovarian tissue transplan-
tation was performed alone, the time necessary to obtain ovarian
function recovery was reported to vary from 10 to 15 weeks, which
is even shorter than expected (Kim et al., 2004b; Oktay et al.,
2004b). Follicular development could therefore occur preferentially
at the ovarian site when heterotopic and orthotopic ovarian tissue
transplantations are simultaneously performed. Considering the
oocyte competence, a total of three oocytes out of seven punctured
follicles (four natural cycles) have been collected from the

subcutaneous site, however, two of them were degenerated. One
3-cell embryo was transferred after IVF but no pregnancy was
observed (Table IV). After subcutaneous ovarian tissue transplan-
tation, Oktay et al. (2004) obtained 20 oocytes from eight consecutive
percutaneous oocyte retrievals and six after ovarian stimulation
(Oktay et al., 2004). Eight of them were suitable for IVF, five after
in vitro maturation, but only two fertilized. One 4-cell embryo was
transferred but failed to implant. Finally, it is interesting to note that
follicular development seems to be limited at the heterotopic site as
most of the follicles failed to grow more than 15 mm in size. The
poor oocyte recovery rate and the low fertilization rate obtained
suggest that other factors such as temperature, local pressure and
environment at the subcutaneous site might contribute to the poor
quality of the oocytes.

These results are consistent with those obtained in animal studies,
showing that follicular development is influenced by the site of trans-
plantation and that the heterotopic site is probably suboptimal com-
pared with the ovarian site.

Despite these considerations, the small size of the atrophic organ
(range 0.3–1.3 cm3) limits the volume of ovarian tissue transplantable
in the remaining native ovary (Schmidt et al., 2005; Demeestere et al.,
2006). Considering the massive loss of the primordial follicle popu-
lation by an ischemic process, the pool of functional resting follicles
of the small amount of ovarian tissue transplantable at the orthotopic
site is likely to be limited. Although peritoneal and subcutaneous sites
do not appear to be optimal, the graft of a larger amount of ovarian
tissue using a combination of heterotopic and orthotopic ovarian
tissue transplantation may have a beneficial effect on endocrine func-
tion and fertility restoration potential.

Ovarian tissue transplantation
versus whole ovarian
transplantation with vascular
anastomosis
Ovarian transplantation with vascular anastomosis permits an immedi-
ate revascularization of the ovarian cortex, significantly reducing the
ischemic injury previously described (Bedaiwy and Falcone, 2004).
Conversely, the procedure cannot be repeated, and because it is
more complex, it requires particular surgical skill. Whole ovary speci-
mens have been transplanted in animal models as well as in humans.
Vascular anastomosis of fresh ovary was successfully performed
using the ovarian artery, inferior epigastric vessels, carotids vessels
or iliac artery in various species (Goding, 1966; Paldi et al., 1975;
Scott et al., 1981; Denjean et al., 1982; Wang et al., 2002b). In
sheep, the revascularization process was compromised in around
50% of the cases (Jeremias et al., 2002). In humans, ovarian transplan-
tation in the upper arm was performed with success before pelvic
irradiation (Leporrier et al., 1987; Hilders et al., 2004). In the first
case, a testicular prosthesis was inserted in the forearm of the patients
3 months before the transplantation in order to create a cavity for the
transplanted ovary. Over a follow-up period of 16 years, the ovary
remained functional (Leporrier et al., 2002). In the second case, the
transplantation was performed during the radical hysterectomy for
cervical carcinoma and the ovarian cycles remained regular for more
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Table IV Follow-up of the follicular development after cryopreserved ovarian tissue transplantation in order to restore fertility of a patient with premature
ovarian failure after bone marrow transplantation

Days post-transplantation Cycle Foll. phase length bFSH Follicles size at ovulation (mm) Post-ovulation decision Results

Ovary Peritoneal SC right SC left Oocytes collected Fertilization
(IVF)

Embryo
transfer

Nov 2004 (0) First transplantation (ovary-SC right- peritoneal sites)

148 Spontaneous 22 12–12.5 21 13.5 Timing intercourse No pregnancy

165 Spontaneous 5 7 16.5–10–8 8 – Timing intercourse No pregnancy

190 Spontaneous 11 5 ND ND ND Timing intercourse No pregnancy

213 Spontaneous 10 6 16–14–13 – – Timing intercourse No pregnancy

237 Spontaneous 12 6 15–11.5 – 11 Timing intercourse No pregnancy

261 Spontaneous 11 9 19.5–10 – 10 Timing intercourse Miscarriage

372 Spontaneous 21 19 18–14 – 12 Timing intercourse No pregnancy

389–409 Pill – 41 OC 34 – – – No pregnancy

434 Stimulation – – 18 – – Timing intercourse No pregnancy

518 Spontaneous 28 19 17.5–11.5 – 16–11 2 1 (SC site) 1 (3 cells) No pregnancy

May 2006 Second transplantation (ovary-SC left sites)

583 Spontaneous 17 25 – – 16.5–10.5 – 1 0 (deg) 0 No pregnancy

608 Spontaneous 11 24 – – 15 – Timing intercourse No pregnancy

635 Spontaneous 11 6 11 – 17.5–13 – 1 0 (deg) 0 No pregnancy

650 Spontaneous 7 6 22.5 – – – Timing intercourse No pregnancy

669 Spontaneous 9 9 15–15 – – – Timing intercourse Pregnancy

June 2007 Delivery of healthy girl

PP-3 months Spontaneous 2 follicles – – – – –

PP-4 months Spontaneous ND ND – – – –

PP-5 months Spontaneous 6 17.5 – 19–14.5 12.5 0 0 0 –

PP-8 months Spontaneous 26 ND ND – – –

PP-15 months Spontaneous 17.3 ND ND

PP-17 months Spontaneous 45 ND ND

Transplantation procedure has been performed twice in November 2004 and in May 2006 at different sites: ovarian, sub-cutaneous and/or peritoneal. Follicular phase length, basal FSH levels (bFSH), the follicular site at the time of ovulation and
the outcomes of each cycle are reported.
deg ¼ degenerated; ND ¼ not done; OC ¼ ovarian cyst; SC ¼ sub-cutaneous, PP ¼ post-partum.
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than 1 year without local sequelae due to cyclic enlargement of the
ovary. Recently, Silber et al. (Silber et al., 2008c) reported a first
full-term pregnancy obtained using orthotopic whole fresh ovary trans-
plantation between monozygotic twins who are discordant for prema-
ture ovarian failure in order to restore fertility in the affected twin.

The important challenge of the whole ovary procedure concerns
the cryopreservation to ensure the diffusion of the cryoprotectant
and maintain the healthy structure of the organ. The anti-apoptotic
agent (sphingosine-1-phosphate) has been tested without success to
increase the cell’s survival during the procedure, particularly the endo-
thelial arterial disruption (Onions et al., 2008). Wang et al. (2002b)
reported the first pregnancy after transplantation of frozen-thawed
rat ovaries, fallopian tubes and upper segment of the uterus in bloc.
Ovarian function, however, was restored in only 57% of the rats trans-
planted with cryopreserved ovaries compared with 100% when fresh
organs were transplanted (Yin et al., 2003). Using epigastric vessels or
ovarian vascular pedicle, transplantation of a frozen-thawed ovary was
also performed with success in sheep (Bedaiwy et al., 2003; Revel
et al., 2004; Arav et al., 2005; Bedaiwy and Falcone, 2007) and
rabbit (Chen et al., 2006a). In sheep, reanastomosis was successful
in only around 60% of the animals due to venous thrombosis or a
torn artery (Jeremias et al., 2002; Revel et al., 2004; Imhof et al.,
2006). This most likely reflects endothelial damage by the
freezing-thawing procedure or by the ischemic time until successful
reanastomosis. In the successfully transplanted sheep, cycles were
maintained during the 24–36 months period (Arav et al., 2005).
The procedure resulted in the birth of a healthy lamb (Imhof et al.,
2006). Eighteen months after grafting, the authors reported a
massive follicular depletion with less than an 8% follicular survival
rate. Other authors reported only 6% of viable follicles and the
depletion of the entire follicular population after fresh ovarian and
vitrified ovarian grafts, respectively (Courbiere et al., 2008). Ovarian
vessel thrombosis was observed in both groups with a higher inci-
dence after whole vitrified ovarian transplantation.

Cryopreservation of a whole ovary using the slow protocol has
been performed in humans (Martinez-Madrid et al., 2004, 2007a;
Bedaiwy et al., 2006; Martinez-Madrid and Donnez, 2007b), showing
vessels and follicular integrity of the ovary after freezing and thawing.
Recent advances in whole human ovary cryopreservation procedure
using multi-gradient freezing device are also promising (Bromer and
Patrizio, 2008). The authors described high follicular viability, normal
histological architecture and no evidence of damage to the vessel
after this procedure, suggesting a vascular reanastomosis may be
feasible.

The transplantation procedure, however, has yet to be attempted in
human. Recent data suggest that whole frozen-thawed ovary trans-
plantation is likely to be successful in humans in the future. Despite
these encouraging results however, caution is indicated due to the dra-
matic depletion of follicular density observed after transplantation in
animals. The efficiency of transplantation of the whole cryopreserved
ovary should be further investigated in animal models.

Conclusion
Considerable advances in the field of fertility preservation have been
obtained in the last decade, leading to the introduction of a new dimen-
sion of quality of life in many oncological centres. Consequences include

an important increase in the request for fertility preservation pro-
cedures such as cryopreservation of ovarian tissue. Recent pregnancies
published and the birth of healthy babies after cryopreserved ovarian
tissue transplantation represent a great hope for these patients.
Despite the evidence available for the efficacy of cryopreserved
ovarian tissue transplantation to restore fertility, the success rate of
the procedure is still limited. Follicular depletion after tissue transplan-
tation without vascular anastomosis is a major concern, limiting the
life-span of the transplanted tissue and influencing the hormonal environ-
ment after the procedure. Many attempts have already been made to
increase the viability of the graft. Most of the exogenous factors used
however, have not been efficient or are not applicable in humans.

The transplantation site plays a key role in the neovascularization
process and could also influence the subsequent follicular develop-
ment and oocyte competence through other mechanisms. Based on
animal and human experiences, we show that heterotopic sites are
suboptimal compared with the orthotopic site. This, however, pre-
sents some interesting advantages, justifying further investigation to
improve these results.

To avoid ischemic injury, transplantation of a whole cryopreserved
ovary may be the better option. Recent data on the viability of the
human whole ovary after cryopreservation are encouraging and
further research should allow the utilization of this option in the future.

Finally, transplantation of ovarian tissue cannot be proposed for all
patients, due to the risk of tumour cell retransmission during the pro-
cedure (Kim et al., 2001; Oktay, 2001; Radford, 2004; Sonmezer et al.,
2005). Research programmes are needed to develop alternatives for
these patients such as isolated follicles transplantation (Dolmans
et al., 2007), in vitro follicular culture (Smitz and Cortvrindt, 1999),
or pharmacological protection (Paris et al., 2002; Blumenfeld, 2007;
Oktay et al., 2007). Recently, the success of 3D culture systems simu-
lating physiological conditions provides a new possibility for the
development of in vitro maturation of ovarian follicles in human
(Xu et al., 2006).
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