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The vesicular soluble N-ethylmaleimide-sensitive factor attach-
ment protein receptor (SNARE) tetanus neurotoxin-insensitive
vesicle-associated membrane protein (TI-VAMP/VAMP7) was
previously shown to mediate an exocytic pathway involved in
neurite growth, but its regulation is still largely unknown. Here
we show that TI-VAMP interacts with the Vps9 domain and
ankyrin-repeat-containing protein (Varp), a guanine nucleotide
exchange factor (GEF) of the small GTPase Rab21, through a
specific domain herein called the interacting domain (ID). Varp,
TI-VAMP and Rab21 co-localize in the perinuclear region of
differentiating hippocampal neurons and transiently in transport
vesicles in the shaft of neurites. Silencing the expression of Varp
by RNA interference or expressing ID or a form of Varp deprived
of its Vps9 domain impairs neurite growth. Furthermore, the
mutant form of Rab21, defective in GTP hydrolysis, enhances
neurite growth. We conclude that Varp is a positive regulator of
neurite growth through both its GEF activity and its interaction
with TI-VAMP.
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INTRODUCTION
The vesicular exocytic traffic is an essential mechanism to sustain
membrane expansion in several processes in eukaryotic cells,
including neurite growth (Futerman & Banker, 1996; Pfenninger,
2009). It is widely accepted that the general mechanisms

underlying membrane traffic can be divided into four essential
steps—that include vesicle budding, transport, tethering and
fusion (Bonifacino & Glick, 2004)—and are regulated by Rab
GTPases (Zerial & McBride, 2001; Grosshans et al, 2006) and
soluble N-ethylmaleimide-sensitive factor attachment protein
receptor (SNARE) proteins (Jahn & Scheller, 2006). Although
much is known about the functions of Rabs and SNAREs in these
processes, so far only a few members of these two families have
been shown to have documented roles in neurite growth (Ng &
Tang, 2008). The tetanus neurotoxin insensitive vesicle-associated
membrane protein (TI-VAMP/VAMP7) is a vesicular SNARE
(v-SNARE) that mediates an exocytic pathway that is crucial for
neurite growth in PC12 cells and in neurons in primary culture
(Martinez-Arca et al, 2000, 2001; Alberts et al, 2003). In yeast
two-hybrid screens, we identified the Vps9 domain and ankyrin-
repeat-containing protein (Varp) as a new partner for TI-VAMP.
Varp was recently shown to be a guanine nucleotide exchange
factor (GEF) for Rab21 (Zhang et al, 2006), a small GTPase that
regulates phagocytosis (Khurana et al, 2005), cell adhesion, cell
migration and cytokinesis by controlling the endosomal trafficking
of b1-integrins (Pellinen et al, 2006, 2008). These findings
prompted us to study the biological meaning of the interaction
between Varp and TI-VAMP and to characterize the function
of Varp and Rab21 in neurite growth. Our results show that,
similarly to TI-VAMP, Varp and Rab21 are positive regulators of
neurite growth.

RESULTS
The GEF Rab21 Varp is a new TI-VAMP-interacting protein
To identify the partners of TI-VAMP, we carried out a yeast two-
hybrid screen using the full cytoplasmic domain of TI-VAMP as
bait in a human placental library. Among already characterized
partners of TI-VAMP, such as syntaxin 3, SNAP23, AP-3d
and HRB (Martinez-Arca et al, 2003; Scheuber et al, 2006;
Chaineau et al, 2008), this screen identified Varp as a new
TI-VAMP-interacting protein. The screen was repeated using a
human fetal brain library and produced similar results. The region
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from amino acids 641 to 707 was present in all clones
corresponding to Varp isolated in both yeast two-hybrid screens,
defining the probable minimal domain responsible for the
interaction with TI-VAMP (Fig 1A), herein called the interacting
domain (ID). To gain insight into the TI-VAMP–Varp interaction,
we generated a Varp antibody directed against ID (supplementary
Fig S1A online) and confirmed the interaction using in vitro
biochemical assays (Fig 1B). In glutathione-S-transferase (GST)
pull-down experiments, Varp interacted with the full-length
TI-VAMP, its amino-terminal domain (Longin), and the protein
with this domain deleted (DLongin) corresponding to the SNARE
domain, suggesting that Varp has two binding sites in TI-VAMP.
Furthermore, TI-VAMP co-precipitated green fluorescent protein
(GFP)-tagged ID and Varp from HeLa cells (Fig 1C) and
endogenous Varp from PC12 cells (Fig 1D), further confirming
the interaction in vivo. The N-terminal region of Varp includes a
Vps9 domain that has recently been shown to have Rab21 GEF
activity (Zhang et al, 2006). Using a wild-type (wt) myc-tagged
Rab21 form or locked either in the GDP-bound (T33N) or
GTP-bound (Q78L) state, we showed that endogenous Varp
precipitated with Rab21, preferentially with Rab21-T33N
(supplementary Fig S1B online) as expected for a GEF (Boguski
& McCormick, 1993; Delprato & Lambright, 2007). It has
been shown that Rab21-T33N concentrates in the trans-Golgi
network (TGN; Simpson et al, 2004; and data not shown),

thus interaction between Rab21 and Varp is likely to occur in the
TGN. We studied the localization of untagged and GFP-tagged
Varp in cells moderately overexpressing the proteins to bypass the
weak staining produced by immunohistochemistry using Varp
antibody. As shown in Fig 2A, Varp strongly localized with
TI-VAMP mainly in the perinuclear region of HeLa cells. Both
proteins co-localized in vesicles, often in close proximity to
microtubules (Fig 2A, Merge), suggesting a potential role of Varp
in the transport of TI-VAMP. Using live-cell imaging, we observed
that Varp–GFP and red fluorescent protein (RFP)–TI-VAMP were
partially transported in the same vesicles in mouse hippocampal
neurons in culture both under control conditions and in Brefeldin
A washout experiments (Jareb & Banker, 1997), suggesting that
this interaction might be related to transport from the cell body
into growing neurites (Fig 2B; supplementary Movies S1 and S2
online). To gain insight into the potential TI-VAMP–Varp–Rab21
connection, we analysed their distribution in PC12 cells and in
mouse hippocampal neurons in culture. Rab21, Varp and TI-VAMP
largely co-localized in the perinuclear region and partially along
the neurites, both in mouse hippocampal neurons (Fig 2C) and
in differentiated PC12 cells (supplementary Fig S2 online). The
peripheral region of the growth cone was largely devoid of
Varp and Rab21, whereas TI-VAMP was present and dynamic
in filopodia (Fig 2D,E; supplementary Movie S3 online). This
suggests a potential role of the Varp and Rab21 complex
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Fig 1 | The GEF Rab21 Varp is a new TI-VAMP-interacting protein. (A) Schematic structure of Varp. The longer black line (421–1050) highlights

the total coverage of all prey clones identified in the yeast two-hybrid screens and the shorter black line (641–707) highlights the minimal domain

required for Varp interaction with TI-VAMP (ID, black box). (B) In vitro translated full-length Varp (arrowhead) interacts with the GST-tagged

full cytoplasmic domain of TI-VAMP (GST–TIVAMP), GST-tagged amino-terminal domain (GST–Longin) and the protein with this domain

deleted (GST–DLongin) but not to GST alone or GST-tagged cytoplasmic domain of cellubrevin. (C) TI-VAMP (double asterisk) precipitates

GFP–ID (double circle) and GFP-tagged Varp (dash) from HeLa cell extracts. (D) Varp (arrowhead) precipitates with TI-VAMP (double asterisk)

in differentiated PC12 cells. TI-VAMP is not immunoprecipitated by the Varp antibody, due to the fact that Varp antibody was raised against ID.

Ct, immunoprecipitation with Pan-mouse IgGs; Control, untransfected HeLa cells; GEF, guanine nucleotide exchange factor; GFP, green fluorescent

protein; GST, glutathione S-transferase; HC, IgG heavy chain; ID, interaction domain; IP, immunoprecipitation; LC, IgG light chain; SM, 10% of

starting material; TI-VAMP, tetanus neurotoxin-insensitive vesicle-associated membrane protein; WB, western blot.
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Fig 2 | Varp, TI-VAMP and Rab21 co-localization. (A) Varp and TI-VAMP partially localize in HeLa cells co-transfected with RFP–TI-VAMP and

Varp–GFP. Images were deconvoluted. Arrows indicate co-localization of Varp and TI-VAMP. Asterisk indicates nucleus. (B) Vesicular co-transport

of Varp–GFP and RFP–TI-VAMP (arrowheads) in anterograde and retrograde (data not shown) directions in mouse hippocampal neurons (images

from supplementary Movies S1 and S2 online). (C) DIV1 mouse hippocampal neurons were transfected with GFP–Rab21-wt and Varp. Images were

deconvoluted. Overlay and inset show co-localization of Varp and TI-VAMP (arrows) or Rab21, Varp and TI-VAMP (arrowheads). The edges of the

cellular body and neurites are emphasized by a white dashed line. Asterisk indicates nucleus. (D) Detail of distal axon and growth cone of transfected

mouse hippocampal neurons. The probable transition zone of growth cone is emphasized by a white dashed line. (E) RFP–TI-VAMP vesicles were

tracked in an axon expressing GFP–Rab21. Vesicular movements of TI-VAMP vesicle are shown in the series of frames corresponding to the boxed

region. TI-VAMP-positive vesicles (arrowheads) moved into the peripheral region of the axon, whereas Rab21 was retained in the central region

(images from supplementary Movie S3 online). Scale bars, 10 mm. Time in minutes. DIV, days in vitro; GFP, green fluorescent protein; RFP, red

fluorescent protein; TI-VAMP, tetanus neurotoxin-insensitive vesicle-associated membrane protein; Varp, Vps9 domain and ankyrin-repeat-containing

protein; wt, wild type.
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in regulating TI-VAMP trafficking in the microtubule-rich region
of the growing neurite but not in the actin-rich region of
the growth cone. In differentiated PC12 cells, Varp and TI-VAMP
co-localized with Rab21 to a greater extent than with
Rab5 and Rab11 (supplementary Fig S2 online), reinforcing the
connection established here.

Varp regulates neurite growth
As TI-VAMP is involved in neurite growth (Martinez-Arca et al,
2000, 2001; Alberts et al, 2003), we examined the function of
Varp by silencing its expression in PC12 cells and mouse
hippocampal neurons in culture. PC12 cells have the advantage
of being easily transfected and able to develop long neurites
in response to staurosporine, as previously described by
Martinez-Arca et al (2000). By using this model, we showed that
neurite length is reduced by approximately 20% in Varp and
TI-VAMP silenced cells. This is in sharp contrast with control
(scramble and luciferase) or unrelated small interfering RNA
(siRNA; Syb2; Fig 3A,B). Furthermore, in developing mouse
hippocampal neurons, silencing of Varp by two different siRNA
duplexes reduced axonal growth significantly (Fig 3C–F), further
establishing the role of Varp in neurite and axon growths. As
GFP–ID interacts with TI-VAMP in vivo (Fig 1C), it was reasonable
to think that the expression of ID might inhibit axonal growth by
preventing the formation of the endogenous TI-VAMP–Varp
complex. We thus expressed Varp–GFP and GFP–ID, GFP alone
being our control, in developing mouse hippocampal neurons.
We found that GFP–ID inhibited axonal growth (Fig 3G–I). We
also tested the effect of a mutant of Varp lacking the Vps9 domain
(DVps9-Varp–GFP) because this domain has been shown to be
responsible for the GEF activity of Varp (Zhang et al, 2006). This
truncated protein, which includes ID, still interacted with
TI-VAMP (supplementary Fig S3C online) and had a dominant-
negative effect on neurite growth (supplementary Fig S3 online).
We conclude that the interaction of Varp with TI-VAMP and its
GEF activity have an important function in neurite growth.

Varp is required for TI-VAMP–Rab21 co-localization
The inactivated form of Rab21, Rab21-T33N, has previously been
shown to concentrate in TGN (Simpson et al, 2004) and TI-VAMP
has been shown to regulate the exocytosis of post-Golgi vesicles
(Alberts et al, 2006; Scheuber et al, 2006; Sander et al, 2008).
TI-VAMP and Rab21 co-localized to a significant extent in the
perinuclear region of HeLa (Fig 4A), PC12 cells (supplementary
Fig S2 online) and hippocampal neurons (Fig 2C), suggesting a
conserved mechanism of sorting. As TGN is an important site for
protein sorting in the exocytic pathway, we analysed the staining
of TI-VAMP, Rab21 and the marker TGN46. We saw partial and
significant co-localization in HeLa cells (Fig 4A; supplementary
Fig S4 online), suggesting that TGN is a site at which Varp might
regulate a functional link between TI-VAMP and Rab21. To further
test this hypothesis, we silenced Varp and measured the co-
localization between TI-VAMP and Rab21. Varp was efficiently
depleted by a selected mix of siRNA duplexes (Varp_h2), but not
by control siRNAs (Luc, Sc; Fig 4B). The efficiency of gene
silencing was also assessed by real-time RT–PCR, confirming a
reduction of 75.1±2.7% in Varp messenger RNA expression in
HeLa cells (supplementary Table S1 online). GFP–Rab21-wt was
distributed in a punctuate pattern and significantly localized with

TI-VAMP mainly in the perinuclear region (overlapping with the
TGN marked with TGN46, see Fig 4A; supplementary Fig S4
online) in control siRNA (scramble, Fig 4A, left panels), whereas
this co-localization was reduced in Varp siRNA-treated cells
(Fig 4A, right panels). A statistical analysis confirmed the
reduction of co-localization between TI-VAMP and Rab21 in
Varp siRNA-treated cells (Fig 4C,D). Therefore, despite the lack of
evidence for a tripartite complex (data not shown), the Rab21 GEF
Varp might establish a functional link between TI-VAMP and
Rab21, probably occurring at TGN sites.

Rab21 regulates neurite growth
As TI-VAMP and Varp are both involved in neurite growth, and the
Vps9 domain of Varp is required for this function, we then
investigated the role of Rab21, studying the effect of the expression
of constitutively active and inactive mutants of Rab21 on neurite
growth in PC12 cells. As shown in Fig 5A,B, Rab21-Q78 L
significantly stimulated the growth of long neurites. By contrast,
Rab21-T33N had no effect on the growth of neurites longer than
40 mm (Fig 5B) but induced abundant small protrusions (Fig 5A,
middle panel), as previously seen in Dictyostelium (Khurana et al,
2005). Indeed, a quantification of the number of neurites (45 mm)
in cells expressing Rab21 mutants showed a significant increase in
the amount of short protrusions in Rab21-T33N compared with
Rab21-wt or Rab21-Q78L (Fig 5C, see percentage of neurites
between 5 and 10mm, first points of percentile graph). Altogether
these results suggested that the activation of Rab21, which is
downstream from Varp, mediates the extension of long neurites.
We did not see a significant effect on the average neurite length in
Rab21-silenced PC12 cells and mouse hippocampal neurons (data
not shown). A likely explanation might be that other isoforms of
Rab21—or other closely related Rab proteins—are able to
compensate for the lack of Rab21, as in the cases of Rab3
(Schluter et al, 2004) and Rab32/38 (Wasmeier et al, 2006).

DISCUSSION
Here we show that Varp is a positive regulator of neurite growth
and particularly of axonal growth in hippocampal neurons. Varp is
able to interact with TI-VAMP, and expressing ID strongly impairs
neurite growth. Furthermore, Varp activates Rab21 through its
Vps9 domain, and a form of Varp lacking this domain inhibits
neurite growth. Silencing the expression of Varp also inhibits
neurite growth. Altogether these data suggest that Varp is required
for neurite growth and that both Vps9 domain and ID are
important for its function. Our demonstration of a positive
function of Varp and Rab21 in neuritogenesis, distinct from the
negative roles of Rab5 and Rab11, is an important step towards a
precise characterization of the function of these highly homo-
logous Rab proteins. Indeed, it has been recently proposed that
nerve-growth-factor-mediated neuritogenesis requires the down-
regulation of Rab5 by RabGAP5, a Rab5 GTPase-activating
protein that interacts with the nerve growth factor receptor TrkA
(Liu et al, 2007). Structural studies further support the idea that
Rab5 and Rab21 are likely to have different effectors (Delprato &
Lambright, 2007). In addition, protrudin is required for neurite
growth and operates through interaction with the GDP-bound
form of Rab11 (Shirane & Nakayama, 2006). The characterization
of the upstream signalling pathways that control Varp and the
downstream effectors of Rab21 is now crucial to understand how
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vesicular trafficking might be regulated by neurotrophins and
guidance cues, and how it might fine-tune neurite growth.

In conclusion, we have previously shown that the v-SNARE
TI-VAMP mediates a membrane trafficking pathway involved in

neurite growth (Martinez-Arca et al, 2000, 2001; Alberts et al,
2003; Tsaneva-Atanasova et al, 2009), and in this study we have
shown that the Rab21 GEF Varp, one of its partners, positively
regulates neurite growth. The precise molecular role of Varp is
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Fig 3 | Varp regulates neurite growth in PC12 cells and mouse hippocampal neurons. (A) Rat PC12 cells were treated with siRNAs against scramble,

luciferase, Syb2, TI-VAMP or Varp (Varp_r1) for 72 h, differentiated with 100 nM staurosporine for 2–12 h and then immunostained alternatively

for TI-VAMP, Syb2 or Varp and tubulin (data not shown). Neurite growth was impaired after the depletion of TI-VAMP and Varp but not of Syb2.

(B) The degree of silencing of TI-VAMP, Syb2 and Varp expression in PC12 cells was assessed by western blot analysis. (C) DIV1 mouse hippocampal

neurons were co-transfected either with two Varp siRNA oligonucleotides (Varp_m1 and Varp_m2) or scramble siRNA and EGFP as a reporter

gene and fixed after a further 72 h. The structure of the longest process, that is, the axon (MAP2 negative) is indicated by arrowheads in the merge.

(D,E) Quantification of the effect of Varp silencing on axonal length in GFP-positive cells represented as percentile (D) and average (E). (F) Efficiency

of mouse Varp siRNA oligonucleotides assessed by western blotting on mouse L-929 cells. (G) DIV1 mouse hippocampal neurons were transfected

with Varp–GFP, GFP–ID or GFP, and stained for GFP (green) and MAP2 (red) after a further 48 h. (H,I) Quantification of the effect of Varp and

ID overexpression on axonal length represented as percentile (H) and average (I). Percentile representations in (D,H): values on the x-axis indicate

the percentage of axons shorter than the length indicated on the y-axis. The shift towards the bottom indicates decreased axonal growth. See also

supplementary information for the mean of axon length. Significance determined by two-tailed unpaired t-test ****Po0.0001, ***Po0.005. Data are

shown as mean±s.e.m. Scale bars, 20 mm. DIV, days in vitro; EGFP; enhanced green fluorescent protein; GFP; green fluorescent protein; ID, interaction

domain; MAP2, microtubule-associated protein 2; n, number of neurites or axons; siRNA, small interfering RNA; Syb2, synaptobrevin 2; TI-VAMP,

tetanus neurotoxin-insensitive vesicle-associated membrane protein; Varp, Vps9 domain and ankyrin-repeat-containing protein.
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likely to be more complicated than activating Rab21 and regu-
lating TI-VAMP function. Indeed, Varp contains several ankyrin
repeats (Mosavi et al, 2004). Thus, Varp is likely to interact with
yet more proteins through these domains. Furthermore, Varp has

also been shown to be an effector of Rab32/38, this interaction
being mediated by the first ankyrin repeat (Wang et al, 2008;
Tamura et al, 2009). This is reminiscent of the function of Sec2
in yeast, a GEF of Sec4; the targeting of Sec4 to secretory vesicles
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is regulated by Ypt32, another Rab (Ortiz et al, 2002).
In this context, Varp might seem to be an important molecular
adaptor, functionally connecting and/or activating several proteins
involved in different important processes that require vesicular
trafficking, including neurite growth. Thus, we anticipate that Varp
is likely to regulate other functions mediated by TI-VAMP-
dependent membrane trafficking routes (Proux-Gillardeaux et al,
2005). Future studies will therefore be required to characterize the
molecular functions of Varp, particularly how the activation by
Rab32/38, the activation of Rab21 and binding to TI-VAMP are
regulated in time and space.

METHODS
Cell culture and complementary DNA transfection. HeLa and
L-929 cells were grown in Dulbecco0s modified Eagle medium
(Invitrogen, Cergy Pontoise, France) supplemented with 10% fetal
calf serum. PC12 cells were grown in RPMI (Roswell Park Memorial
Institute) medium (Invitrogen) with 10% horse serum and 5% fetal
calf serum. Hippocampal neurons were prepared from newborn
P0 mice and grown on poly-Lysine-coated coverslips in Neurobasal
medium supplemented with 2% B27 and 2 mM glutamine. HeLa,
PC12 and hippocampal neurons at 1 day in vitro (DIV) were
transfected with LipofectAMINE 2000 (Invitrogen) according to
the manufacturer’s instructions.
siRNA knockdown. Varp, Syb2 and TI-VAMP RNA interference
were achieved by using specific pre-designed siRNA duplexes

(see supplementary information online for details). For every experi-
ment carried out, non-targeting siRNAs and mock transfection were
used as controls. Human HeLa cells and mouse L-929 cells were
transfected once with oligonucleotides by using oligofectAMINE
(Invitrogen) according to the manufacturer’s instructions and
cultured for a further 72–96 h. PC12 cells were transfected by
using AMAXA NucleofectorTM technology (Amaxa, Köln, Germany)
twice on two consecutive days. At 48 h after the second trans-
fection, cells were differentiated with staurosporine at 37 1C, fixed
and processed for analysis. Mouse hippocampal neurons were
co-transfected at DIV1 with oligonucleotides and enhanced GFP
by using lipofectAMINE 2000, according to the manufacturer’s
instructions, and cultured for an additional 72 h before being
processed for immunofluorescence.

Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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Fig 5 | Rab21 regulates neurite growth. (A) Effects of Rab21 mutants in differentiating PC12 cells transfected with either GFP–Rab21-wt or -T33N

or -Q78L. Arrows indicate neurites and arrowheads indicate small protrusions. Scale bar, 20 mm. (B) Quantification of the neurites longer than
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