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Abstract
Fan & Li (2001) propose a family of variable selection methods via penalized likelihood using
concave penalty functions. The nonconcave penalized likelihood estimators enjoy the oracle
properties, but maximizing the penalized likelihood function is computationally challenging, because
the objective function is nondifferentiable and nonconcave. In this article we propose a new unified
algorithm based on the local linear approximation (LLA) for maximizing the penalized likelihood
for a broad class of concave penalty functions. Convergence and other theoretical properties of the
LLA algorithm are established. A distinguished feature of the LLA algorithm is that at each LLA
step, the LLA estimator can naturally adopt a sparse representation. Thus we suggest using the one-
step LLA estimator from the LLA algorithm as the final estimates. Statistically, we show that if the
regularization parameter is appropriately chosen, the one-step LLA estimates enjoy the oracle
properties with good initial estimators. Computationally, the one-step LLA estimation methods
dramatically reduce the computational cost in maximizing the nonconcave penalized likelihood. We
conduct some Monte Carlo simulation to assess the finite sample performance of the one-step sparse
estimation methods. The results are very encouraging.
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1. Introduction
Variable selection and feature extraction are fundamental for knowledge discovery and
predictive modeling with high-dimensionality (Fan & Li 2006). The best subset selection
procedure along with traditional model selection criteria, such as AIC and BIC, becomes
infeasible for feature selection from high-dimensional data due to too expensive computational
cost. Furthermore, the best subset selection suffers from several drawbacks, the most severe
of which is its lack of stability as analyzed in Breiman (1996). LASSO (Tibshirani 1996)
method utilizes the L1 penalty to automatically select significant variable via continuous
shrinkage, thus retaining the good features of both the best subset selection and ridge
regression. In the same spirit of LASSO, the penalized likelihood with nonconcave penalty
functions has been proposed to select significant variables for various parametric models,
including generalized linear regression models and robust linear regression model (Fan & Li
2001, Fan & Peng 2004), and some semiparametric models, such as the Cox model and partially
linear models (Fan & Li 2002, Fan & Li 2004, Cai, Fan, Li & Zhou 2005). Fan & Li (2001)
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provide deep insights into how to select a penalty function. They further advocate the use of
penalty functions satisfying certain mathematical conditions such that the resulting penalized
likelihood estimate possesses the properties of sparsity, continuity and unbiasedness. These
mathematical conditions imply that the penalty function has to be singular at the origin and
nonconvex over (0, ∞). In the work aforementioned, it has been shown that when the
regularization parameter is appropriately chosen, the nonconcave penalized likelihood
estimates perform as well as the oracle procedure in terms of selecting the correct subset model
and estimating the true nonzero coefficients.

Although nonconcave penalized likelihood approaches have promising theoretical properties,
the singularity and nonconvexity of the penalty function challenge us to invent numerical
algorithms which are capable of maximizing a non-differentiable nonconcave function. Fan &
Li (2001) suggested iteratively, locally approximating the penalty function by a quadratic
function and referred such approximation as to local quadratic approximation (LQA). With the
aid of the LQA, the optimization of penalized likelihood function can be carried out using a
modified Newton-Raphson algorithm. However, as pointed out in Fan & Li (2001) and Hunter
& Li (2005), the LQA algorithm shares a drawback of backward stepwise variable selection:
if a covariate is deleted at any step in the LQA algorithm, it will necessarily be excluded from
the final selected model (see Section 2.2 for more details). Hunter & Li (2005) addressed this
issue by optimizing a slightly perturbed version of LQA, which alleviates the aforementioned
drawback, but it is difficult to choose the size of perturbation. Another strategy to overcome
the computational difficulty is using the one-step (or K-step) estimates from the iterative LQA
algorithm with good starting estimators, as suggested by Fan & Li (2001). This is similar to
the well known one-step estimation argument in the maximum likelihood estimation (MLE)
setting (Bickel 1975, Lehmann & Casella 1998, Robinson 1988, Cai, Fan, Zhou & Zhou
2006). See also Fan & Chen (1999), Fan, Lin & Zhou (2006) and Cai et al. (2006) for some
recent work on one-step estimators in local and marginal likelihood models. However, the
problem with the one-step LQA estimator is that it cannot have a sparse representation, thus
losing the most attractive and important property of the nonconcave penalized likelihood
estimator.

In this article we develop a methodology and theory for constructing an efficient one-step
sparse estimation procedure in nonconcave penalized likelihood models. For that purpose, we
first propose a new iterative algorithm based on local linear approximation (LLA) for
maximizing the nonconcave penalized likelihood. The LLA enjoys three significant advantages
over the LQA and the perturbed LQA. First, in the LLA we do not have to delete any small
coefficient or choose the size of perturbation in order to avoid numerical instability. Secondly,
we demonstrate that the LLA is the best convex minorization-maximization (MM) algorithm,
thus proving the convergence of the LLA algorithm by the ascent property of MM algorithms
(Lange, Hunter & Yang 2000). Thirdly, the LLA naturally produces a sparse estimates via
coninuous penalization. We then propose using the one-step LLA estimator from the LLA
algorithm as the final estimates. Computationally, the one-step LLA estimates alleviate the
computation burden in the iterative algorithm and overcome the potential local maxima
problem in maximizing the nonconcave penalized likelihood. In addition, we can take
advantage of the efficient algorithm for solving LASSO to compute the one-step LLA
estimator. Statistically, we show that if the regularization parameter is appropriately chosen,
the one-step LLA estimates enjoy the oracle properties, provided that the initial estimates are
good enough. Therefore, the one-step LLA estimator can dramatically reduce the computation
cost without losing statistical efficiency.

The rest of the paper is organized as follows. In Section 2 we introduce the local linear
approximation algorithm and discuss its various properties. In Section 3 we discuss the one-
step LLA estimator, in which asymptotical normality and consistency of selection are
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established. Section 4 describes the implementation detail, and Section 5 shows numerical
examples. Proofs are presented in Section 6.

2. Local Linear Approximation Algorithm
Suppose that  are n identically and independently distributed samples, where xi
denotes the p-dimension predictor and yi is the response variable. Assume that yi depends on
xi through a linear combination , and the conditional log-likelihood given xi is

, where ϕ is a dispersion parameter. In some models, such as logistic
regression and Poisson regression, there is no dispersion parameter. In linear regression model,
ϕ is the variance of the random error, and is often estimated separately after β is estimated. In
most variable selection applications, we do not penalize the dispersion parameter (Frank &
Friedman 1993, Tibshirani 1996, Fan & Li 2001, Miller 2002). Thus, we simplify notation in
the reminder of this paper by suppressing ϕ, and further use ℓi (β) to stand for .

2.1. Penalized likelihood
In the variable selection problem, the assumption is that some components of β are zero. The
goal is to identify and estimate the subset model. In this work we consider the variable selection
methods by maximizing the penalized likelihood function taking the form

(2.1)

In principle, pλj can be different for different components (coefficients). For ease of
presentation we let Pλj(|βj|) = Pλ(|β j|), i.e., the same penalty function is applied to every
component of β. Formulation in (2.1) includes many popular variable selection methods. For
instance, the best subset selection amounts to using the L0 penalty, while the lasso (Tibshirani
1996) uses the L1 penalty pλ(|β|) = λ|β|. Bridge regression (Frank & Friedman 1993) uses the
Lq penalty pλ(|β|) = λ|β|q. When 0 < q < 1, the Lq penalty is concave over (0, ∞), and non-
differentiable at zero. The SCAD penalty (Fan & Li 2001) is a concave function defined by
pλ(0) = 0 and for |β| > 0

(2.2)

Often α = 3.7 is used. The notation z+ stands for the positive part of z: z+ is z if z > 0, zero
otherwise. The SCAD penalty and L0.5 penalty are illustrated in Figure 1. Note that with a
concave penalty the penalized likelihood in (2.1) is a nonconcave function. Hence maximizing
nonconcave penalized likelihood is challenging. Antoniadis & Fan (2001) proposed nonlinear
regularized Sobolev interpolators (NRSI) and regularized one-step estimator (ROSE) for
nonconvex penalized least squares problems under wavelets settings. They further introduced
the graduated nonconvexity (GNC) algorithm for minimizing high-dimensional nonconvex
penalized least squares problem. The GNC algorithm was first developed for reconstructing
piece wise continuous images (Black & Zisserman 1987). The GNC algorithm offers nice ideas
for minimizing high-dimensional nonconvex objective function, but in general, it is
computationally intensive, and its implementation depends on a sequences of tuning
parameters. Fan & Li (2001) proposed the local quadratic approximation (LQA) algorithm for
the nonconcave penalized likelihood. We introduce the LQA algorithm in Section 2.2 in detail.
Hunter & Li (2005) showed that the LQA shares the same spirit as that of the MM algorithm
(Lange et al. 2000). Wu (2000) pointed out that the MM algorithm and GNC algorithm share
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the same spirit in terms of optimization transfer. In general, the GNC algorithms do not
guarantee the ascent property for maximization problems, evidenced from Figure 8(c) in
Antoniadis & Fan (2001), while the MM algorithms enjoy the ascent property, as demonstrated
in Hunter & Li (2005).

2.2. Local quadratic approximation
It can be seen from Figure 1 that the penalized likelihood functions become non-differentiable
at the origin and nonconcave with respect to β. The singularity and nonconcavity make it
difficult to maximize the penalized likelihood functions. Suppose that we are given an initial
value β(0) that is close to the true value of β. Fan and Li (2001) propose locally approximating
the first order derivative of the penalty function by a linear function:

Thus, they use a LQA to the penalty function:

(2.3)

Figure 1 illustrates the LQA for the L0.5 penalty and the SCAD penalty. With iteratively
updating the LQA, Newton-Raphson algorithm can be modified for maximization of the
penalized likelihood function. Specifically, we take the un-penalized likelihood estimate to be
the initial value β(0): For k = 1, 2,…, repeatedly solve

(2.4)

Stop the iteration if the sequence of {β(k)} converges.

To avoid numerical instability, Fan and Li (2001) suggested that if  in (2.4) is very close

to 0, say  (a pre-specified value), then set β̂j = 0 and delete the jth component of x from
the iteration. Thus, the LQA algorithm shares a drawback of backward stepwise variable
selection: if a covariate is deleted at any step in the LQA algorithm, it will necessarily be
excluded from the final selected model. Furthermore, one has to choose ε0, which practically
becomes an additional tuning parameter. The size of ε0 potentially affects the degree of sparsity
of the solution as well as the speed of convergence. Hunter and Li (2005) studied the
convergence property of the LQA algorithm. They found that the LQA algorithm is one of
minorize-maximize (MM) algorithms, extensions of the well-known EM algorithm. They
further demonstrated that the behavior of the LQA algorithm is the same as that of an EM
algorithm with the LQA playing the same role of E-step in the EM algorithm. To avoid
numerical instability and the drawback of backward stepwise variable selection, Hunter and
Li (2005) suggested optimizing a slightly perturbed version of (2.4) bounding the denominator
away from zero: for k = 1,2,…, repeatedly solve

(2.5)
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for a pre-specified size perturbation τ0. Stop the iteration if the sequence of {β(k)} converges.
In the practical implementation, we have to determine the size of perturbation. This sometimes
may be difficult, and furthermore, the size of τ0 potentially affects the degree of sparsity of
the solution as well as the speed of convergence.

2.3. Local linear approximation
To eliminate the weakness of the LQA, we propose a new unified algorithm based on local
linear approximation to the penalty function:

(2.6)

Figure 1 illustrates the LLA for the L0.5 penalty and the SCAD penalty. Fan & Li (2001) show
that in order to have a continuous thresholding rule, the penalty function must satisfy a
continuity condition: the minimum of |θ| + p′λ(|θ|) is attained at zero. Although the L0.5 penalty
fails to hold the continuity condition, we show in Section 3 that it is still good for deriving
continuous one-step sparse estimates. For ease of presentation, we assume in this section, unless
otherwise specified, that the right derivative of pλ(·) at 0 is finite.

Similar to the LQA algorithm, the maximization of the penalized likelihood can be carried out
as follows. Set the initial value β(0) be the un-penalized maximum likelihood estimate. For k
= 1, 2,…, repeatedly solve

(2.7)

Stop the iterations if the sequence of {β(k)} converges. We refer this algorithm as to the LLA
algorithm. The LLA algorithm is distinguished from the LQA algorithm in that β(k+1) and the
final estimates naturally adopt a sparse representation. The LLA algorithm inherits the good
features of LASSO in terms of computational efficiency, and therefore the maximization can
be solved by efficient algorithms, such as the least angle regression (LARS) algorithm (Efron,
Hastie, Johnstone & Tibshirani 2004). From (2.7), the approximation is numerical stable, and
thus, the drawback of backward variable selection can be avoided in LLA algorithm.

We next study the convergence of the LLA algorithm. Denote

and

Theorem 1—For a differentiahle concave penalty function pλ(·) on [0, ∞), we have

(2.8)
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Furthermore, the LLA has the the ascent property, i.e., for all k = 0, 1, 2,…

(2.9)

If the penalty function is strictly concave then we always take “>” in (2.9).

From (2.8), G(β|β(k)) is a minorization of Q(β), and finding β (k+1) is the maximize-step in MM
(minorize-maximize) algorithms. Therefore, the LLA algorithm is an instance of the MM
algorithms. For a survey of work in MM algorithms, see Heiser (1995) and Lange et al.
(2000).

The analysis of convergence of LLA can be done by following the general convergence results
for MM algorithms. Let M(β) denote the map defined by the LLA algorithm from β(k) to
β(k+1). Note that the penalty function has continuous first derivative and solving β(k+1) is a
convex optimization problem, thus M is a continuous map. We define a stationary point of the
function Q(β) to be any point β at which the gradient vectors is zero.

Proposition 1: Given an initial value β(0), let β(k) = Mk(β(0)). If Q(β) = Q(M(β)) only for
stationary points of Q and if β* is a limit point of the sequence {β(k)}, then β* is a stationary
point of Q(β).

Proposition 1 is a slightly modified version of Lyapunov’s Theorem in Lange (1995). We omit
its proof. In Theorem 1 we show that the LLA of pλ(·) provides a majorization of the penalty
function pλ(·). In fact, the LLA is the best convex majorization of pλ(·) as stated in the next
Theorem.

THEOREM 2—Denote by ψ*(·) the LLA approximation of pλ(·).
. Suppose that ψ(·) is a convex majorization function of

pλ(·) at to, i.e.,

. We must have Ψ(t) ≥ Ψ*(t) for all t. If the right derivative of pλ(·) at zero diverges, the above
conclusions hold for t0 > 0 and t ≥ 0.

Figure 1 shows an illustration of Theorem 2 with the SCAD and L0.5 penalties. As can be seen
from Figure 1, the LLA approximation is underneath the LQA approximation in all four cases.

The ascent property of MM indicates that MM is an extension of the famous EM algorithm.
Under certain conditions, we show that the LLA algorithm can be cast as an EM algorithm.

Suppose that exp(− npλ(·)) is a Laplace transformation of some non-negative function H(·).
Then H(·) is the inverse Laplace transformation of exp(−npλ(·)) and

(2.10)

For example, if pλ(|β|) = λ|β|q, the Bridge penalty (0 < q < 1), then
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where  and S(·) is the density of the stable distribution of index q (Mike
1984).

Let  and we independently put a Laplacian prior on βj

(2.11)

Further regard Π as a hyper-prior on τj (2.10) implies

(2.12)

Maximizing Q(β) is equivalent to computing the posterior mode of p(β|y), if we treat exp
(−npλ(|βj|)) as the marginal prior of β. The identity (2.12) implies an EM algorithm for
maximizing the posterior p(β|y).

To derive the EM algorithm, we consider τ1,…, τp as missing data. The complete log-likelihood
function (CLF) is

Suppose the current estimator is β(k). The E-step computes the conditional mean of CLF

The M-step finds β(k+1) maximizing . Thus

(2.13)

Theorem 3—Suppose that (2.10)–(2.13) hold for pλ(·), the LLA algorithm and the EM
algorithm are identical. Moreover, (2.10) implies that pλ(·) must be a strictly increasing
function on [0, ∞) and unbounded. Thus the SCAD penalty does not have an inverse Laplace
transformation.

In the above discussion, we have assumed all the necessary conditions to ensure the the EM
algorithm is proper. If this is the case, then Theorem 3 shows that the EM algorithm is exactly
the LLA algorithm. On the other hand, it is also worth noting that there are concave penalty
functions for which (2.10) cannot be true. The SCAD penalty is such an example. Thus,
Theorem 3 also indicates that MM algorithms are more flexible than EM algorithms.
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3. One-step Sparse Estimates
In this section, we propose the one-step LLA estimator, which is significantly distinguished
from the one-step or k-step LQA estimate because it automatically adopts a sparse
representation. Thus it can be used as a model selector. One may further define k-step LLA
estimator, but, in general, it is unnecessary. As demonstrated in Fan & Chen (1999) and Cai,
Fan & Li (2000), both empirically and theoretically, the one-step method is as efficient as the
fully iterative method, provided that the initial estimators are reasonably good. In LQA finding
β(k+1) is a ridge regression problem, which indicates that almost surely, none of the components
of β(k+1) will be exact zero. Hence the one-step or k-step LQA estimates in the LQA will not
be able to achieve the goal of variable selection. To get insights into the one-step LLA estimator,
let us start with linear regression models and consider the penalized least squares.

3.1. Linear regression models
The LLA algorithm naturally provides a sparse one-step estimator. For simplicity, let the initial
estimate β(0) be ordinary least squares estimator. Then the one-step estimator is obtained by

(3.1)

We denote by β̂(ose) the one-step estimator β(1).

We show that the one-step estimator enjoys the oracle properties. To this end we assume two
regularity conditions

(Al) yi = xiβ0 + εI, where ε1,…, εn are independent and identically distributed random
variables with mean 0 and variance σ2

(A2)
 where C is a positive definite matrix.

Without loss of generality, let  and β20 = 0. We write

.

Theorem 4—Let pλn(·) be the SCAD penalty. If , then the one-step
SCAD estimates β̂(ose) must satisfy,

a. Sparsity: with probability tending to one, β̂(ose)2 = 0.

b. Asymptotic normality: .

In addition, consider pλn(·) = λnp(·). Suppose p′(·) is continuous on (0, ∞) and there is some s
> 0 such that p′(θ) = O(θ−s) as θ → 0+. Then (a) and (b) hold, if

.

3.2. Penalized likelihood

For a general likelihood model, let  denote the log-likelihood. Suppose that the
log-likelihood function is smooth and has the first two derivatives with respect to β. For a given
initial value β(0) , the log-likelihood function can be locally approximated by
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(3.2)

Let us take β(0) = β̂(mle). Then ∇ℓ(β(0)) = 0 by the definition of MLE. Thus β(1) is given by

(3.3)

It is interesting to see that (3.3) reduces to the one-step estimates in linear regression models,
if we are willing to assume that ε ∼ N(0, σ2). However, it should be noted that normality
assumption is not needed in Theorem 4.

We show that in the general likelihood setting, β(1) is desired the one-step estimates, denoted
by β̂(ose). Let I(β0) be the Fisher information matrix and I1(β10) = I1(β10,0) denote the Fisher
information knowing β20 = 0. Note that I(β0) is a p × p matrix and I1(β10) is a submatrix of
I1(β0). It is well known that under some regularity conditions (Lehmann & Casella 1998),
n−1∇2ℓ(β̂(mle)) ኒ P −I(β0), and

Theorem 5—Let pλn(·) be the SCAD penalty. If , then the one-step
SCAD estimates β̂(ose) must satisfy

a. Sparsity: with probability tending to one, β̂(ose)2 = 0.

b. Asymptotic normality: .

In addition, consider pλn(·) = λnp(·). Suppose p′(·) is continuous on (0, ∞) and there is some s
> 0 such that p′(θ) = O(θ−s) as θ → 0+. Then (a) and (b) hold, if

.

In Theorems 4 and 5 we have established the oracle properties of the one-step SCAD estimator.
It is interesting to note that the choice of λn is the same as that in Theorem 2 of Fan & Li
(2001). It is also worth noting that our results require less regularity conditions than Theorem
2 of Fan & Li (2001), for the penalty function does not need to be twice differentiable.

3.3. Continuity of the one-step estimator
For the nonconcave penalized likelihood estimates to be continuous, the minimum of the
function  must be attained at 0 (Fan & Li 2001). Bridge penalty (0 < q < 1) fails to
satisfy the continuity condition, thus it is considered suboptimal (Fan & Li 2001). Our results
require weaker conditions to ensure a continuous thresholding estimator. Note that β̂(ose) is
obtained through an ℓ1 penalized criterion. Therefore, we only require  is continuous for
|θ| > 0 to ensure the continuity of β̂ (ose). Theorem 4 and Theorem 5 indicate that Bridge
penalty, pλ(|θ|)=λ|θ|q for 0 < q < l, can be used in the one-step estimation scheme and their one-
step estimates are continuous.

There is another interesting implication of the continuity of β̂ (ose). Suppose two penalty
functions have very similar derivatives, then we expect their one-step estimators are very close
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too. To illustrate this point, we consider the limiting one-step estimator with the Lq penalty
when q → 0+.

For each fixed q, we are interested in the whole profile of  as a function of λ. Thus we can
consider λ* = λq as the effective regularization parameter. On the other hand, suppose we
consider the one-step estimator with the logarithm penalty, Pλ(|β|) = λlog|β|,

Proposition 2—If q → 0+, then the profile of  converges to the profile of  in the sense

that .

We make a note that the convexity of the LLA is crucial for Proposition 2. We demonstrate
the continuity property of the one-step estimator in linear regression models with an orthogonal
design. As can be seen from Figure 2, in orthogonal design the L0.01 penalty and the logarithm
penalty are equivalent to some discontinuous thresholding rules, but their one-step estimators
yield continuous thresholding rules. Moreover, the one-step L0.01 estimator with λ = 200 is
very similar to the one-step logarithm estimator with λ = 2, which shows us an illustrative
example of Proposition 2. We also show the SCAD thresholding and its one-step version in
Figure 2. They are both continuous and unbiased for large coefficients, but they are not
identical.

4. Implementation
In this section we show that the LLA allows an efficient implementation of the one-step sparse
estimator. The key is to notice that solving β(1) is not much different from solving LASSO.
Standard quadratic programming software can be used to solve LASSO. The shooting
algorithm also works well (Fu 1998,Yuan & Lin 2006). Efron et al. (2004) proposed an efficient
path algorithm called LARS for computing the entire solution path of LASSO. See also the
homotopy algorithm by Osborne, Presnell & Turlach (2000). The LARS algorithm is a major
breakthrough in the development of the LASSO-type methods. Zou & Hastie (2005) modified
the LARS algorithm to compute the solution paths of the elastic net. Rosset & Zhu (2004)
generalized the LARS type algorithm to a class of optimization problems with a LASSO
penalty. The LARS algorithm was used to simplify the computations in an empirical Bayes
model for LASSO (Yuan & Lin 2005).

We adopt the LARS idea in our implementation. Write . Observe that
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where D is a n × n diagonal matrix with . In linear
regression models, Dii = 2. We separately discuss the algorithm for two types of concave
penalties.

Type 1: pλ(t) = λp′(t) and p′(t) > 0 for all t. Bridge penalties and the logarithm penalty belong
to this category which also covers many other penalties. We propose the following algorithm
to compute the one-step estimator.

Algorithm 1
Step. 1 Create working data by

Step 2. Apply the LARS algorithm to solve

Then it is not hard to show that

Thus, if , then xi is selected in the final model.

Type 2: For some penalties, the derivative can be zero. In addition, the regularization parameter
λ cannot be separated from the penalty function. The SCAD penalty is a typical example. Let
us assume that

We write

We propose the following algorithm to compute β(1).

Algorithm 2

Step 1a. Create working data by 

Step 1b. Let .

Step 1c. Let HU be the projection matrix in the space of . Compute
.
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Step 2. Apply the LARS algorithm to solve

Step 3. Compute . Then it is not hard to show that

Thus, if , then xj is selected in the final model for j ∈ V.

In both algorithms the LARS step uses the same order of computations of a single OLS fit
(Efron et al. 2004). Thus it is very efficient to compute the one-step estimator. It is also
remarkable that if the penalty is of type 1, then the entire profile of the one-step estimator (as
a function of λ) can be efficiently constructed. For the SCAD type penalty we still need to solve
the one-step estimator for each fixed λ, for the sets U and V could change as λ varies.

5. Numerical Examples
In this section, we assess the finite sample performance of the one-step sparse estimates for
linear regression models, logistic regression models and Poisson regression models in terms
of model complexity (sparsity) and model error, defined by

for a selected model μ̂(·), where the expectation is taken over the new observation x. We
compare their performance with that of the SCAD with the original LQA algorithm (Fan & Li
2001) and the perturbed LQA algorithm (Hunter & Li 2005), and the best subset variable
selection with the AIC, and BIC. For a fitted subset model ℳ, the AIC and BIC statistics are
of the form

where |ℳ| is the size of the model and λ = 2 and log(n), respectively. Note that the BIC is a
consistent model selection criterion, while AIC is not. We further demonstrate the proposed
methodology by analysis of a real data set.

In our simulation studies, we examine the performance of one-step sparse estimates with the
SCAD penalty, logarithm penalty (defined in Section 3.3) and L0.01 penalty. Note that we
expect the logarithm penalty and L0.01 penalty generate similar one-step sparse estimators. In
Table 1–Table 3, one-step SCAD, one-step LOG and one-step L0.01 stand for the one-step
sparse estimate with the SCAD, logarithm and L0.01 penalty, respectively; SCAD and P-SCAD
represent the penalized least squares or likelihood estimators with the SCAD penalty using
LQA and perturbed LQA algorithm, respectively; and AIC and BIC are the best subset variable
selection with the AIC and BIC criteria, respectively. For the best subset variable selection,
we exhaustively searched over all possible subsets. We used five-fold cross-validation to select
the tuning parameters.
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Example 1
(Linear Model) In this example, simulation data were generated from the linear regression
model,

where β = (3,1.5,0, 0, 2, 0,0, 0,0, 0,0,0)T, ε ∼ N(0,1) and x is multivariate normal distribution
with zero mean and covariance between the ith and jth elements being p|i−j| with ρ = 0.5. In
our simulation, the sample size n is set to be 50 and 100. For each case, we repeated the
simulation 1000 times.

For linear model, model error for μ̂ = xTβ̂ is ME(μ ̂) = (β̂−β)TE(xxT)(β̂−β). Simulation results
are summarized in Table 1, in which MRME stands for median of ratios of ME of a selected
model to that of the ordinary least squares estimate under the full model. Both the columns of
’C’ and ’IC’ are measures of model complexity. Column ’C’ shows the average number of
nonzero coefficients correctly estimated to be nonzero, and column ’IC’ presents the average
number of zero coefficients incorrectly estimated to be nonzero. In the column labeled ’Under-
fit’ we presented the proportion of excluding any nonzero coefficients in 1000 replications.
Likewise, we reported the probability of selecting the exact subset model and the probability
of including all three significant variables and some noise variables in the columns ’Correct-
fit’ and ’Over-fit’, respectively.

As can be seen from Table 1, all variable selection procedures dramatically reduce model error.
One-step SCAD has the smallest model error among all competitors, followed by the SCAD
and perturbed-SCAD. In terms of model error, penalized least squares methods with concave
penalties outperform the best subset selection. In terms of sparsity, one-step SCAD also has
the highest probability of correct fit. The SCAD penalty performs better than the other penalties.
One-step LOG and one-step L0.01 perform very similarly, which numerically confirms the
assertion in Proposition 2. It is also interesting to note that a simulation study by Leng, Lin &
Wahba (2006) showed that in this example the LASSO did not consistently select the true
model when optimizing the prediction error. In contrast, the nonconcave penalty methods and
their one-step estimates all work very well in this example because of their oracle properties.

Example 2
(Logistic regression) In this example, we simulated 1000 data sets consisting of n = 200
observations from the model

where p(u) = exp(u)/(l + exp(u)), and β is the same as that in Example 1. The covariate vector
x is created as follows. We first generate z from a 12-dimensional multivariate normal
distribution with zero mean and covariance between the ith and jth elements being ρ|i−j with
ρ = 0.5. Then we set x2k−1 = z2k−1 and x2k = I(z2k < 0) for k = 1, … , 6, where I(·) is an indicator
function. Thus, x has continuous as well as binary components.

Unlike the model error for linear regression models, there is no closed form of model error for
the logistic regression model. In this example, the model error was estimated using Monte
Carlo simulation. Simulation results are summarized in Table 2, in which MRME stands for
median of ratios of ME of a selected model to that of the un-penalized maximum likelihood
estimate under the full model, and other notation is the same as that in Table 1.
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From Table 2, it can be seen that the best subset variable selection with the BIC criterion
performs the best, however, the computational cost of the best subset variable selection is much
more expensive than that of the nonconcave penalized likelihood approach. One-step sparse
estimates require the least computational cost. It is interesting to see from Table 2 that the one-
step SCAD performs as well as the fully iterative SCAD estimates by the LQA and perturbed
LQA algorithms in terms of model error. The one-step estimates with logarithm and L0.01
penalties perform very well. They have lower model error and rate of under-fit models than
ones with the SCAD penalty.

Example 3
(Poisson log-linear regression) In this example, we considered a Poisson regression model

where λ(u) = exp(u), β = (1.2, 0.6, 0,0, 0.8, 0,0, 0,0,0, 0, 0)T and x is the same as that of Example
1. We let the sample size be 60 and 120. For each case we simulated 1000 data sets. Note that
the model error is ME(β̂) = E{exp(xTβ̂)−exp(xTβ)}2. Since x is normally distributed, we can
derive a closed form for the model error using the moment generating function of normal
distribution. Simulation results are summarized in Table 3, in which notation is the same as
that in Table 2.

From Table 3, we can see that one-step SCAD sparse estimate outperforms the SCAD using
both the original LQA algorithm and perturbed LQA algorithm in terms of model errors, model
complexity and the rate of correct-fit. The best subset variable selection has the best rate of
correct-fit for both n = 60 and 120. The correct-fit rate of one-step sparse estimates becomes
much higher when the sample size increases from 60 to 120. This is not case for SCAD, P-
SCAD and the best subset variable selection procedures.

Example 4
(Data analysis) In this example, we demonstrate our one-step estimation methodology using
the burns data, collected by the General Hospital Burn Center at the University of Southern
California. The data set consists of 981 observations. Fan & Li (2001) analyzed this data set
as an illustration of the nonconcave penalized likelihood methods. As in Fan & Li (2001), the
binary response variable is taken to be the indicator whether the victims survived their burns
or not. Four covariates, x1 = age, x2 = sex, x3 = log(burn area + 1) and binary variable x4 =
oxygen (0=normal 1=abnormal), are considered. To reduce modeling bias, quadratic terms of
x1 and x3 and all interaction terms were included in the logistic regression model. We computed
the one-step estimators with the SCAD and logarithm penalties. The regularization parameter
was chosen by 5-fold cross-validation. The logarithm of selected λ equals −0.356, and −7.095
for the one-step estimates with the SCAD and logarithm penalties, respectively.

With the selected regularization parameter, the fitted one-step SCAD sparse estimate yields
the following model

(5.1)

where Y = 1 stands for a victims survived from his/her burns. This model indicates that only
x1 and x3 are significant. This is the same as the ones in the model selected by the SCAD with
the LQA algorithm and reported in Fan & Li (2001). The one-step fit with logarithm penalty
is
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(5.2)

It selects more variables than (5.1). This is consistent with Table 2, from which we can see that
one-step fit with logarithm penalty has a higher rate of ’over-fit’ than the one-step SCAD
estimator. The one-step L0.01 fit is almost identical to (5.2).

6. Proofs
6.1. Proof of Theorem 1

At the k-step, define a function with parameter β (k) as follows

Observe that Q(β(k)) = G(β(k)|β(k)), and

By the concavity of the penalty function pλ(·), we have

If  we use the right derivative. Thus it follows that

We can take ”>” in the above inequality if pλ(·) is strictly concave. Moreover, it is easy to check
that

Hence we have that

This completes the proof.

6.2. Proof of Theorem 2
Without loss of generality let us consider t > t0. suffices to show
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(6.1)

Note that

Thus (6.1) is equivalent to

(6.2)

Take a sequence of {tk} such that t0 < tk < t and tk → t0. By the convexity of ϕ(·), we know

(6.3)

Since ϕ(·) is a majorization of pλ(·) at t0, we have

(6.4)

Thus combining (6.3) and (6.4), we know

Taking the limit in the above inequality we obtain (6.2). Similar arguments can be applied to
the case of t < t0.

6.3. Proof of Theorem 3
It suffices to show that

(6.5)

Then (2.13) is equivalent to (2.7), which in turn shows that LLA is identical to the EM
algorithm.

By p(τj|β,y) ∝ p(βj|τj)π(τj), we have
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and (2.11) and (2.12) yield

Hence (6.5) is proven.

By the non-negativity of H(t), it is easy to see that exp(−npλ(|β|)) is a strictly decreasing function
of |β|, thus pλ(·) is strictly increasing. To show pλ(·) is unbounded, using dominant (or
monotone) convergence theorem, we have exp(−npλ(|β|)) → 0 as |β| → ∞. Hence pλ(·) is
unbounded.

6.4. Proof of Theorem 4 and Theorem 5
Theorem 4 can be proven by the same proof for Theorem 5, and therefore we only prove
Theorem 5.

Let us define

Let û(n) = arg min[Vn(u) − Vn(0)], then . By Slutsky’s Theorem, it follows that

(6.6)

(6.7)

We can write T3 as

Note that
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We now examine the behavior of . First consider the case where

. When β0j ≠ 0, since , continuous mapping theorem says that

. Hence  yields T3j →P 0. When β0j = 0, T3j = 0 if uj = 0. For uj
≠ 0, we have

By , then from  we see T3j →P ∞.

For the SCAD penalty, we have similar conclusions.  if θ > aλn (a = 3.7). Thus when

, then λn → 0 ensures . When β0j = 0,

T3j = 0 if uj = 0. For uj ≠ 0, we have . Also note that  for all 0 < θ <

λn, which implies that if  with probability tending
to one. Thus T3j → ∞.

Let us write . Then we have

(6.8)

Denote . Combining (6.6), (6.7) and (6.8) we conclude that for each fixed u,

The unique minimum of V(u) is  and u20 = 0. Vn(u) − Vn(0) is a convex function
of u. By epiconvergence (Geyer 1994,Knight & Fu 2000), we conclude that

(6.9)

(6.10)

By W10 = N(0,I1(β10)), (6.9) is equivalent to
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Note that (6.10) implies that . We now show that with probability tending to
one, β̂ = 0. This is a stronger statement than (6.10). It suffices to prove that if β0j = 0, P (β̂j
(ose)≠= 0) → 0. Assume β̂j(ose) ≠ 0. By KKT conditions of (3.3), we must have

(6.11)

We have shown that when β0j = 0, the right hand side goes to ∞ in probability. However, the
left hand side can be written as

By (6.9) and (6.10) we know the first term converges in law to some normal, and so does the
second term. Thus

7. Discussion
In this article we have proposed a new algorithm based on the LLA for maximizing the
nonconcave penalized likelihood. We further suggest using the one-step LLA estimator as the
final estimates, because the one-step estimator naturally adopts a sparse representation and
enjoys the oracle properties. In addition, the one-step sparse estimate can dramatically reduce
the computational cost in the fully iterative methods. The simulation shows that one-step sparse
estimates have very competitive performance with finite samples.

We have concentrated on the one-step sparse estimate for linear models and likelihood-based
models, including generalized linear models. The proposed one-step sparse estimation method
can be easily extended for variable selection in survival data analysis using penalized partial
likelihood (Fan & Li 2002, Cai et al. 2005), variable selection for longitudinal data (Fan & Li
2004) and variable selection in semiparametric regression modeling (Li & Liang 2007).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
Plot of Local Quadratic Approximation (thin dotted lines) and Local Linear Approximation
(thick broken lines) at β = 4 and 1. (a) and (b) are for the L0.5 penalty with λ = 2, and (c) and
(d) are for the SCAD penalty with λ = 2.
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FIG. 2.
Compare thresholding rules in orthogonal design, (a) and (b) are for the logarithm penalty and
its one-step LLA approximation, λ = 2. (c) and (d) are for Bridge (L0.01) and its one-step LLA
approximation, λ = 200. (e) and (f) are for SCAD and its one-step LLA approximation, λ = 2.

Zou and Li Page 23

Ann Stat. Author manuscript; available in PMC 2009 October 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zou and Li Page 24
TA

B
LE

 1
Si

m
ul

at
io

n 
R

es
ul

ts
 fo

r L
in

ea
r R

eg
re

ss
io

n 
M

od
el

s.

N
o.

 o
f Z

er
os

Pr
op

or
tio

n 
of

M
et

ho
d

M
R

M
E

C
IC

U
nd

er
-fi

t
C

or
re

ct
-fi

t
O

ve
r-

fit

n 
= 

50

on
e-

st
ep

 S
C

A
D

0.
20

8
3.

00
0.

55
0.

00
0

0.
77

1
0.

22
9

on
e-

st
ep

 L
O

G
0.

26
3

3.
00

0.
89

0.
00

0
0.

55
9

0.
44

1
on

e-
st

ep
 L

0.
01

0.
26

2
3.

00
0.

90
0.

00
0

0.
55

5
0.

44
5

SC
A

D
0.

23
3

3.
00

0.
83

0.
00

0
0.

68
2

0.
31

8
P-

SC
A

D
0.

23
5

3.
00

0.
64

0.
00

0
0.

70
1

0.
29

9
A

IC
0.

66
0

3.
00

1.
84

0.
00

0
0.

19
5

0.
80

5
B

IC
0.

40
1

3.
00

0.
63

0.
00

0
0.

57
6

0.
42

4

n 
= 

10
0

on
e-

st
ep

 S
C

A
D

0.
23

4
3.

00
0.

55
0.

00
0

0.
78

4
0.

21
6

on
e-

st
ep

 L
O

G
0.

28
1

3.
00

0.
71

0.
00

0
0.

65
7

0.
34

3
on

e-
st

ep
 L

0.
01

0.
28

1
3.

00
0.

71
0.

00
0

0.
65

7
0.

34
3

SC
A

D
0.

25
2

3.
00

0.
75

0.
00

0
0.

73
2

0.
26

8
P-

SC
A

D
0.

26
2

3.
00

0.
63

0.
00

0
0.

71
1

0.
28

9
A

IC
0.

67
6

3.
00

1.
63

0.
00

0
0.

19
2

0.
80

8
B

IC
0.

33
7

3.
00

0.
32

0.
00

0
0.

72
8

0.
27

2

Ann Stat. Author manuscript; available in PMC 2009 October 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zou and Li Page 25
TA

B
LE

 2
Si

m
ul

at
io

n 
R

es
ul

ts
 fo

r L
og

is
tic

 R
eg

re
ss

io
n 

M
od

el
.

N
o.

 o
f Z

er
os

Pr
op

or
tio

n 
of

M
et

ho
d

M
R

M
E

C
IC

U
nd

er
-fi

t
C

or
re

ct
-fi

t
O

ve
r-

fit

on
e-

st
ep

 S
C

A
D

0.
23

8
2.

95
0.

82
0.

05
1

0.
56

5
0.

38
4

on
e-

st
ep

 L
O

G
0.

22
9

2.
97

0.
61

0.
02

9
0.

51
8

0.
45

3
on

e-
st

ep
 L

0.
01

0.
23

0
2.

97
0.

61
0.

02
8

0.
51

6
0.

45
6

SC
A

D
0.

23
8

2.
92

0.
51

0.
07

6
0.

70
6

0.
21

8
P-

SC
A

D
0.

23
7

2.
92

0.
50

0.
07

9
0.

70
7

0.
21

4
A

IC
0.

59
6

2.
98

1.
56

0.
02

1
0.

21
6

0.
76

3
B

IC
0.

20
8

2.
95

0.
22

0.
05

3
0.

80
0

0.
14

7

Ann Stat. Author manuscript; available in PMC 2009 October 9.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Zou and Li Page 26
TA

B
LE

 3
Si

m
ul

at
io

n 
R

es
ul

ts
 fo

r P
oi

ss
on

 R
eg

re
ss

io
n 

M
od

el
s

N
o.

 o
f Z

er
os

Pr
op

or
tio

n 
of

M
et

ho
d

M
R

M
E

C
IC

U
nd

er
-fi

t
C

or
re

ct
-fi

t
O

ve
r-

fit

n 
= 

60

on
e-

st
ep

 S
C

A
D

0.
28

4
2.

99
1.

35
0.

01
1

0.
38

6
0.

60
3

on
e-

st
ep

 L
O

G
0.

26
0

2.
99

1.
10

0.
00

6
0.

46
0

0.
53

4
on

e-
st

ep
 L

0.
01

0.
26

0
2.

99
1.

10
0.

00
6

0.
46

0
0.

53
4

SC
A

D
0.

29
2

3.
00

2.
75

0.
00

3
0.

09
5

0.
90

2
P-

SC
A

D
0.

32
7

2.
91

1.
72

0.
05

5
0.

27
0

0.
67

5
A

IC
0.

49
6

3.
00

1.
40

0.
00

1
0.

26
5

0.
73

4
B

IC
0.

22
8

3.
00

0.
34

0.
00

2
0.

73
5

0.
26

3

n 
= 

12
0

on
e-

st
ep

 S
C

A
D

0.
27

1
3.

00
1.

00
0.

00
1

0.
55

2
0.

44
7

on
e-

st
ep

 L
O

G
0.

26
6

3.
00

0.
76

0.
00

0
0.

60
3

0.
39

7
on

e-
st

ep
 L

0.
01

0.
26

6
3.

00
0.

77
0.

00
0

0.
60

1
0.

39
9

SC
A

D
0.

34
2

3.
00

2.
36

0.
00

0
0.

17
4

0.
82

6
P-

SC
A

D
0.

35
6

2.
95

1.
60

0.
03

7
0.

32
2

0.
64

1
A

IC
0.

59
4

3.
00

1.
45

0.
00

0
0.

23
5

0.
76

5
B

IC
0.

27
7

3.
00

0.
25

0.
00

0
0.

79
0

0.
21

0

Ann Stat. Author manuscript; available in PMC 2009 October 9.


