Skip to main content
. Author manuscript; available in PMC: 2009 Oct 9.
Published in final edited form as: Neuroinformatics. 2008 Aug 13;6(4):279–290. doi: 10.1007/s12021-008-9023-0

Table 2.

The diagnostic accuracy of LVQ networks for discrimination of four categories of vasospasm increases with the number of competitive neurons

VA1-des VA2-des VA3-des VA4-des
Number of neurons in Kohonen layer: 8
  VA1-act 0.7168 0.3529 0.1053 0.2222
  VA2-act 0.2478 0.5882 0.0526 0.0000
  VA3-act 0.0354 0.0588 0.7368 0.2222
  VA4-act 0.0000 0.0000 0.1053 0.5556
Overall classification rate=0.6494
  Number of neurons in Kohonen layer: 16
    VA1-act 0.8496 0.3529 0.2105 0.1111
    VA2-act 0.0442 0.5294 0.0000 0.0000
    VA3-act 0.0256 0.1176 0.7368 0.1111
    VA4-act 0.0796 0.0000 0.0526 0.7778
Overall classification rate=0.7234

Vasospasm is categorized as class 1—normal (VA1), class 2—mild (VA2), class 3—moderate (VA3), and class 4—severe (VA4). All LVQ networks contained three input variables (TCCS velocity data) and four output variables (categories of vasospasm). Confusion matrices detail code of actual (act) class (rows) versus code of desired (des) class (columns)