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Abstract
Procedures for estimating the parameters of the general class of semiparametric models for recurrent
events proposed by Peña and Hollander (2004) are developed. This class of models incorporates an
effective age function encoding the effect of changes after each event occurrence such as the impact
of an intervention, it models the impact of accumulating event occurrences on the unit, it admits a
link function in which the effect of possibly time-dependent covariates are incorporated, and it allows
the incorporation of unobservable frailty components which induce dependencies among the inter-
event times for each unit. The estimation procedures are semiparametric in that a baseline hazard
function is nonparametrically specified. The sampling distribution properties of the estimators are
examined through a simulation study, and the consequences of mis-specifying the model are
analyzed. The results indicate that the flexibility of this general class of models provides a safeguard
for analyzing recurrent event data, even data possibly arising from a frailtyless mechanism. The
estimation procedures are applied to real data sets arising in the biomedical and public health settings,
as well as from reliability and engineering situations. In particular, the procedures are applied to a
data set pertaining to times to recurrence of bladder cancer and the results of the analysis are compared
to those obtained using three methods of analyzing recurrent event data.
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1 Introduction
Recurrent events occur in many settings such as in biomedicine, public health, clinical trials,
engineering and reliability studies, politics, economics, sociology, actuarial science, among
others. Examples of recurrent events in the biomedical and public health settings are the re-
occurrence of a tumor after surgical removal in cancer studies, epileptic seizures, drug or
alcohol abuse of adolescents, outbreak of a disease such as encephalitis, recurring migraines,
hospitalization, movement in the small bowel during fasting state, onset of depression,
nauseous feeling when taking drugs for the dissolution of cholesterol gallstones, recurrence of
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caries, ulcers or inflammation in an oral health study, and angina pectoris for patients with
coronary disease. Some other specific biomedical examples of recurrent events are described
in Cook and Lawless (2002). In the engineering and reliability settings, recurrent events could
be the breakdown or failure of a mechanical or electronic system, the discovery of a bug in an
operating system software, the occurrence of a crack in concrete structures, the breakdown of
a fiber in fibrous composites, among others. Non-life insurance claims, traffic accidents,
terrorist attacks, the Dow Jones Industrial Average decreasing by more than 200 points on a
trading day, change of employment, among many others, are but a few examples of recurrent
phenomena in other settings.

There are several models and methods of analysis used for recurrent event data. See for example
Hougaard (2000), Therneau and Hamilton (1997), and Therneau and Grambsch (2000) for
some current approaches to analyzing recurrent event data. However, as pointed out in Peña
and Hollander (2004), there is still a need for a general and flexible class of models that
simultaneously incorporates the effects of covariates or concomitant variables, the impact on
the unit of accumulating event occurrences, the effect of performed interventions after each
event occurrence, as well as the effect of latent or unobserved variables which, for each unit,
endow correlation among the inter-event times. In recognition of this need, Peña and Hollander
(2004) proposed a general class of models for recurrent events which satisfies the above
requirements. This class of models will be described in Section 2. The current paper deals with
inference issues, specifically the estimation of parameters, for this new class of models.
However, we limit the scope of this paper to examining the finite-sample properties through
simulation studies of the resulting estimators and defer the analytical and asymptotic analysis
of their properties to a forthcoming paper.

We consider an observational unit (e.g., a patient in a biomedical setting, an electronic system
in a reliability setting) that is being monitored for the occurrence of a recurrent event over a
study period , where  may represent an administrative time, time of study termination,
or some other right-censoring variable. The time  could be a random time governed by an
unknown probability distribution function . Let  be the
successive calendar times of event occurrences, and let  be the times between
successive event occurrences. Thus, for  and .
Over the observation period , the number of event occurrences is

, which is a random variable whose distribution depends on
the distributional properties of the inter-occurrence times  and the distribution  of . As
such,  is informative with regards to the distributional properties of event occurrences.

Assume for this unit a, possibly time-varying, -dimensional vector of covariates such as
gender, age, race, disease status, white blood cell counts (WBC), prostate specific antigen
(PSA) level, weight, blood pressure, treatment regimen, etc. We suppose that over the period

, the realization of this covariate process is observable. We denote this covariate process

by , with “ ” representing vector/matrix
transpose. For this subject, the observable entities over the study period  are therefore

(1)

Notice that since , specifying  renders  redundant; however, we still include
 to indicate that  is the right-censoring variable for the inter-occurrence time .

Furthermore, since  is random, then the distributional properties of both  and  may
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be of a complicated form. When considering the data structure in this recurrent event situation,
there is a need to recognize that  is informative and that the censoring mechanism for  is
informative (cf., Wang and Chang, 1999; Lin et al., 1999; Peña et al., 2001). These aspects are
borne out of the sum-quota data accrual scheme since the number of observed events is tied-
in to the distributions governing the event occurrences themselves.

The observable entities may also be represented more succinctly and beneficially through the
use of stochastic processes. Still considering one unit, with  denoting indicator function,

define for calendar time , , which is the process counting the
number of events observed on or before calendar time  during the study period .
Furthermore, define for calendar time , the “at-risk” process which indicates
whether the subject is still under observation at calendar time  or not. The data  in (1)
could be represented by

(2)

where  is an upper limit of observation time. Note that even though  is not observed
for  this does not pose a problem since for , and so for such a subject, there
will be no information obtainable beyond . If in the study there are  subjects, the observables
will be , where  and for ,

(3)

Equivalently,

and  are the calendar times of successive event occurrences for the th subject,
 and  is the censoring time of the th subject.

We provide an outline of the contents of this paper. Section 2 will present a description of the
class of models for recurrent events that is under investigation. Section 3 will examine the
problem of estimating the parameters of the model when there are no frailty components. The
results here are needed for the estimation procedure in the presence of frailties described in
Section 4. Section 5 will summarize results of the simulation studies pertaining to the properties
of the estimators. We demonstrate the estimation procedures discussed in Sections 3 and 4 on
real data sets in Section 6. Section 7 will provide some concluding thoughts.
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2 A General Class of Models
In this section we describe the general class of models for recurrent events in Peña and
Hollander (2004). Let  be a vector of independent and identically distributed

(i.i.d.) positive-valued random variables from a parametric distribution 
where  is a finite-dimensional parameter taking values in . These variables are
unobservable random factors affecting the event occurrences for the subjects. Also, let

 be a filtration or history on some probability space  such that

the  and  are predictable and such that the  are counting processes with respect to . The
general class of models requires the specification, possibly done dynamically, of predictable
observable processes , satisfying the following conditions: (I)

, almost surely (a.s.), where , are nonnegative real numbers; (II)
; and (III) On  is monotone and almost surely

differentiable with a positive derivative . The class of models is obtained by postulating

that, conditionally on , the -compensator of  is  with

(4)

(5)

This means that the process  is a square-integrable -
martingale. In (5),  is an unknown baseline hazard rate function;

 is of known functional form with  and with
; and  is a nonnegative link function of known functional form with
. The unknown model parameters are , where  is non-

prarametrically specified, and , and  are finite-dimensional parameters. The main impetus
in introducing this general class of models for recurrent events is that it incorporates
simultaneously the effects of covariates through the link function , the associations among
the event inter-occurrence times through the unobservable frailty variables  the effects
attributable to the accumulating event occurrences for a subject through the component

, and the effects of performed interventions after each event occurrence through the
effective age processes  which act on the baseline hazard rate function , and which
may even have nonlinear forms. There is a potential interplay between the effective age process

 and the  function. This issue will be discussed in Section 5 dealing with the simulation
studies and in the Section 6 dealing with the applications.

With no frailty, the generality of this class of models was discussed in Peña and Hollander
(2004). With the added feature of frailty, this class of models subsumes many models in the
literature, as described below. Indeed, one may view this class of models as a general synthesis
of several recurrent event models in survival analysis and reliability, such as the modulated
renewal process of Cox (1972b) and those by Self and Prentice (1982), Prentice and Self
(1983), Kessing et al. (1999), and in the examples that follow where the model is described for
only one unit, i.e., with .
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Example 2.1

Beginning with no frailty , taking , and , we obtain
i.i.d. inter-occurrence times, one of the models examined in Gill (1981) and Peña et al.
(2001). With frailty, one obtains associations among the inter-occurrence times, a model also
considered in Peña et al. (2001) and Wang and Chang (1999). Still with no frailty but taking

 gives the extended Cox proportional hazards model considered by Prentice et
al. (1981), Lawless (1987), and Aalen and Husebye (1991). Further changing to  gives
a model examined by Prentice et al. (1981), Brown and Proschan (1983), and Lawless
(1987) referred to in the reliability literature as an imperfect repair model, since it arises by
`restoring a system to the state just before it failed (minimally repaired)' whenever the system
fails.

Example 2.2
Let  be a sequence of i.i.d. Bernoulli random variables with success probability .

Define the process  via . Also let  be defined

according to , . By setting  and
, we obtain

(6)

This is the Brown and Proschan (1983) imperfect repair model, also studied by Whitaker and
Samaniego (1989) who noted that the inter-failure times and the repair modes suffice for model
identifiability. If the success probability  depends on the time of event occurrence, the Block
et al. (1985) model obtains (see Hollander et al., 1992; Presnell et al., 1994). Note in this
example that the s represent event occurrences in which intervention causes the unit to
acquire an effective age of zero. Furthermore,  is the last time prior to  that the subject
had an effective age of zero. More generally, the class of models also subsumes the general
repair model of Last and Szekli (1998), which includes as special cases models of Dorado et
al. (1997), Kijima (1989), Baxter et al. (1996), and Stadje and Zuckerman (1991).

Example 2.3
Lindqvist et al. (2003) proposed the trend-renewal process (TRP) model and the heterogeneous
TRP (HTRP) model for repairable systems, which are models built on the idea behind the
inhomogeneous gamma process model of Berman (1981). The TRP has two parameters: a
distribution function  and a cumulative hazard function , and is such that if  are
the event times, then  forms a renewal process from the distribution
function . The TRP becomes a special case of the general class of models with effective age

process  where  is the cumulative hazard function associated
with  and  is function composition,  and . However, for the inference
setting we are considering in this paper, this is not covered because  would not be
observable since  would not be known. Meanwhile, the HTRP model is simply the version
with a frailty component.

Example 2.4

A special case obtains via , where  is some positive
real number, and  is some nondecreasing function. One could interpret the parameter  as
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an initial measure of the unit’s susceptibility to events, and  specifies the rate at which this
unit is becoming stronger as the event occurrences accumulate. If we take , the
resulting model possesses the interesting property that the unit's defects contribute to the event
occurrence intensity multiplicatively through the baseline hazard rate function . If

 and , where  is some positive constant, then the Gail et al.
(1980) tumor occurrence model and the Jelinski and Moranda (1972)) software reliability
model are obtained.

Example 2.5
A popular load-sharing model is the equal load-share model considered in Kvam and Peña
(2005). One context is a -component parallel system consisting of identical components, for
which the event of interest is the occurrence of a component failure. Failed components are
not replaced, and when a component fails, the load of the system is redistributed equally over
the remaining functioning components. To model this, we let  be an
unknown vector of constants, and take the hazard rate of event occurrence at calendar time 

as , where  is the hazard rate of each component at time
zero and  denotes the number of components that have failed up to time . This model is
then a special case of the general model with , and one has the added
flexibility of also incorporating a link function involving covariates if such are observed, as
well as frailty components which could model unobserved operating environmental factors.

3 Estimation of Parameters: Model without Frailties
By virtue of the generality of the class of models, it is thus of importance to develop appropriate
statistical inference methods. We address in this section the problem of estimating the model

parameters , and  for the model where it is assumed that , that is,
the model without frailties. Thus, the model of interest has intensity process

(7)

The observables for the  subjects, which now include the observable effective age processes,

are , where

 and . The statistical identifiability of this
class of models without frailties has been established in Theorem 1 of Peña and Hollander
(2004). The two basic conditions to achieve identifiability, aside from the non-triviality of

 and sufficient variability of , are that for each value of the parameter set , the
support of  should contain , and that  should satisfy the condition that

 for each  implies . These two conditions are
henceforth assumed to hold.

For this model, letting , then with
respect to the filtration , the vector of processes
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consists of orthogonal square-integrable martingales with predictable quadratic covariation

processes . The usual martingale theory utilized by Aalen
(1978), Gill (1980), Andersen and Gill (1982), and others (cf., Fleming and Harrington,
1991; Andersen et al., 1993) does not apply directly for the purpose of estimating . The

reason is that the  appearing in  is time-transformed by the observable predictable
process , while of interest is to estimate  for a given . It is tempting and would seem
natural to simply define new processes involving the gap times between the event occurrences.
However, as pointed out in Peña et al. (2001), this approach does not work since the resulting
processes no longer satisfy martingale properties owing to the effect of the sum-quota accrual
scheme.

The technique utilized in Peña et al. (2001), extending an idea of Sellke (1988) and Gill
(1981), is to define a doubly-indexed process . (Note that
there is a notational, but tolerable, conflict with the frailty variables.) The index s represents
calendar time, which is the natural time of data accrual; while the index  represents gap times.
This process indicates whether at calendar time , the effective age of the th subject is no more
than . For , define also the doubly-indexed processes

Note that  is the number of events for the th unit that occurred over  with effective

ages at most . For a given , by utilizing the martingale property of  and the predictability
of , the process  is a square-integrable zero-mean martingale; however, for fixed
, the process  is not a martingale, but nevertheless, it also has mean zero.

A critical result is an equivalent expression for  which involves  directly, instead
of its time-transformed version. To reveal this expression, define for  the
processes

(8)

Thus,  is the restriction of  on the th interval bounded by successive event

occurrence times for the th subject. Note that on , the paths of  are one-to-
one, so its inverse exists; and furthermore, it is also differentiable. We now provide the
alternative expression for  in Proposition 1. The proof of the result is analogous to that

in Peña et al. (2000). To achieve a more concise notation, with  we define

(9)
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Proposition 1 For each , where

The process  is a generalized at-risk process and is an adjusted count of the number of
events for the th unit which occurred over  whose effective ages during their occurrences
are at least . Using Proposition 1, we have the identity

So that , where

(10)

Because  has mean zero, a method-of-moments ‘estimator’ of , given
 is

(11)

with  and with the convention that . Notice that this
‘estimator’ is of the same flavor as the Nelson-Aalen estimator or the Aalen-Breslow estimator
in single-event settings, although it should be pointed out that the derivation as well as the
structure of the processes are quite different.

Next we develop the profile likelihood for  from which the estimator of  will be
obtained. Following Jacod (1975) (see also Andersen et al., 1993), if the distribution  of 
does not involve the model parameters, then the full likelihood process associated with the
observables for the general model without frailties is

(12)
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The argument of the exponential function could be re-expressed via

Since from (11), we have  it therefore follows that

 which is independent of . Upon

substituting the ‘estimator’  for  in the argument of the exponential function
in (12), the resulting term will not contribute to the profile likelihood for .

On the other hand, substituting  for  in the first term of (12), we obtain the
relevant portion of the profile likelihood of  to be

(13)

This process could also be viewed as the partial likelihood process for , which is a
generalization of the partial likelihood for the Cox model (cf., Cox, 1972a, 1975; Andersen
and Gill, 1982). The logarithm of the profile likelihood could be conveniently expressed in
integral form via

(14)

From this profile likelihood, the estimators of  and  will be obtained. It is easy to see that
the estimating equations for the profile maximum likelihood estimators are

(15)

(16)

Because  is a step process with a finite number of jumps, then both of these estimating
equations are finite sums with respect to the calendar times . Also, just like estimating
equations in simpler models, such as for the Cox proportional hazards model, it is clear that
numerical techniques will be needed to obtain the estimates  and .
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Upon obtaining the estimators  and  from the estimating equations (15) and (16), the
estimator of  based on the realizations of the observables over  is obtained by
substituting ( ) for  in the expression of  given in (11). Thus,

(17)

Finally, for an estimator of the baseline survivor function associated with  defined via
 by the product-integral representation and the substitution principle, we

obtain

(18)

This estimator is of a product-limit type analogous to those arising in the estimation of the
baseline survivor function in the Cox proportional hazards model or the multiplicative intensity
model (see Cox, 1972a; Andersen and Gill, 1982).

For the i.i.d. interoccurrence times model in Example , which obtains when  (no
covariate effects),  (no effects of accumulating event occurrences), and

 (upon each event occurrence, effective age is reset to zero, so this is just the
backward recurrence time), the estimator of  in (18) simplifies to that considered in Peña
et al. (2001). Note, in particular, that for this special model, , and since

, then the process  simplifies to

which is the natural at-risk process for the gap times over the observation period .

4 Estimation of Parameters: Model with Frailties
We now consider the estimation of the parameters when the class of models includes frailties.

It will be assumed that the frailties  are i.i.d. from a distribution  where
. A common choice for this , which we adopt here, is the gamma distribution with

unit mean and variance 1/ . Imposing the restriction that the gamma shape
and scale parameters are identical, together with the identifiability conditions for the model
without frailty stated in the beginning of Section 3, is needed to have model identifiability. We
do not provide a rigorous proof of this identifiability result since it will lead us to excursions
into product spaces and measures and ideas behind identifiability proofs for mixture models,
but see, for example, Parner (1998) for such ideas. Recall at this stage that the  are not
observed. For the model at hand, the conditional intensity function is as given in (5), which
for convenience is again displayed below:
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To achieve brevity, we let . If the  are observed, the
complete likelihood process for the model parameters  is given by

(19)

Since the  are unobserved, integrating them out in (19) yields the full likelihood process,
which is

(20)

The maximum likelihood estimators of the model parameters are the maximizers of this full
likelihood process, with the proviso that the maximizing  jumps only at observed values

of . The expectation-maximization (EM) algorithm described in the sequel finds this set
of maximizers.

In estimating the model parameters , and , we generalize and extend the approach
implemented in Peña et al. (2001) which dealt with the frailty model without covariates, and

without the  term, and with . The computations of the estimates will
be facilitated through the EM algorithm introduced by Dempster et al. (1977), and implemented
in counting process frailty models by Nielsen et al. (1992). The main ingredients of this
algorithm for the general class of recurrent event models are as follows. For the expectation-
step, given  and , the conditional expectations of  and log  are, respectively,

(21)

(22)
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where  is the di-gamma function, that is,  For the maximization-step,

with  denoting the logarithm of the complete likelihood function  and with  denoting
expectation with respect to  when the parameter vector equals , define the function

where

In this maximization step, the function  is maximized with respect to . This is
achieved by separate maximization of the mappings given by

(23)

(24)

For the maximization of the mapping in (23), we basically adopt the procedures developed in
the case without frailties. Examining the mapping, we note that the only difference with the

case without frailties is that  gets replaced by . Consequently, given
, and the data , the ‘estimator’ of  is given by

(25)

where  with .
Analogously to the estimating equations for  and  in the model without frailties in (15) and
(16), given  and , we may estimate  and  by solving the estimating equations
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(26)

(27)

which we implemented through a Newton-Raphson procedure. For the maximization of
mapping (24), we also implemented the Newton-Raphson procedure, though clearly there are
other options for maximizing this mapping.

With these ingredients at hand, the EM recipe for obtaining the estimates of the model
parameters in this general model with frailties is described by the following steps:

Step 0 (Initialization)

Specify initial estimates and  of , and , respectively. By setting

, obtain the initial estimate of  via

which is just the ‘estimator’ in (11) under the model without frailties.

Step 1 (E-step)

Given  and  obtain  and  via formulas (21) and
(22). Denote by  By exploiting the property that the estimator  is a
step function, these quantities could be obtained according to the following expressions: For

,

(28)

(29)

where with  being the  distinct jump times of  and

 is the jump of  at , we have
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(30)

Step 2 (M-step #1)

Applying formula (25), obtain 

Step 3 (M-step #2)
After substituting  for  in the estimating equations (26) and (27), obtain the solutions of
these equations and denote them by and .

Step 4 (M-step #3)

Obtain  by maximizing the mapping in (24) in . Alternatively, for this step, we may obtain
 by maximizing the full likelihood in (20) with respect to  given the current values

 Through our numerical investigations, and via a mathematical proof (see
appendix), using this alternative step also leads to the maximizing values of the full likelihood.
In the simulation studies, the code using this alternative implementation was utilized.

Step 5 (Convergence)

Compare the values  with the values , according to some distance function,
e.g., Euclidean distance. If the distance between the old and the new values satisfies a tolerance
criterion, the algorithm terminates and the estimates are the final values in the iteration. If the

distance criterion is not satisfied, then replace  by , and proceed to Step 1
of the algorithm. Because of the possibility of very large, possibly infinite, estimates of ,
corresponding to the situation of approximate ‘uncorrelatedness,’ when comparing old and
new iterates for , we compare instead the associated values for  since this ratio
takes values in .

Having obtained an estimator of the baseline hazard function  given by , through
the product integral representation, the semiparametric estimator of the baseline survivor

function  for this model with frailty is . A
computational implementation of the procedures and algorithms described in Sections 3 and
4 have been implemented in an R package (Ihaka and Gentleman, 1996) called gcmrec in
González et al. (2003).

5 Properties of Estimators
5.1 Simulation Design

We performed computer simulation studies to examine numerically the properties of the
parameter estimators developed in Sections 3 and 4. The specific goals of these studies are: (i)
to examine the effect of sample size  on the distributional properties of the estimators; (ii)
to examine the bias, variance, and root-mean-square error (rmse) of the estimators; (iii) to
examine the performance of the semiparametric estimator of the baseline survivor function

 in terms of its bias function, variance function, and root-mean-squared error function at
specified time points. The latter function is based on the loss function
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; (iv) to examine the consequences when data that have been
generated with frailty components are analyzed using the model without frailties, an under-
specified model; and (v) to examine the consequences, such as the loss in efficiency, when
data that were generated using the model without frailties are analyzed with methods developed
under the model with frailties, an over-specified model. For the first three items, simulation
runs were performed for both the frailty-less model and for the model with frailty. We describe
the settings for the different simulation parameters.

Sample Size—To examine the impact of sample size, we choose two values of
. Though we do not report results here, we also performed simulation runs with

, which may not be realistic in biomedical and public health studies since they will usually
have many subjects. However, small sample sizes may arise in the reliability and engineering
settings, as in the hydraulic data set example. The simulation runs with  did provide us
some insights of the limitations of the numerical procedures for obtaining the estimates, such
as non-convergence or convergence to a minimizing, instead of a maximizing, value of the
likelihood.

Censoring Mechanism—The censoring variables , , are generated according
to a uniform distribution over  where  is chosen in order that under perfect repair (i.e.,

) and with , there are, on average, approximately 10 events per unit.
Moreover, to place an upper limit to the number of events that could occur for a unit, when the
number of events for a unit reaches 50 then we cease observing this unit and set . This
has the potential consequence of introducing some bias because this amounts to doing a
combination of Type II and random censoring. Nevertheless, because the value of 50 is large
enough, we conjecture that the bias introduced is negligible.

ρ Function—The  function which handles the impact of accumulating event occurrences is
assumed to be of form  with , which models the situations where
an increasing number of event occurrences has a beneficial effect, has no effect, or has an
adverse effect, respectively.

Effective Age Function—For the simulation studies we considered an effective age process
corresponding to the general imperfect repair model (see Example 2.2) with perfect repair
probability of . Recall that the upper bound for the uniform censoring was determined under
the perfect repair model and with  to have an average of approximately 10 events per unit.
Because this did not take into consideration the exact form of  and , the effective average
number of events per unit in the simulations may either be smaller or larger than 10. This is a
consequence of the interplay among the baseline hazard rate function (if it is increasing failure
rate (IFR) or decreasing failure rate (DFR)), the minimal repairs performed, and the effect of
increasing number of event occurrence quantified by .

Baseline Survivor Function—For the baseline hazard function  we choose the flexible
and commonly-used Weibull hazard function, with a unit scale parameter and shape parameter

 taking values in , the former leading to a DFR distribution, and the latter giving rise
to an IFR distribution. Note that the estimation procedure proposed is semiparametric, hence
the scale and shape parameters of this Weibull baseline distribution are not estimated.

Covariates—We consider a two-dimensional covariate vector  with  having a
Bernoulli distribution with success probability of ,  having a standard normal distribution,
and with  and  stochastically independent. The regression coefficient vector  is set
to be . The fact that the grouping induced by the first covariate is done using a symmetric
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Bernoulli mechanism leads sometimes to highly asymmetric allocations for some simulation
replicates, which was the cause of some convergence problems in the iterative procedure when

.

Frailty Component—The parameter  of the gamma distribution governing the frailty
variable was set to , with  corresponding to the absence of frailties. With respect to
the parametrization , these frailty values convert to having .

For each combination of these simulation parameters,  replications were performed. In the
analysis, we set . Also, to create the bias, variance, and root-mean-squared-error curves
for the estimator of the baseline survivor function, we choose time values corresponding to the

 th percentiles of the true baseline distribution function.

5.2 Discussions of Simulation Results
In the discussion of the simulation results that follows, we will focus on the effects of changing
, changing  or , changing , and changing , on the distributional properties of the estimators

of , and , as well as the estimator of the baseline survivor function . In addition, we
address the consequences of analyzing data that follows the general model with frailties using
procedures developed for the general model without frailties, an under-specification; and also
consider the impact of over-specification, which is the situation where procedures developed
under the model with frailties are utilized to analyze data from a model without frailties. Such
analyses will provide information on which type of mis-specification is of a more serious type.

Results of the simulation studies are presented in Tables 1–3. Table 1 summarizes the mean
values and standard deviations (i.e., standard errors of the estimates) of the sampling
distributions of the estimators of , and  for  values of , and  as  varies in
the set . We do not show the cases with  to conserve space. Table 2 contains means
and standard deviations summaries of the simulation runs pertaining to the under- and over-
specified analysis. Table 3 contains plots of the bias and rmse curves for the estimator of 
under the case where  for  with the plots for different values of  superimposed
on each plot frame for a Weibull shape parameter of .

As is to be expected, for the simulation runs where there was no mis-specification, when the
sample size increases, the performance of the estimators of the finite-dimensional parameters,
as well as for the baseline survivor function, improved, with the biases decreasing and the
standard errors also decreasing. This is also true for the over-specification runs. When the
sample size is small, there is considerable over-estimation of , though this bias
decreases with increasing sample size. When there is under-specification however, all the
estimators are extremely biased (see UVW-runs in Table 2), demonstrating the undesirable
consequences of committing this under-specification. Regarding the effect of the frailty
parameter , for estimating the finite-dimensional parameters, the amount of bias for  and

 are negligible. The impact of the  is on the standard errors of the estimators, with larger
values of  translating into less correlation, leading to smaller standard errors for the same

sample size. When considering on the other hand the estimator  of the baseline survivor
function, by examining the curves in Table 3, as well as other curves from the simulations that
are not shown here, we observe that the bias and rmse curves of this estimator decrease as 
increases, and the same could also be said as  increases. Generally, the bias function is positive,
and as is to be expected there is more bias and rmse in the middle portion of the survivor
function.

Some care, however, must be observed when considering the effects of changing  and
changing Weibull shape parameter  in the context of the precision of the estimators because
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the interplay between these two parameters leads to differing observed number of events. To
see this, examine the column  in Table 1, which represents the mean number of events
observed per unit. In this table, we notice that when  and , the latter leading to a DFR
Weibull baseline distribution, there tends to be a smaller number of observed events; whereas
when  and , the latter making the Weibull baseline IFR, then there tends to be more
events observed. These differences in the observed number of events can be explained by taking
into account the minimal repair model considered in the simulation. In the first situation for
instance, an  value less than unity makes the unit less likely to have events as calendar time
increases since more event occurrences become beneficial to the unit and, in addition, when a
minimal repair is performed, then the DFR nature (because ) of the baseline distribution
diminishes the rate of event occurrences thereby lengthening the inter-event times. Because
the upper bound  for the uniformly distributed follow-up time  was determined under 
and with a backward recurrence time effective age corresponding to a perfect repair
mechanism, the impact of  and  is a smaller number of events compared to the target
of approximately 10 events used in deriving . An analogous argument, but in the opposite
direction, holds true when dealing with  and . The impact of the minimal repair effective
age and its interplay with a DFR or IFR baseline distribution can be further seen from Table 1
with , where we see that when the baseline distribution is DFR (IFR), the observed number
of events per unit is less (more) than the target of approximately 10 events per unit used in
deriving . A fascinating situation is when  and , or when  and , for the effects
of  and  are in opposite directions in the context of event occurrences. Examining the bottom
portion of the A-runs in Table 1 and the upper half of the C-runs in Table 1, and with reference
to the B-runs in this same table, we observe that for the chosen  and  values in the simulation,
there was a more pronounced effect of the  values compared to the  values since when

 and , the observed number of events is slightly below 10, whereas when  and
, the observed number of events is more than 10. The greater effect of  than  on the

mean number of events is not surprising, because  was partially accommodated in the
determination of the upper bound  for the censoring distribution. Apart from the impact on
the precision of the estimates arising from the varying number of events due to the combination
of values of  and  discussed above, the associate editor also perceptively pointed out that
this interplay among whether  is IFR or DFR, whether  is increasing or decreasing,
and the form of the effective age , will intrinsically impact the precision of the estimators.
For instance, if  and  with  in the simulation model, when both the  and 
parameters are inducing a decrease in the number of events, the precision of their estimators
will diminish since there is added uncertainty about their contributions to event occurrences.
This decrease in the precision of estimators is a natural consequence of using a richer class of
models which has the potential of better delineating the varied factors affecting event
occurrences.

In the presence of model mis-specification, we find that under-specification leads to a non-
negligible systematic bias that increases with  and also with . In fact, for this type of mis-

specification, we have observed that the mean of the process  in
 does not converge to the zero function as  increases, implying that with this mis-specification,

the estimator  may be inconsistent. In contrast, with over-specification, we find that there is
no recognizable loss in efficiency compared to the correct analysis, though we observe some
very slight increase in the standard errors of the finite-dimensional parameter estimators (see
XYZ-runs in Table 2 and compare the standard deviations in the A9 row of Table 1 and the
X3 row, B9 row of Table 1 with the Y3 row, and the C9 row of Table 1 and the Z3 row). This
indicates that there is much to be gained in the context of robustness by simply fitting the
frailty-based model since, if the data did come from the frailty model, then the analysis is
correct, while if the data came from the frailty-less model, there is no significant efficiency

Peña et al. Page 17

J Stat Plan Inference. Author manuscript; available in PMC 2009 October 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



loss incurred; whereas, if there is under-specification of the model, then the consequences are
unacceptable if the data actually came from the model with frailty. This lends strong support
that this new class of models provides a general and flexible class for fitting recurrent event
data and provides an avenue for a robust method of analysis for real data sets.

In addition, we also examined the impact of mis-specifying the effective age process, which
also has bearing in regards to the interplay between the  and  components of the class
of models. We considered the same simulation model with a perfect repair probability of ,
and examined the impact of two types of effective age process mis-specification: that the
interventions following event occurrences are all minimal repair, or that they are all perfect
repair. The results (not shown) indicate an interesting interplay between the nature of the

baseline survivor function (DFR/IFR) and the behavior of  and . We observed that under

the minimal repair mis-specification, when  is DFR,  exhibits negative bias and  is

positively biased. Additionally for this mis-specification, when  is IFR,  exhibits positive
bias and  is positively biased. Alternately, when the mis-specification is perfect repair, an

underlying baseline DFR (IFR) is associated with positive (negative) bias in  and negative
(positive) bias in . We explain these findings as follows: When the model mistakenly assumes
minimal repair at each event occurrence, it tends to overestimate the effective age of units.
Hence, in the case of DFR, the model anticipates longer interevent times than are realized in
the data, creating the negative bias, especially for larger interevent times, in the estimates of
the baseline survivor function in this situation. In the case of IFR, the minimal repair mis-
specification leads to longer interevent times in the data than are anticipated by the model,
creating a positive bias in the estimated baseline survivor function. When a perfect repair is
incorrectly assumed at each event occurrence, the model tends to underestimate the effective
age of units. Hence, using reasoning analogous to that for the minimal repair mis-specification,
there is positive (negative) bias in the estimated baseline survivor function in the case of DFR
(IFR). Especially interesting is that this behavior induces biases also in the finite-dimensional
parameter estimates, with , in particular, evidently compensating such that  is positively
biased when the baseline distribution is DFR, and negatively biased when this distribution is
IFR. These results indicate the importance of monitoring the effective age process.

6 Applications to Real Data
The first application is to the bladder cancer data used in Wei et al. (1989), which can be
obtained from the survival package (Lumley and Therneau, 2003) in the R Library. These data
provide the times to recurrence of bladder cancer for  subjects. The covariates are , the
treatment indicator (  placebo,  thiotepa); , the size (in cm) of the largest initial tumor;
and , the number of initial tumors. We first fitted the general model using the backward
recurrence time  as effective age. With , the maximum observation
period, we fitted the general model without frailties, and obtained  and

. These are also the estimates obtained when the general
model with frailty is fitted since in that case , a very large value indicating
that there is no need for the frailty component when the effective age is the backward recurrence
time. Thus, using the approximate inverse of the partial likelihood information matrix from
fitting the model without frailties, the associated estimated standard errors are  for  and

 for . It remains to establish formally that these are indeed valid
standard error estimates, an issue to be addressed in a future paper addressing asymptotic
properties of model estimators. Since a formal theory for estimating standard errors under the
general model with frailties is under development, we utilize jacknife estimates of the standard
errors, which are the standard deviations of the  estimates computed after deleting a unit. For
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the model without frailties for instance, the jacknife estimates of the standard errors  for
the bladder cancer data are  for  and  for , which are close to
the estimates obtained from the observed partial likelihood information matrix.

For lack of information about the effective age, we also fitted the general model with frailties
assuming a ‘minimal repair’ after each event, . In this situation, the estimates are

, , and ,
indicating the importance of the frailty component in this case. When the general model without
frailties is fitted to this ‘always minimal repair’ data set, the resulting estimates are

 and . The estimates of
the survivor functions for the two effective age specifications are presented in Figure 1. The
lower curves (red), corresponding to the placebo group, are obtained by setting  in the

expression given by , while the upper curves (blue) are for the thiotepa
group obtained by setting . The observed means were  and . The solid
curves are for the backward recurrence time effective age, while the dashed curves are for

. These plots seem to indicate that the thiotepa group has a higher survival rate than
the placebo group, although the statistical significance of this difference depends on which
effective age process was used. A question that we will address in future work is the assessment
of which effective age process leads to a better fit. This issue is related to model validation and
goodness-of-fit aspects of the model.

It is of interest to compare the estimates of the regression coefficients from the general model
with those obtained using the three existing methods of analysis described in Therneau and
Hamilton (1997) and Therneau and Grambsch (2000). Table 4 summarizes the estimates from
Andersen-Gill’s (AG) method, Wei, Lin and Weissfeld’s (WLW) marginal method, and
Prentice, Williams and Peterson’s (PWP) conditional method as reported in Therneau and
Grambsch (2000), together with the estimates obtained from the general model with frailty
under these two specifications of the effective age process,  and . From
this table we note the crucial role that the effective age process and the  component
play in this analysis and how they provide some reconciliation of the varied estimates from
these different methods. When the effective age process corresponds to perfect repair (in which
case  so that estimates arising from the frailty and no-frailty models coincide) or when
the effective age corresponds to minimal repair and the model without frailties is fitted, then
the -estimates from the general model are quite close to those obtained from PWP’s
conditional method. On the other hand, when the effective age process corresponds to minimal
repair and the model with frailties is fitted, the resulting estimates are close to those obtained
from the WLW marginal method. The values from the AG method lie between these two cases.
In the situation therefore where the model without frailties is fitted for both types of effective
age specifications, it appears that the term  in the general model induces a
robustness property in the context of estimating the  coefficients. Note that when we assume
‘always perfect repair' the  estimate is less than unity; whereas when we assume ‘always
minimal repair' the  estimate is greater than unity (see the discussions in the preceding section
pertaining to misspecified effective age process and the impact on the estimation of the baseline
hazard and the  parameter). Interestingly, when the general model with frailties is fitted to
the ‘always minimal repair' data, the  estimate now becomes less than unity, and the estimate
of the frailty parameter  is quite close to unity, indicating a strong association among the inter-
event times for each subject. The ability of the general model to seemingly explain these varied
estimates from these different methods indicates its flexibility and the crucial role of the
effective age. Thus, there is a need to monitor this information since in its absence, different
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methods of analysis may produce varied estimates, which could lead to contradictory
conclusions.

Another biomedical example pertains to the rehospitalization of patients diagnosed with
colorectal cancer. The data, which can be obtained from the gcmrec package in the R Library,
provide the calendar times (in days) of the successive hospitalizations after the date of surgery.
The first readmission time was considered as the time between the date of the surgical procedure
and the first rehospitalization after discharge related to colorectal cancer. Each subsequent
readmission time was defined as the difference between the current hospitalization date and
the previous discharge date. There were a total of 861 rehospitalization events recorded for the
403 patients included in the analysis. This data set was analyzed in Gonzalez et al. (2005) using
a gamma frailty model, which corresponds to the general model with . Their goal being to
determine whether there were differences regarding the time of the recurrent hospitalization
due to social-demographic or clinical outcomes. We reanalyze this data set using the full
general model where we consider the following variables: tumor stage (Dukes classification:
A-B, C or D); whether the patient received chemotherapy; and the distance between the hospital
and the patient's residence. We have coded these covariates using dummy variables such that
the regression coefficients can be interpreted as follows:  pertains to patients diagnosed with
Dukes C stage, and  for patients with Dukes D stage;  for patients who did not receive
chemotherapy, and  for patients whose residence is more than 30 kilometers from the
hospital. Since in this case we have no information about the effective age, we assumed the
backward recurrence time,  We fitted the general model without frailties, taking

, the maximum follow-up time. The resulting estimates of the parameters, together
with the information-based (se) and jacknife (jse) estimates of their standard errors, are

, , ,
, and . Observe that the

information-based and jacknife estimates of the standard errors are somewhat discrepant for
this data set. We also fitted the general model with frailties. After 35 iterations the EM algorithm
converged. The estimate of the frailty parameter  was quite small  so
we conclude that the frailty component of the model is important for these data. The fitted
frailty-based model provided the estimates: , ,

, , and , Based on these results, we
conclude that among these covariates, only the advanced tumor stages (C or D) are associated
with an elevated risk of rehospitalization. Furthermore, since the estimate of  is larger than
unity, there is an indication that each hospitalization increases the risk of further hospitalization.

The next data set, given in Blischke and Murthy (2000) and which was analyzed in Kumar and
Klefsjo (1992), concerns hydraulic load-haul-dump (LHD) subsystems used in moving ore and
rock in underground mines in Sweden. The data set provides the calendar times (in hours),
excluding repair or down times, of the successive failures of  such systems during the two-
year development phase. Because the censoring times were not provided, we set . The
first two machines are the oldest, the second two machines are of medium age, and the last two
are relatively new machines. The covariate is the categorized age of the machines, coded as

 denoting old age,  denoting medium age, and  denoting young age.
For our analysis, we assume that the effective age is the backward recurrence time

 The number of failure events for the six machines are
. When the general model without frailty is fitted, the resulting

parameter estimates are  and . The corresponding
standard errors, obtained from the estimate of the inverse of the partial likelihood information
matrix, are  and  These estimates were obtained by setting 
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to any value larger than  hours. For the general model with gamma frailties,
we find  or , which indicates the absence of unobserved frailties which
would have induced additional heterogeneity among the machines. As a consequence, the
estimates of  and ( ) were identical to those obtained when the model without frailties
was fitted. A very large estimate of  is also obtained if we analyze the data under the
assumption of ‘always minimal repair,’ that is, . In this situation, 

(  and , so the main difference with the
previous analysis is in the estimates of the parameter .

7 Concluding Remarks
In this paper procedures for estimating the parameters of a general and flexible class of models
for recurrent events were developed and their properties examined through computer
simulation studies. The class of models, which includes as special cases many well-known
models in survival analysis and reliability, possesses the appealing properties that it takes into
account the effect of interventions which are administered after each event occurrence through
the notion of an effective age, the possible weakening (or strengthening) effect of accumulating
event occurrences, the possible presence of unobserved frailties that could be inducing
correlations among the inter-event times per unit, and the effect of observable covariates. Some
data sets in the biomedical and reliability/engineering settings were reanalyzed using this new
class of models. It was found in the simulation studies that an under-specification of the model,
in the sense of analyzing a data set generated from the model with frailties using procedures
developed from the model without frailties, could have unacceptable consequences in that the
resulting estimators will have non-negligible systematic biases. On the other hand, it was found
that over-specification of the model may provide a robust method of analysis with an acceptable
loss in efficiency. The application of the procedures to the bladder cancer data set also provided
a reconciliation of seemingly varied estimates obtained from currently available methods of
analyzing recurrent event data, and highlights the importance of monitoring the effective age
process.

There are still many interesting and important questions that need to be examined with regards
to this general model. The first is the ascertainment of asymptotic properties of the estimators,
such as their asymptotic normality or the weak convergence to a Gaussian process of a properly
normed estimator of the baseline survivor function. This will be the topic of another paper, and
the resolution of this asymptotic problem may require empirical process methods utilized in
Murphy (1994, 1995) and Parner (1998); see also the recent paper of Kosorok et al. (2004).
Some asymptotic results for specific models subsumed by the general class of models could
be found in Peña et al. (2001) and Kvam and Peña (2005). Through such asymptotic analysis
we will be able to obtain expressions for approximating analytically the standard errors of the
estimators which will reflect the effects of an informative right-censoring mechanism as well
as the impact of the sum-quota accrual scheme (see Peña et al. (2001) for the special case of a
renewal model).

The problem of validating the class of models after it has been fitted to a specific data set is
open, and calls for suitable goodness-of-fit and model validation procedures. For example, in
the illustration using the LHD data set, the survivor curve estimate for the medium age group
is a little higher than for the new age group, and when one examines the data, there is a long
gap in the third machine which might have led to this ordering. A question of interest is whether
this particular inter-event time is an outlier. We anticipate that model validation and diagnostics
procedures to be developed for this class of models will answer this question. Another issue
of interest is in the absence of effective age data, might it have been better to fit a minimal
repair effective age function, instead of the perfect repair effective age for this LHD data? This
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question leads to the recognition that an existing limitation of this class of models is that
currently available data sets do not possess information regarding the effective age process.
Thus, in applying this model to currently available data sets, we are forced to assume simple
forms of the effective age process, such as the imperfect repair or perfect repair models
discussed here. This problem of not knowing the effective age was first highlighted in Whitaker
and Samaniego (1989), where they pointed out that if the repair modes, hence the effective
ages, are not known in the minimal repair model, then the model is nonidentifiable. For the
purpose of demonstrating their inference methods using Proschan (1963)'s air-conditioning
data, which did not include the mode-of-repairs, they therefore augmented the inter-failure
times data with assumed mode-of-repair data to illustrate the estimation of the reliability
function. As demonstrated by our simulation studies to assess the impact of mis-specifying the
effective age process in relation to the bladder cancer data application, a mis-specification on
this effective age could lead to systematic biases on the estimators. It is therefore our hope that
researchers will make an effort in assessing the effective age during the data gathering stage
of studies. Though it may be potentially difficult to achieve in biomedical settings, such
information, if acquired, will prove useful and informative in the modeling and analysis. This
somehow calls for a paradigm shift in the data gathering of recurrent event data.
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8 Appendix: Partial EM Algorithm
Consider the problem of finding the maximizing values  of a full likelihood function

 where  is the observed data. We assume that when given , maximizing

 in  is practically feasible, but a joint maximization in  is difficult. We suppose

that, when given a value , we could implement the EM-step to get the next iterate

 and in such a way that in the M-step of the EM algorithm,  and  are obtained
via maximization of two separate mappings, one depending only on  and the other depending
only on , such as in our case. In the partial EM algorithm we implemented,  is replaced by

 which is , so the next iterate is obtained by setting

, and proceeding as described above. That this algorithm will also lead
to a maximizing value if the iteration converges follows by observing that the inequalities

 hold. The first inequality is true because
the EM-step guarantees an improved value in the likelihood, whereas the second inequality is
immediate from the definition of  In our specific implementation, in the notation above,
 will be associated with , while  above will be associated with the frailty

parameter in our model.
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Fig. 1.
This plot contains estimates of the survivor function for the baldder cancer data set when the
model with frailties is fitted. The red curve (lower curve in each line type) is for the placebo
group , while the blue curve is for the thiotepa group , both evaluated at the mean
values of  and . The solid curves are for effective age E †  (perfect repair),
while the dashed curves are when E  (minimal repair).
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Table 1

Summary of simulated means and standard deviations of the estimators of , and . The true value
of  is , and 1000 replications were run for each parameter combination. The other columns of this table
are:  denotes the Weibull shape parameter;  is the sample size; NC is the number of replicates in which there
was no convergence;  is the observed mean number of events per unit in all the simulation replications.

α γ ξ η n NC μ̂Ev α̂ σ̂α̂ β̂1 σ̂β̂1
β̂2 σ̂β̂2

η̂

A2 0.9 0.9 2 0.67 30 0 4.1 0.898 0.031 1.012 0.379 − 1.008 0.240 0.734
A3 0.9 0.9 2 0.67 50 0 5.2 0.899 0.021 1.017 0.287 − 1.004 0.165 0.705
A5 0.9 0.9 6 0.86 30 0 4.3 0.900 0.030 0.988 0.300 − 1.015 0.175 0.904
A6 0.9 0.9 6 0.86 50 0 5.3 0.899 0.021 0.998 0.221 − 1.000 0.136 0.884
A8 0.9 0.9 ∞ 1.00 30 0 4.8 0.893 0.025 1.031 0.222 − 1.030 0.135
A9 0.9 0.9 ∞ 1.00 50 0 4.4 0.895 0.018 1.024 0.158 − 1.023 0.104
A11 0.9 2.0 2 0.67 30 0 7.8 0.902 0.016 1.010 0.348 − 1.018 0.202 0.721
A12 0.9 2.0 2 0.67 50 0 6.7 0.902 0.012 0.994 0.271 − 1.012 0.144 0.710
A14 0.9 2.0 6 0.86 30 0 8.9 0.900 0.016 1.009 0.236 − 1.008 0.135 0.895
A15 0.9 2.0 6 0.86 50 0 7.2 0.900 0.012 0.998 0.173 − 1.004 0.101 0.882
A17 0.9 2.0 ∞ 1.00 30 0 8.4 0.898 0.015 1.017 0.155 − 1.014 0.095
A18 0.9 2.0 ∞ 1.00 50 0 7.4 0.899 0.011 1.003 0.112 − 1.007 0.072
B2 1 0.9 2 0.67 30 2 9.5 1.000 0.011 1.010 0.374 − 1.000 0.227 0.735
B3 1 0.9 2 0.67 50 0 8.7 1.000 0.007 0.989 0.280 − 1.002 0.165 0.704
B5 1 0.9 6 0.86 30 0 7.7 1.000 0.012 1.014 0.286 − 0.993 0.164 0.901
B6 1 0.9 6 0.86 50 0 7.3 1.000 0.007 1.013 0.201 − 0.999 0.118 0.880
B8 1 0.9 ∞ 1.00 30 0 8.1 0.998 0.008 1.029 0.185 − 1.024 0.114
B9 1 0.9 ∞ 1.00 50 0 9.1 0.999 0.006 1.010 0.130 − 1.012 0.084
B11 1 2.0 2 0.67 30 0 9.5 1.000 0.008 1.016 0.336 − 1.028 0.194 0.725
B12 1 2.0 2 0.67 50 0 13.0 1.000 0.006 1.004 0.258 − 1.012 0.146 0.705
B14 1 2.0 6 0.86 30 0 13.8 1.000 0.008 1.006 0.228 − 1.002 0.132 0.889
B15 1 2.0 6 0.86 50 0 10.8 1.000 0.006 1.003 0.168 − 1.001 0.097 0.876
B17 1 2.0 ∞ 1.00 30 0 14.0 0.999 0.007 1.017 0.133 − 1.010 0.083
B18 1 2.0 ∞ 1.00 50 0 11.2 1.000 0.005 1.010 0.099 − 1.006 0.065
C2 1.05 0.9 2 0.67 30 3 11.8 1.051 0.007 0.994 0.366 − 0.994 0.222 0.730
C3 1.05 0.9 2 0.67 50 0 9.7 1.050 0.004 1.009 0.284 − 0.993 0.153 0.703
C5 1.05 0.9 6 0.86 30 1 12.9 1.051 0.007 1.002 0.271 − 0.993 0.160 0.899
C6 1.05 0.9 6 0.86 50 0 13.9 1.050 0.005 1.006 0.196 − 0.992 0.119 0.880
C8 1.05 0.9 ∞ 1.00 30 0 10.9 1.049 0.007 1.020 0.154 − 1.012 0.101
C9 1.05 0.9 ∞ 1.00 50 0 13.8 1.050 0.004 1.009 0.121 − 1.006 0.072
C11 1.05 2.0 2 0.67 30 0 12.3 1.050 0.006 1.026 0.336 − 1.018 0.184 0.726
C12 1.05 2.0 2 0.67 50 0 13.4 1.050 0.005 1.008 0.248 − 1.012 0.136 0.705
C14 1.05 2.0 6 0.86 30 0 10.9 1.050 0.006 1.019 0.225 − 1.000 0.124 0.890
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α γ ξ η n NC μ̂Ev α̂ σ̂α̂ β̂1 σ̂β̂1
β̂2 σ̂β̂2

η̂

C15 1.05 2.0 6 0.86 50 0 14.3 1.050 0.004 0.997 0.166 − 1.000 0.096 0.876
C17 1.05 2.0 ∞ 1.00 30 0 18.5 1.050 0.005 1.004 0.123 − 1.010 0.076
C18 1.05 2.0 ∞ 1.00 50 0 13.5 1.050 0.004 1.004 0.090 − 1.003 0.054
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Table 2

Summary of simulated means and standard deviations for the estimators of , and  for the situation of under-
specification (label UVW) and over-specification (label XYZ). The true regression coefficients are 
and 1000 replications were run for each parameter combination.

α γ ξ n NC μ̂α̂ σ̂α̂ μ̂β̂1
σ̂β̂1

μ̂β̂2
σ̂β̂2

U2. 0.90 0.9 2 30 0 0.954 0.031 0.779 0.322 − 0.770 0.210
U3 0.90 0.9 2 50 0 0.959 0.023 0.747 0.239 − 0.740 0.154
U5 0.90 0.9 6 30 0 0.921 0.028 0.898 0.285 − 0.919 0.168
U6 0.90 0.9 6 50 0 0.923 0.020 0.883 0.212 − 0.888 0.131
U8 0.90 2.0 2 30 0 0.952 0.022 0.719 0.297 − 0.728 0.187
U9 0.90 2.0 2 50 0 0.956 0.017 0.700 0.223 − 0.707 0.139
U11 0.90 2.0 6 30 0 0.920 0.018 0.909 0.220 − 0.901 0.138
U12 0.90 2.0 6 50 0 0.922 0.013 0.879 0.167 − 0.879 0.101
V2 1.00 0.9 2 30 0 1.019 0.014 0.771 0.324 − 0.751 0.215
V3 1.00 0.9 2 50 0 1.020 0.009 0.726 0.251 − 0.715 0.157
V5 1.00 0.9 6 30 0 1.008 0.011 0.913 0.271 − 0.888 0.172
V6 1.00 0.9 6 50 0 1.009 0.008 0.886 0.198 − 0.868 0.129
V8 1.00 2.0 2 30 0 1.024 0.012 0.711 0.291 − 0.723 0.191
V9 1.00 2.0 2 50 0 1.024 0.009 0.685 0.221 − 0.695 0.136
V11 1.00 2.0 6 30 0 1.009 0.009 0.885 0.224 − 0.879 0.137
V12 1.00 2.0 6 50 0 1.009 0.008 0.871 0.173 − 0.867 0.104
W2 1.05 0.9 2 30 0 1.059 0.010 0.725 0.342 − 0.720 0.226
W3 1.05 0.9 2 50 0 1.058 0.006 0.696 0.261 − 0.691 0.158
W5 1.05 0.9 6 30 0 1.054 0.007 0.873 0.273 − 0.869 0.179
W6 1.05 0.9 6 50 0 1.053 0.005 0.851 0.198 − 0.842 0.128
W8 1.05 2.0 2 30 0 1.061 0.009 0.704 0.296 − 0.704 0.179
W9 1.05 2.0 2 50 0 1.062 0.007 0.686 0.224 − 0.684 0.138
W11 1.05 2.0 6 30 0 1.054 0.007 0.877 0.227 − 0.880 0.132
W12 1.05 2.0 6 50 0 1.054 0.005 0.870 0.162 − 0.870 0.104
X2 0.90 0.9 ∞ 30 0 0.893 0.026 1.030 0.224 − 1.031 0.144
X3 0.90 0.9 ∞ 50 2 0.895 0.018 1.030 0.173 − 1.022 0.105
X5 0.90 2.0 ∞ 30 0 0.897 0.015 1.016 0.163 − 1.015 0.099
X6 0.90 2.0 ∞ 50 2 0.898 0.011 1.014 0.115 − 1.015 0.076
Y2 1.00 0.9 ∞ 30 6 0.998 0.010 1.023 0.186 − 1.022 0.116
Y3 1.00 0.9 ∞ 50 1 0.999 0.006 1.019 0.136 − 1.019 0.086
Y5 1.00 2.0 ∞ 30 2 0.999 0.007 1.013 0.138 − 1.011 0.084
Y6 1.00 2.0 ∞ 50 0 0.999 0.006 1.010 0.100 − 1.007 0.066
Z2 1.05 0.9 ∞ 30 6 1.050 0.005 1.015 0.162 − 1.011 0.099
Z3 1.05 0.9 ∞ 50 6 1.050 0.004 1.017 0.112 − 1.013 0.073
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α γ ξ n NC μ̂α̂ σ̂α̂ μ̂β̂1
σ̂β̂1

μ̂β̂2
σ̂β̂2

Z5 1.05 2.0 ∞ 30 2 1.050 0.005 1.014 0.126 − 1.008 0.078
Z6 1.05 2.0 ∞ 50 2 1.050 0.004 1.005 0.094 − 1.005 0.055
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Table 3

Bias and root mean squared error curves for the estimator of the baseline survivor function as the sample size
 varies [  is red;  is blue;  is green]. This is for the case where  =  and a Weibull shape

parameter of  = .
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Table 4

Summary of estimates for the bladder data set from the Andersen-Gill (AG), Wei, Lin and Weissfeld (WLW),
and Prentice, Williams and Peterson (PWP) methods as reported in Therneau and Grambsch (2000), together
with the estimates obtained from the general model using two effective ages corresponding to ‘perfect repairs’
and ‘minimal repairs.’

General Model

Perfect a Minimal b Minimal

Term Param AG WLW Marginal PWP Cond*nal Both c Frailty d No Frailty e

log N(s − ) α - - - .98(.07) .79(.13) 1.24(.08)

Frailty ξ - - - ∞ .97 -

rx β1 − .47(.20) − .58(.20) − .33(.21) − .32(.21) − .57(.36) − .32(.25)

Size β2 − .04(.07) − .05(.07) − .01(.07) − .02(.07) − .03(.10) − .03(.07)

Number β3 .18(.05) .21(.05) .12(.05) .14(.05) .22(.10) .14(.06)

a
Effective Age is backward recurrence time .

b
Effective Age is calendar time .

c
Same results are obtained for either the model with or without frailties.

d
Reported standard errors are jacknifed estimates.

e
Reported standard errors are jacknifed estimates.
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