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Abstract

Genetic variability across the SNCA locus has been repeatedly associated with susceptibility to sporadic Parkinson’s disease
(PD). Accumulated evidence emphasizes the importance of SNCA dosage and expression levels in PD pathogenesis.
However whether genetic variability in the SNCA gene modulates the risk to develop sporadic PD via regulation of SNCA
expression remained elusive. We studied the effect of PD risk-associated variants at SNCA 59 and 39regions on SNCA-mRNA
levels in vivo in 228 human brain samples from three structures differentially vulnerable to PD pathology (substantia-nigra,
temporal- and frontal-cortex) obtained from 144 neurologically normal cadavers. The extensively characterized PD-
associated promoter polymorphism, Rep1, had an effect on SNCA-mRNA levels. Homozygous genotype of the ‘protective’,
Rep1-259 bp allele, was associated with lower levels of SNCA-mRNA relative to individuals that carried at least one copy of
the PD-risk associated alleles, amounting to an average decrease of ,40% and .50% in temporal-cortex and substantia-
nigra, respectively. Furthermore, SNPs tagging the SNCA 39-untranslated-region also showed effects on SNCA-mRNA levels
in both the temporal-cortex and the substantia-nigra, although, in contrast to Rep1, the ‘decreased-risk’ alleles were
correlated with increased SNCA-mRNA levels. Similar to Rep1 findings, no difference in SNCA-mRNA level was seen with
different SNCA 39SNP alleles in the frontal-cortex, indicating there is brain-region specificity of the genetic regulation of
SNCA expression. We provide evidence for functional consequences of PD-associated SNCA gene variants in disease relevant
brain tissues, suggesting that genetic regulation of SNCA expression plays an important role in the development of the
disease.
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Introduction

Alpha-synuclein (SNCA) (Ensembl: ENSG00000145335; OMIM,

Online Mendelian Inheritance in Man: MIM 163890) was the first

gene found to be involved in Parkinson’s disease (PD[MIM

168600]). SNCA aggregates have been identified within Lewy

bodies, the pathological hallmark of PD [1]. Also, mutations [2–4]

and copy number variations [5–9] in the SNCA gene have been

identified in a few families with an early onset, autosomal dominant

form of PD. Furthermore, accumulated evidence suggests that

elevated levels of wild type SNCA lead to neuronal dysfunction and

are sufficient to cause early onset familial PD. Genomic triplication

of the region containing SNCA was shown to result in four fully

functional copies of SNCA and 2-fold over-expression of SNCA

mRNA and protein and a highly penetrant early-onset PD

phenotype with cognitive impairment and autonomic dysfunction

[10,11]. Similarly, duplications of the wild-type SNCA gene result in

a 1.5-fold elevation of SNCA expression and a slightly later onset of

heritable PD that is characterized by a lower penetrance rate and a

‘milder’ phenotype than for the triplication [6–9], demonstrating

the dose-dependent effect of SNCA on disease presentation.

Furthermore, elevated levels of SNCA-mRNA have been reported

in midbrain tissues [12] and in individual substantia nigra

dopaminergic neurons from sporadic PD post mortem brains

compared to controls[13]. These observations emphasize the

importance of SNCA dosage and expression levels in PD

pathogenesis.

Several association studies have demonstrated that genetic

variability across the SNCA locus is associated with susceptibility to

sporadic PD [14–18]. Based on HapMap data SNCA has two

major linkage disequilibrium (LD) blocks, a 59 block that extends

to the promoter-enhancer region and a 39 block that comprises the

39untranslated-region (UTR) and the 39 region of the gene

[15,18]. These studies confirmed the association of variants within

both SNCA 59 and 39 LD-blocks with PD-risk, suggesting that the

genetic regulation of SNCA expression might be mediated through

different molecular mechanisms (transcriptional and post tran-

scriptional) and could have an important role in the development

of the disease. Previously, we extensively characterized the best

confirmed associated genetic variation, Rep1, a polymorphic

nucleotide repeat site located ,10 kb upstream of the SNCA

transcription start site [19,20]. Using a reporter assay in a

transiently transfected neuronal cell line [21,22] and a transgenic

mouse model [23], we demonstrated that SNCA-Rep1 had a
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reproducible effect on regulating transcriptional activity. In both

model systems, the extended risk allele showed increased

expression of the reporter construct and the human transgene,

respectively; while the shorter PD-‘protective’ allele was associated

with lower expression levels [21,22].

Here we aim to reveal the functional consequence of genetic

variations in the SNCA genomic region. We studied the effect of

the Rep1 variant as well as other PD risk-associated variants on

SNCA-mRNA steady state levels in vivo in three human brain

structures differentially vulnerable to PD; i.e. frontal cortex,

temporal cortex and mid-brain including the substantia nigra (SN).

Our comprehensive analysis was performed using post mortem

matched brain tissues from unaffected individuals to directly assess

the genetic contribution to the regulation of SNCA expression,

avoiding other confounding factors arising from the neurodegen-

eration associated with PD.

Results

Effect of secondary (non-genetic) variables on
SNCA-mRNA level

SNCA-mRNA fold levels (SNCA/SYP) were measured in 228

brain tissue samples obtained from 144 subjects (83% white,

56.5% males; Table 1). First, we assessed the correlation of SNCA-

mRNA expression with confounding factors that might affect

RNA levels. All midbrain including substantia nigra (SN) samples

were obtained from white individuals. SNCA mRNA folds levels in

midbrain including SN (n = 34) were not correlated with sex

(P = 0.187), age (P = 0.735), or PMI (p = 0.177). Similarly, no

correlations of SNCA-mRNA levels were observed in temporal

(n = 77) and frontal cortex (n = 117) with sex (P = 0.49, 0.46), race

(P = 0.59, 0.14), age (P = 0.35, 0.742), or PMI (P = 0.85, 0.7).

Next, the effect of specificity of the brain tissue region on SNCA

expression was assessed. To carry out this analysis we used

matched samples, i.e. samples of different brain structures

obtained from the same cadaver. Frontal cortex showed

significantly lower levels of SNCA-mRNA compared with

midbrain including SN (n = 9; P = 0.001) and temporal cortex

(n = 75; P = 1.661029). The average SNCA-mRNA fold levels

observed in the frontal cortex samples was approximately 50% less

from the average SNCA-mRNA fold levels detected in the

temporal cortex and in the midbrain including SN of the same

individuals. Comparison of SNCA mRNA fold levels between

matched samples of temporal cortex and midbrain including SN

revealed no differences (n = 7, P = 0.37). Furthermore, we were

able to carry out a direct comparison of all three brain regions in 7

cadavers from whom all brain regions were available, showing that

the average fold expression levels of SNCA-mRNA are similar in

midbrain including SN and temporal cortex and nearly twice the

average fold levels observed in the frontal cortex (Figure 1). Thus,

Table 1. Demographic description of the brain samples.

Subjects Tissues FC TC SN
Subjects with
multiple tissues FC+TC+SN FC+TC FC+SN

Total no. 144 228 117 77 34 77 7 68 2

White (%) 83.0 81.2 72.7 100 100 72.1 100

Male (%) 56.5 53.5 51.4 53.6 0 50.0 0

Age at Death
(mean6S.E.M)

65.1618.1 69.3616.9 69.0617.6 55.6618.1 82.465.8 69.8617.2 81.564.5

PMI (mean6S.E.M) 15.266.8 15.467.5 13.367.0 13.064.2 7.564.9 13.367.1 1462.0

FC- frontal cortex, TC-temporal cortex, SN-substantia nigra. PMI- post mortem interval.
doi:10.1371/journal.pone.0007480.t001

Figure 1. Average fold expression of SNCA-mRNA in three matched brain regions obtained from the same subjects (n = 7). Fold levels
of SNCA-mRNA were assayed by real-time RT-PCR using TaqMan technology and calculated relative to the geometric mean of SYP- and ENO2- mRNAs
reference control using the 22DCt method. The bar graph presents the average of SNCA-mRNA fold expression (mean6S.E.M) of the 7 subjects for
each brain region. SN-substantia nigra; TC-temporal cortex; FC- frontal cortex.
doi:10.1371/journal.pone.0007480.g001
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temporal cortex may serve as a mirror for SNCA-mRNA

expression levels in the substantia nigra.

Effect of variants in the 59 region of SNCA on SNCA-
mRNA levels in different brain tissues

We studied the effect of variants in the promoter enhancer

region of SNCA on SNCA mRNA levels. Three polymorphisms

were tested: two SNCA 59 region tagging SNPs (rs2619363 and

rs2583988) and Rep1 (Figure 2).

All samples were genotyped for both the rs2619363 and

rs2583988 SNPs; Table 2 summarizes the allele frequencies in

our samples. The tagging SNPs rs2619363 and rs2583988 in the

promoter of the SNCA gene did not show any correlation to SNCA

mRNA in the midbrain including SN (P = 0.58, 0.92) the temporal

cortex, (P = 0.68, 0.95) or the frontal cortex (P = 0.68, 0.84).

We then tested for correlation with Rep1 genotypes. A

summary of Rep1 allele frequencies of the studied samples is

presented in Table 3. Analysis of the temporal cortex (n = 77)

indicated that individuals homozygous for the PD-‘protective’

genotype 259/259 (n = 8) had lower SNCA-mRNA levels than

individuals carrying the 259/261, 261/261, 259/263, 261/263

and 263/263 genotypes (Figure 3A; P = 0.02). In the temporal

cortex Rep1 259/259 demonstrated an average 0.59 fold SNCA-

mRNA expression level compared with an average 1.00, 0.94,

0.95, 0.83 and 0.90 fold expression level of SNCA-mRNA in the

five other genotypes 259/261, 261/261, 259/263, 261/263 and

263/263 genotypes carriers, respectively (Figure 3A). From these

results we calculated that individuals who carried two copies

of the PD ‘protective’ Rep1-259 bp, had reduced levels of human

SNCA-mRNA, amounting to a nearly 40% decrease relative to

individuals that carried at least one copy of the PD-risk associated

alleles. Similarly, in the midbrain including SN samples (n = 34) a

50–65% decrease in the average expression level of SNCA-mRNA

was observed with the 259/259 genotype (n = 3) when compared

to each of the other Rep1 genotypes (Figure 3B). This reduction

effect of the 259/259 genotype did not show, however, a trend

towards significance which might be explained by the small size of

the group and the large variability in SNCA-mRNA levels within

each genotype group (resulting from the neuronal cell heteroge-

neity of the mid brain/substantia nigra tissue)[12]. In contrast, no

significant correlation of the Rep1 site with SNCA-mRNA levels

was identified in the frontal cortex (n = 117; P = 0.91), suggesting

that Rep1 might affect SNCA expression in a brain-region specific

manner (Figure 3C). A summary of the results is listed in Table 4.

Effect of SNPs in the 39 region of SNCA on SNCA-mRNA
levels in different brain tissues

The effect of the SNCA 39 region on SNCA mRNA levels was

tested with three SNPs: the rare rs17016074 and the two 39 region

common tagging SNPs rs356219 and rs365165 (Figure 1). All

samples contained the rs356219, rs365165, and rs17016074 SNP

genotypes and the allele frequencies in our study group are

summarized in Table 2. Genotypes of SNP rs356219 (G/A)

showed an effect on SNCA mRNA levels in temporal cortex

(P = 0.013) and midbrain including SN tissue (P,0.05) (Figure 4 A

and B). In the temporal cortex the homozygous rs356219

‘protective’ AA genotype (n = 29) showed higher expression levels

Figure 2. A schematic representation of the human SNCA gene with the relative positions of the markers. Organization of the human
SNCA locus: translated exons, wide black solid boxes; 59 and 39UTR, narrow black solid boxes; introns and intergenic regions, grey line. The relative
positions of the genetic variants are indicated above, asterisks designate variants that were associated with SNCA-mRNA.
doi:10.1371/journal.pone.0007480.g002

Table 2. Rep1 allele frequencies of the study group.

Rep1
All
No.(%)

Caucasians
No.(%)

Maraganore et al. (JAMA, 2007)
No.(%)

259 88(0.31) 71(0.304) 1413(0.27)

261 172(0.606) 151(0.645) 3579(0.68)

263 23(0.08) 12(0.051) 312(0.06)

265 1(0.004) 0 0

No.- total number of alleles (2 per individual); % allele frequency.
doi:10.1371/journal.pone.0007480.t002

Table 3. SNPs analyzed in the study with allele frequencies.

SNP Total No./MAF Caucasians No./MAF CEPH{ No./MAF

rs2583988 69/0.241 63/0.272 102/0.255

rs2619363 72/0.25 64/0.274 112/0.24

rs17016074 9/0.031 4/0.017 112/0

rs365165 128/0.448 98/0.419 0.37*

rs356219 120/0.417 88/0.376 112/0.411

No.- total number of alleles (2 per individual); MAF- the minor allele frequency.
{HapMap data base. *MAF reported in PD-SNCA association studies.
doi:10.1371/journal.pone.0007480.t003
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of SNCA mRNA than the GA and the GG genotypes (n = 38, 10),

amounting to a nearly 40% increase (Figure 4A). In the substania

nigra, the homozygous AA and the heterozygous GA genotypes

(n = 12, 16) correlate with higher SNCA mRNA levels than the risk

genotype GG (n = 6) (Figure 4B). In the frontal cortex, on the

contrary, no correlation was identified between SNCA mRNA

Figure 3. Effect of the SNCA-Rep1 promoter genotypes on human SNCA-mRNA expression levels in human brains. Individuals were
genotyped for Rep1. Three brain regions were analyzed: temporal cortex (A), midbrain including SN (B) and frontal cortex (C). In each brain region fold
levels of human SNCA-mRNA were assayed by real-time RT-PCR using TaqMan technology and calculated relative to human SYP-mRNA reference control
using the 22DCt method. (A) Analysis of the temporal cortex showed that the protective genotype 259/259 correlates with lower SNCA-mRNA levels then
the five other genotypes (P = 0.02). The association trend was confirmed in a subset of samples using also the GAPDH and ENO2 reference genes (Table S2).
(B) In the midbrain including SN the 259/259 correlates, with lower SNCA-mRNA levels. (C) No correlations of Rep1 genotypes with SNCA-mRNA levels were
detected in the frontal cortex. For each genotype the box plot represents the analysis performed using all brain samples available from the specific brain
region, each of which was analyzed twice independently, each time in duplicate. The average values are presented in ‘X’. The box plot shows the median
(horizontal line inside the box) and the 25th and 75th percentiles (horizontal borders of the box). The range between the 25th and 75th percentiles is the
interquartile-range (IQR). The whiskers show the minimal and maximal values inside the main data body.
doi:10.1371/journal.pone.0007480.g003

Table 4. Summary of the genetic correlations between genetic variants at SNCA locus and SNCA-mRNA levels.

FC TC SN

59region Rep1 = 259/259,259/261, 261/261, 259/263, 261/263, 263/263 *259/259,259/261, 261/261, 259/263, 261/263, 263/263

rs2583988 = = =

rs2619363 = = =

39region rs17016074 = *AA,GA,GG *AG,GG

rs365165 = AA.GA, GG AA,GA.GG

rs356219 = AA.GA, GG AA,GA.GG

‘ = ’ no correlation, *no trend towards significance, FC- frontal cortex, TC-temporal cortex, SN-substantia nigra.
doi:10.1371/journal.pone.0007480.t004

SNCA-mRNA-Genetic Regulation
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levels and rs356219 genotypes (Figure 4C). SNCA mRNA levels

were also correlated with SNP rs365165 (G/A) in temporal cortex

(Figure 5A, P,0.05) and midbrain including SN (Figure 5B,

P,0.05), following the same correlations of genotypes to SNCA

mRNA fold expression (Table 4); while no correlation was

observed in the frontal cortex (Figure 5C), similar to the results

obtained for the downstream SNCA 39 SNP. Thus, as expected

based on the high LD between these SNPs, the results observed for

SNP rs365165 supported the findings of SNP rs356219 (Table 4).

Of note the magnitude of the SNPs effect on SNCA-mRNA fold

expression was larger for SNP rs356219. Analysis of the rare

(,5%) rs17016074 suggested a possible effect of the minor allele

on SNCA mRNA reduction, since the homozygous AA (n = 1 of 77)

had a lower level of SNCA mRNA in the temporal cortex and the

heterozygous AG (n = 1 of 34) revealed a lower level in the

midbrain including SN, which will need to be explored with a

larger group (data not shown). The frontal cortex region did not

show a significant correlation with SNCA mRNA folds levels with

any of the genotypes at the 39 region SNPs. A summary of the

results is listed in Table 4.

Discussion

Finding interesting correlations between genetic variants and

gene expression levels does not necessarily require a comparison

between tissues from both affected cases and controls. Significant

differences in gene expression levels were also shown to be

associated with different genotypes in human tissues of unaffected

individuals [24,25]. Identification of such genetic expression effects

in a disease relevant tissue could provide important information

for determining which variants to pursue in functional studies and

which will further our understanding of the underlying biology of

associations with the disease of interest. We previously reported

differences in SNCA-mRNA expression levels between PD cases

and controls[12]. However, in this current report, we analyzed

unaffected brains, which allow us to overcome methodological and

Figure 4. Effect of SNP rs356219, 39region genotypes, on human SNCA-mRNA expression levels in human brains. Individuals were
genotyped for SNP rs356219. Three brain regions were analyzed: temporal cortex (A), midbrain including SN (B) and frontal cortex (C). In each brain
region fold levels of human SNCA-mRNA were assayed by real-time RT-PCR using TaqMan technology and calculated relative to human SYP-mRNA
reference control using the 2-DCt method. (A) Analysis of the temporal cortex showed that the protective genotype AA correlates with higher SNCA-
mRNA levels than the GA and GG genotypes (P = 0.013). The association trend was confirmed in a subset of samples using also the GAPDH and ENO2
reference genes (Table S2). (B) In the midbrain including SN the AA and AG genotypes correlate with higher SNCA-mRNA levels compared with the
GG risk genotype (P,0.05). (C) No correlations of SNP rs356219 genotypes with SNCA-mRNA levels were detected in the frontal cortex. For each
genotype the box plot represents the analysis performed using all brain samples available from the specific brain region, each of which was analyzed
twice independently, each time in duplicate. The average values are presented in ‘X’. The box plot shows the median (horizontal line inside the box)
and the 25th and 75th percentiles (horizontal borders of the box). The range between the 25th and 75th percentiles is the interquartile-range (IQR).
The whiskers show the minimal and maximal values inside the main data body.
doi:10.1371/journal.pone.0007480.g004
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interpretative challenges that arise from the massive cell loss,

particularly neuronal loss, along with other pathologic processes

accompanying neurodegeneration that may influence expression.

Following this approach, we looked for variations in SNCA

expression in the brains of unaffected people (age matched to

late-onset PD). Specifically, in the present study we focus on

genetic regulation of RNA. Therefore, we looked for variations in

SNCA mRNA levels and tested for association with PD-associated

variants positioned within putative regulatory regions for RNA

expression: 1) the 59 region of the gene which presumably

influences transcription and 2) the 39 UTR and 39 of the gene that

most likely affects post-transcriptional regulation. All variants

chosen for the present study had been repeatedly reported to

confer increased risk for developing PD [14–18]. The five

analyzed SNPs are located within evolutionary highly conserved

regions, and the two 59 SNPs were also in or very close to potential

binding sites for transcription factors (data not shown).

In the 59 region we found that, among the polymorphic loci

tested, only variation at the Rep1 locus was responsible for

differences seen in SNCA-mRNA levels. Previously, we extensively

characterized the functional significance of the PD-associated

Rep1 polymorphic site [26–29] and its contribution to the

transcriptional regulation of SNCA in an in vitro cell-based system

and in vivo using a transgenic mouse model [21,22,30]. Recently,

Fuchs and colleagues reported Rep1’s effect on SNCA protein

levels in human blood, but failed to detect an effect in brain

samples (N control subject = 24) [31]. Here using a much large sample

size (N control subject = 144) we demonstrate for the first time the

regulatory effect of Rep1 alleles in vivo in human brain structures

relevant to the disease providing further direct, functional evidence

for the reported genetics associations; i.e. in PD-affected brain

regions the ‘protective’ genotype correlated with lower SNCA-

mRNA levels compared with all the other genotypes carrying one

or two PD-risk alleles (261 and 263) [18,26–29]. The direction of

the Rep1 alleles’ effect on SNCA-mRNA levels is consistent with

our previous observations using both a cell-based reporter

system[22] and a mouse model [23]. Furthermore, our finding

lends support to the general hypothesis that an increase in the

Figure 5. Effect of SNP rs365165, 39region genotypes, on human SNCA-mRNA expression levels in human brains. Individuals were
genotyped for SNP rs365165. Three brain regions were analyzed: temporal cortex (A), midbrain including SN (B) and frontal cortex (C). In each brain
region fold levels of human SNCA-mRNA were assayed by real-time RT-PCR using TaqMan technology and calculated relative to human SYP-mRNA
reference control using the 2-DDCt method. (A) Analysis of the temporal cortex showed that the protective genotype AA correlates with higher SNCA-
mRNA levels than the GA and GG genotypes (P,0.05). (B) In the midbrain including SN, the AA and AG genotypes correlate with higher SNCA-mRNA
levels compared with the GG risk genotype (P,0.05). (C) No correlations of SNP rs365165 genotypes with SNCA-mRNA levels were detected in the
frontal cortex. For each genotype, the box plot represents the analysis performed using all brain samples available from the specific brain region,
each of which was analyzed twice independently, each time in duplicate. The average values are presented in ‘X’. The box plot shows the median
(horizontal line inside the box) and the 25th and 75th percentiles (horizontal borders of the box). The range between the 25th and 75th percentiles is
the interquartile-range (IQR). The whiskers show the minimal and maximal values inside the main data body.
doi:10.1371/journal.pone.0007480.g005
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expression of SNCA may also contribute to the common,

‘idiopathic’ PD phenotype, while decreased SNCA levels protect

from this devastating disease.

In the 39 region, we found evidence for a regulatory role for all

tested SNPs. In contrast to the Rep1 effect, however, the

‘protective’ genotype at the 39 region defined by each of the

common tagging SNPs is associated with higher SNCA-mRNA

levels in disease affected brain tissues (midbrain including SN and

temporal cortex). With both of the common 39 region tagging

SNPs, rs356219 and rs365165, the ‘protective’ AA genotype

correlated with higher SNCA-mRNA in the temporal cortex, while

both the homozygous ‘protective’ and the heterozygous genotypes

(AA and GA) correlated with higher mRNA levels in the midbrain

including SN. In general, our findings are in agreement with a

recent smaller scale study reporting that the protective rs356219

genotype (AA) is accompanied by higher mRNA levels in the

cerebellum, whereas the heterozygous genotype (GA) correlated

with the higher mRNA levels in the midbrain including SN. The

subtle differences from this previous study might be from the result

of the smaller sample size studied [31]. Although these findings

run contrary to the conventional hypothesis that lower SNCA

expression confers PD-protection, it might be that rs356219,

rs365165, or any other SNP in the 39 LD block (extended to

include intron 4), exerts a regulatory effect not simply by changing

total SNCA-mRNA levels but by a different molecular mechanism,

such as splicing, to change the relative levels of the different splice

forms (e.g., NACP140/112). For example, it was suggested that

exon 5 deletion (NACP112) result in enhanced aggregation due to

a significant shortening of the unstructured C-terminus[32,33].

Thus, one can speculate that although the protective genotype led

to an increase in the overall SNCA-mRNA levels, the proportion of

the aggregated isoform may decrease providing PD-protection.

Additional assays directly measuring the association of the full and

spliced forms with SNPs in the 39 region will be required to settle

this question. Alternatively, acknowledging the contradictory

findings in the field with respect to ups and down regulation of

SNCA levels in PD brains [12,13,34–36] one cannot exclude the

interpretation that the association between the 39 SNPs and

sporadic PD is the result of lower SNCA expression levels.

Nevertheless, alteration in SNCA-mRNA levels might contribute

to disease pathogenesis in many but, perhaps, not all cases of

sporadic PD.

Our study examined several SNPs in various brain tissues for

association with expression, and as such, is subject to false positive

associations. Therefore, P values should be interpreted with

caution. After Bonferroni adjustment for 18 hypotheses (6 variants

x 3 tissues), the associations with all variants became non-

significant. However, given that these were not independent

hypotheses (brain tissues from the same individuals and with clear

correlation of expression, SNPs in linkage disequilibrium), this

may be an overly conservative interpretation. The results of this

study suggest an association between specific variants in SNCA and

expression that warrants further investigation in a larger cohort

such as a multi site meta analysis platform.

Our analysis included functionally and anatomically distinct

brain regions from unaffected age-matched brains. Frontal cortex,

temporal cortex, and substantia nigra are known to have

differential susceptibility to PD pathology, ranging from severely

afflicted substantia nigra, followed by temporal cortex that is

involved in a later stage, to the frontal cortex, which is a late-

developing structure that might be spared PD features [37].

Interestingly the genetic control identified in this study was not

global (across all brain regions) but brain-region specific, indicating

regionally differential regulation of SNCA-mRNA expression. Our

results show that, in relation to SNCA-mRNA overall expression

levels and genetic regulation, the temporal cortex mirrors the

substantia nigra. Thus, it is possible that these two brain regions

share regulatory mechanisms controlling SNCA expression. In

contrast, the frontal cortex showed lower SNCA-mRNA levels and

did not reflect the genetic regulation observed for the temporal

cortex and the midbrain including SN. Thus, concerning the

limited availability of substantia nigra region, temporal cortex may

serve as a surrogate brain region carry out further studies on

expression of SNCA and other genes in PD.

A critical question concerning the molecular pathogenesis of PD

is what role SNCA plays in sporadic PD. Several recent association

studies have demonstrated that genetic variability across the SNCA

locus is associated with susceptibility to sporadic PD in many

populations [14–17]. In this study, we demonstrated the functional

consequence of genetic variations in the SNCA genomic region and

showed that the genetic association of some variants correlates

with biological function, in particular regulation of SNCA

expression levels. This suggests that regulation of SNCA gene

expression levels might be important in the development of

sporadic PD in patients who do not express a mutated protein or

who do not have an increase in gene copy number. Given that

multiplications of SNCA have been implicated in familial PD, we

suggest that a subtle increase in SNCA expression over decades

confers an elevated risk for late-onset, sporadic PD.

The results of our study advanced our understanding of the

contribution of genetic variants within the SNCA locus to sporadic

PD. Better understanding the molecular mechanisms modulating

SNCA gene expression, may lead to novel therapeutic approaches

based on reductions in SNCA levels [38–40].

Materials and Methods

Brain Samples
Brain tissue samples, including midbrain/pons/substantia nigra

(n = 34), temporal cortex (n = 77), and frontal cortex (n = 117),

from neurologically healthy controls (n = 144) (Table 1) were

obtained through the Kathleen Price Bryan Brain Bank (KPBBB)

at Duke University, the Brain and Tissue Bank for developmental

Disorders at the University of Maryland, the Layton Aging &

Alzheimer’s Disease Center at Oregon Health and Science

University, and the National NeuroAIDS Tissue Consortium

(NNTC). All post mortem interval (PMI) were ,24 hours.

Demographics for these samples are included in Table 1. All

brain samples were collected from clinically and neuropatholog-

ically healthy cadavers who had no evidence of PD, AD or other

neurodegenerative disorder at post mortem examination.

DNA Extraction and Genotyping
Genomic DNA was extracted from brain tissues by the standard

Qiagen protocol. Genotype determination of each Single Nucle-

otide Polymorphism (SNP) was performed by allelic discrimination

using TaqMan SNP Genotyping Assays (Applied Biosystems,

Foster City, CA). Each genomic DNA sample (20 ng) was

amplified using TaqMan Universal PCR master mix reagent

(Applied Biosystems, Foster City, CA) combined with the specific

TaqMan SNP genotyping assay mix corresponding to the

genotyped SNP (Table S1). The assays were carried out using

the ABI 7900HT and the following conditions: 2 min at 50uC,

10 min at 95uC, 40 cycles: 15 sec at 95uC, and 1 min at 60uC.

Genotype determination was performed automatically using the

SDS version 2.2 Enterprise Edition Software Suite (Applied

Biosystems, Foster City, CA). SNCA-Rep1 dinucleotide complex

repeat polymorphism genotyping was carried out by size using
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previously published method [22,26,41]. Briefly: the SNCA-Rep1

region of each genomic DNA sample (20 ng) was PCR-amplified

using fluorescently labeled forward FAM 59-CCTGGCATATTT-

GATTGCAA-39 and reverse 59-GACTGGCCCAAGATTA-

ACCA-39 primers [19]. Genotypes were determined on an ABI

3730 using GeneMapper version 4.0 software (Applied Biosystems,

Foster City, CA) for allelic size assessment. The Rep1 allele was

determined according to the length of the PCR product (259 bp,

261 bp, 263 bp and 265 bp). All genotypes were tested for Hardy-

Weinberg Equilibrium and allele frequencies compared to the

public database and previously published results (Tables 2 and 3).

RNA extraction and cDNA synthesis
Total RNA was extracted from brain samples (100 mg) using

TRIzol reagent (Invitrogen, Carlsbad, CA) followed by purifica-

tion with an RNeasy kit (Qiagen, Valencia, CA) following the

manufacturer’s protocol. RNA concentration was determined

spectrophotometrically at 260 nm, while the quality of the

purification was determined by 260 nm/280 nm ratio that showed

values between 1.9 and 2.1, indicating high RNA quality.

Additionally, quality of sample and lack of significant degradation

products was confirmed on an Agilent Bioanalyzer. The RNA

Integrity Number (RIN) measurements were greater than 7

validating the RNA quality control. Next, cDNA was synthesized

using MultiScribe RT enzyme (Applied Biosystems, Foster City,

CA) under the following conditions: 10 min at 25uC and 120 min

at 37uC.

Real time PCR
Real-time PCR was used to quantify human SNCA mRNA

levels as previously described [12]. Briefly, duplicates of each

sample were assayed by relative quantitative real-time PCR using

the ABI 7900 for analysis of the level of SNCA message as

compared in brain tissues to mRNA encoding human synapto-

physin (SYP), a presynaptic protein that has a similar expression

pattern to SNCA [12,30]. Each cDNA (10 ng) was amplified in

duplicate in at least two independent runs (overall$4 repeats),

using TaqMan Universal PCR master mix reagent (Applied

Biosystems, Foster City, CA) and the following conditions: 2 min

at 50uC, 10 min at 95uC, 40 cycles: 15 sec at 95uC, and 1 min at

60uC. The target SNCA cDNA was amplified using ABI MGB

probe and primer set assay ID Hs00240906_m1, normalized to a

SYP RNA control (ABI MGB probe and primer set assay ID

Hs00300531_m1) (Applied Biosystems, Foster City, CA). As a

negative control for the specificity of the amplification and to

control for DNA contamination, we used RNA control samples

that were not converted to cDNA (no-RT) and no-cDNA/RNA

samples (no-template) in each plate. No observable amplification

was detected. Data were analyzed with a threshold set in the linear

range of amplification. The cycle number at which any particular

sample crossed that threshold (Ct) was then used to determine

fold difference. Fold difference was calculated as 22DDCt;

DCt = [Ct(SNCA)-Ct (SYP)]. DDCt = [DCt(sample)]-[ DCt(calibra-

tor)]. The calibrator was a particular brain RNA sample used

repeatedly in each plate for normalization within and across runs.

The variation of the DCt values among the calibrator replicates

was smaller than 10%.

Of note is that three internal controls were compared: the neuronal

specific genes Enolase 2 (ENO2 Hs00157360_m1) and synaptophysin

(SYP Hs00300531_m1) and the house keeping gene glyceraldehydes-

3-phosphate dehydrogenase (GAPDH Hs00999905_m1). For assay

validation we generated standard curves for SNCA and each reference

assay, ENO2, SYP and GAPDH using different amounts of human

brain total RNA (0.1–100 ng). The slope of the relative efficiency plot

for SNCA and each internal control (ENO2 SYP or GAPDH) was

determined to validate the assays. The slope in the relative efficiency

plots for SNCA and the reference genes were .0.1, showing a

standard value required for the validation of the relative quantitative

method (Figure S1). In addition, for a subset of brain samples (for

each type of brain tissue) we used the geometric mean of SYP and

ENO2 and the GAPDH as normalization controls and confirmed the

selection of SYP as a representative normalization control for the

entire brain set. Thus, for the extended study we chose SYP as the

internal control.

Statistical analysis
SNCA-mRNA fold expression value of each sample was

analyzed repetitively and the results of all replicates were

averaged. All average values were expressed as mean6S.E.M.

Correlations were assessed by linear regression analyses. A log

transformation (log2) was performed on all mRNA levels to assure

normal distribution [42]. The general linear model (GLM) method

was used to evaluate the effect of the primary explained variable

(genotype) as well as other secondary variables (sex, age, PMI,

ethnicity, tissue source) on the RNA levels. The GLM is a

procedure unifying the ordinary linear regression and ANOVA as

well as other procedures based on the least square computation

such as ANCOVA. Since gender, age, PMI, ethnicity, and tissue

source may also show an effect on the RNA levels, they were

included in the model as factors. Where the P value of the

maximal model remains significant, an effect of each single term

was estimated calculating the type III sum of squares and the

corresponding F value and its probability P. Correction for

multiple testing employed the Bonferroni method. Tissues

comparisons were done by paired t-tests. All analyses were carried

out using STATA/IC10.0 statistical software (StataCorp, College

Station, TX).

The Bryan ADRC Autopsy and Brain Donation Program

Database/Repository has been granted approval from the Duke

University Health System Institutional Review Board for Clinical

Investigations, eIRB# Pro 00016278. Subject’s (or their Legally

Authorized Representatives) participating in the Bryan ADRC

Autopsy and Brain Donation Program Database/Repository have

provided written consent for use of their data and brain specimens

to be used for use in future research. The genetic and expression

analysis of all brain tissues obtained for this study is covered by

eIRB exemption #10141.

Supporting Information

Table S1 TAQMAN Genotyping Assays *Primers and probe

sequences available upon request.

Found at: doi:10.1371/journal.pone.0007480.s001 (0.03 MB

DOC)

Table S2 Discovery and Confirmatory Samples Sets. FC- frontal

cortex, TC-temporal cortex, SN-substantia nigra. PMI- post

mortem interval. Total no.- indicates the entire samples set used

in the initial discovery step (N = 228; reference gene, SYP);

Replication- referrers to the subset of temporal cortex samples

used in the validation step (n = 24; reference genes, SYP, ENO2

and GAPDH) to confirm key results.

Found at: doi:10.1371/journal.pone.0007480.s002 (0.03 MB

DOC)

Figure S1 Relative efficiency plots of SNCA and the reference

control genes. Validation curve of the Dreal time assay for relative

quantization of human SNCA-mRNA in brain relative to: (A)

SYP-mRNA, (B) ENO2-mRNA, and (C) GAPDH-mRNA.
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Relative efficiency plots of SNCA and each of the normalization

control genes were formed by plotting the log input amount

(ng of total RNA) versus the DCt = [Ct(SNCA)-Ct(SYP/ENO2/

GAPDH)]. The slopes are all ,0.1, which indicated the validation

of the DCt calculation in the range between 0.1–100 ng RNA with

all three controls.

Found at: doi:10.1371/journal.pone.0007480.s003 (1.94 MB

DOC)
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