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Abstract
A decade has passed since the appearance of West Nile virus (WNV) in humans in the Western
Hemisphere in New York City. During this interval, WNV spread inexorably throughout North and
South America and caused millions of infections ranging from a sub-clinical illness, to a self-limiting
febrile syndrome or lethal neuroinvasive disease. Its entry into the United States triggered intensive
research into the basic biology of WNV and the elements that comprise a protective host immune
response. Although no therapy is currently approved for use in humans, several strategies are being
pursued to develop effective prophylaxis and treatments. This review describes the current state of
knowledge on epidemiology, clinical presentation, pathogenesis, and immunobiology of WNV
infection, and highlights progress toward an effective therapy.
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I. Biology of WNV Infection
A. Ecology, Epidemiology, and Clinical Manifestations

West Nile virus (WNV) was first isolated in 1937 in the West Nile district of Uganda from a
woman with an undiagnosed febrile illness (Smithburn et al., 1940). It is an RNA virus that
cycles in nature between Culex mosquitoes and birds but also infects and causes disease in
humans, horses, and other vertebrate species. Although its enzootic cycle was believed to be
almost exclusively between mosquitoes and birds, with vertebrate species serving as “dead-
end” hosts because of low-level and transient viremia, one study demonstrated non-viremic
transmission of WNV between co-feeding mosquitoes (Higgs et al., 2005). This suggests that
vertebrates may also act as reservoirs for mosquito infection, resulting in further virus
transmission.

Historically, WNV caused sporadic outbreaks of a mild febrile illness in regions of Africa, the
Middle East, Asia, and Australia. However, in the 1990’s, the epidemiology of infection
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changed. New outbreaks in Eastern Europe were associated with higher rates of severe
neurological disease (Hubalek and Halouzka, 1999). In 1999, WNV entered North America,
and caused seven human fatalities in the New York area as well a large number of avian and
equine deaths. Over the last ten years, WNV has spread to all 48 of the lower United States as
well as to parts of Canada, Mexico, the Caribbean, and South America. Because of the increased
range, the number of human cases has continued to rise: in the United States between 1999
and 2008, 28,961 cases that reached clinical attention were confirmed and associated with
1,131 deaths (http://www.cdc.gov/ncidod/dvbid/westnile/surv&control.htm).

Most (~85%) of human infections in the United States occur in the late summer with a peak
number of cases in August and September. This reflects the seasonal activity of Culex mosquito
vectors and a requirement for virus amplification in the late spring and early summer in avian
hosts. In warmer parts of the country, virtually year-round transmission has been observed.
Although more than 100 avian species are susceptible to WNV infection, some are particularly
vulnerable with a large number of deaths in crows, blue jays, and hawks. The magnitude of
dying birds in a community in the early summer often predicts the severity of human or equine
disease weeks later (Komar, 2003). Ecology studies suggest that Culex pipiens, the dominant
enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the
northeast and north-central United States, shifts its feeding preferences from birds to humans
during the late summer and early fall, coincident with the dispersal of its preferred host, the
American robin (Turdus migratorius) (Kilpatrick et al., 2006).

Seroprevalence studies suggest that most (~80%) cases are sub-clinical, without significant
symptoms. Among clinical cases, many develop a self-limiting illness that is termed WNV
fever. This syndrome begins after a 2 to 14 day incubation period and is characterized by fever
accompanied with myalgias, arthralgias, headache, fatigue, gastrointestinal complaints,
maculopapular rash or lymphadenopathy. This non-neuroinvasive form of WNV infection can
be severe as 38% of patients with WNV fever were hospitalized with a mean length stay of 5.4
days (Huhn et al., 2005). A subset of the symptomatic cases progress to the neuroinvasive
forms of WNV infection, including acute flaccid paralysis, meningitis, encephalitis, and ocular
manifestations (Bakri and Kaiser, 2004; Sejvar et al., 2003); in many instances, a combination
of these syndromes is present. Overall, about 1 in 150 WNV infections, result in the most severe
and potentially lethal form of the disease. During an epidemic, on a human population scale,
the seroconversion rate is ~3% (Mostashari et al., 2001; Tsai et al., 1998) and the attack rate
for severe disease during an epidemic is ~7 per 100,000 (Huhn et al., 2005). The risk of severe
WNV infection is greatest in the elderly (Chowers et al., 2001; Nash et al., 2001; Tsai et al.,
1998). At least two studies have estimated a 20-fold increased risk of neuroinvasive disease
and death in those over 50 years of age (Huhn et al., 2005; Nash et al., 2001).

Two human genes, CCR5 and OAS1 have been identified as susceptibility loci for WNV
infection. In mice, a genetic deficiency of the chemokine receptor CCR5 was associated with
depressed leukocyte trafficking, increased viral burden, and enhanced mortality (Glass et al.,
2005). Analogous genetic deficiencies (e.g., CCR5Δ32, a deletion in the CCR5 gene) are
associated WNV-induced disease in humans (Glass et al., 2006). Although individuals that are
homozygous for the CCR5Δ32 allele represent ~1% of the general United States population,
4–8% of individuals with laboratory-confirmed symptomatic WNV infection were
homozygous for the mutant allele. Thus, CCR5 functions as an essential host factor to resist
neuroinvasive WNV infection, which may have implications for the use of CCR5 antagonists
(e.g., Maraviroc) in HIV therapy. In certain mouse strains, susceptibility to flaviviruses,
including WNV, maps to a truncated isoform of the 2’5’ oligoadenylate sythetase (OAS1b)
gene, a member of an IFN-regulated gene family involved in degradation of viral RNA. A
recent study suggests that a hypomorphic allele of the human ortholog OAS1 is associated with
both symptomatic and asymptomatic WNV infection (Lim et al., 2009). Thus, in humans,
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variation in OAS1 is a genetic risk factor for initial WNV infection although not for disease
severity.

Although most human WNV infections occur after the bite of an infected Culex mosquito,
other routes including transfusion, organ transplantation, placental crossing, and through breast
milk have resulted in transmission. In 2002, 23 cases of WNV infection were identified after
transfusion of blood products (Pealer et al., 2003). These cases led to the development and
implementation of nucleic acid amplification tests, which have been used to test pools or
individual blood product samples (Busch et al., 2005b; Kleinman et al., 2009; Petersen and
Epstein, 2005; Tobler et al., 2005) and largely prevent transmission by transfusion (Busch et
al., 2005a). Nucleic acid screening of blood donors have not completely eliminated transfusion-
transmitted WNV infections as “breakthrough” infections have occurred, and were attributed
to units that had levels of viremia below the sensitivity of the screening assay (Busch et al.,
2005b). In addition to transfusion associated WNV infection, several cases by organ
transplantation have been reported (DeSalvo et al., 2004; Kleinschmidt-DeMasters et al.,
2004; Kumar et al., 2004a; Kumar et al., 2004b). In 2007, the FDA approved a screening test
for WNV in donated organs (Lang, 2007). Because of the relatively low incidence of WNV
infection in organ transplantation and risk of false-positives that can occur with wide scale
testing, screening is not mandated (Kiberd and Forward, 2004).

B. Diagnosis
Although clinical criteria for assessment of patients with suspected WNV infection have been
defined (Granwehr et al., 2004; Sejvar et al., 2003), diagnosis depends on the detection of
antibodies or viral nucleic in the blood or cerebrospinal fluid (Zhang et al., 2009b). Only a
subset of clinical laboratories has the facilities to isolate virus directly from infected clinical
samples. Because viremia is relatively transient and often precedes the severe neurological
manifestations of the WNV infection, nucleic acid testing although quite specific has a
relatively low sensitivity. The detection of WNV IgM in the serum or CSF is still the most
utilized method for diagnostic confirmation (Kapoor et al., 2004; Martin et al., 2004). The tests
are sensitive (90%) when carried out by day 8 of illness. Nonetheless, testing within the first
72 hours of clinical presentation may yield false negative results because of the inherent kinetics
of the anti-WNV IgM response (Busch et al., 2008; Diamond et al., 2003b). Because the ELISA
test also detects antibodies against related flaviviruses (e.g., St Louis and Japanese encephalitis
virus), false positives are possible, and thus it is important to obtain a history of recent
vaccination (e.g., yellow fever virus) or foreign travel. Definitive serological diagnosis of
WNV infection requires a comparison of antigen or neutralization activity among related
flavivirus family members. Investigational diagnostic assays that utilize purified WNV
structural and non-structural proteins (Wong et al., 2003; Wong et al., 2004) may allow
distinction between natural infection, vaccination, and immunity. One cautionary note is that
WNV IgM can persist in serum up to 500 days after onset of infection (Prince et al., 2008;
Prince et al., 2007; Roehrig et al., 2003); this could confound interpretation of serology results
in patients presenting subsequently with clinical syndromes that resemble WNV infection.

C. Virology and Pathogenesis
The genus Flavivirus is composed of greater than 70 members, 40 of which are associated with
human disease: dengue, yellow fever, Japanese encephalitis, tick-borne encephalitis, and West
Nile encephalitis viruses are the most important globally, causing extensive morbidity and
mortality (Burke and Monath, 2001). Flaviviruses are enveloped RNA viruses with a single-
stranded, positive-polarity 11-kilobase genome. They are translated in the cytoplasm as a
polyprotein, and then cleaved into structural and non-structural proteins by virus- and host-
encoded proteases (Brinton, 2002; Lindenbach and Rice, 2001). The structural proteins include
a capsid protein (C), an envelope protein (E) that functions in receptor binding, membrane
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fusion, and viral assembly, and a transmembrane protein (prM) that assists in proper folding
and function of the E protein. The role of the nonstructural (NS) proteins is not fully delineated
but these proteins form the viral protease (NS2B, NS3), NTPase (NS3), RNA helicase (NS3),
RNA-dependent RNA polymerase (NS5), and methyltransferase (NS5) and antagonize host
immune responses.

WNV infection occurs following cellular attachment and receptor-mediated endocytosis.
Although both DC-SIGN-R and the αvβ3 integrin have been suggested as WNV attachment
ligands (Chu and Ng, 2004b; Davis et al., 2006), the cellular receptors for WNV on
physiologically relevant cell types such as neurons or macrophages remain uncharacterized.
Indeed, more recent studies have reported that WNV entry occurs independently of the αvβ3
integrin (Medigeshi et al., 2008). Cellular entry of WNV requires the formation of clathrin-
coated pits (Chu and Ng, 2004a; Krishnan et al., 2007) and cholesterol rich lipid rafts
(Medigeshi et al., 2008). Following a pH-dependent conformational change in the E protein
(Modis et al., 2004; Zhang et al., 2004), the viral and endosomal membranes fuse, releasing
the viral nucleocapsid into the cytoplasm (Allison et al., 1995; Gollins and Porterfield, 1986).
Upon nucleocapsid release, viral RNA associates with endoplasmic reticulum (ER) membranes
and is translated. Translation is a prerequisite for generating a negative-strand RNA
intermediate that serves as a template for nascent positive-strand genomic RNA synthesis
(Mackenzie and Westaway, 2001). WNV RNA synthesis is semi-conservative and asymmetric,
as positive-strand RNA genome production is about ten times more efficient than negative-
strand synthesis (Brinton, 2002). Positive strand RNA is either packaged within progeny
virions or used to translate additional viral proteins. WNV assembles and buds into the ER to
form enveloped immature particles containing the prM protein. During egress, immature
virions undergo a maturation step in which a furin-like protease cleaves prM (Elshuber et al.,
2003; Guirakhoo et al., 1992; Stadler et al., 1997), resulting in a reorganization of E proteins
into a distinct homodimeric array (Mukhopadhyay et al., 2003).

Progress has been made on the structural organization WNV, and this has provided insight into
the molecular transitions that occur during the virus life cycle (Mukhopadhyay et al., 2005).
Three-dimensional reconstruction images from cryoelectron microscopy demonstrate that the
WNV has a well-organized outer protein shell, a 40 Å lipid membrane bilayer, and a less-
defined inner nucleocapsid core (Mukhopadhyay et al., 2003). The icosahedral scaffold
consists of 180 E and M proteins arranged in a repeating herringbone pattern (Kuhn et al.,
2002; Zhang et al., 2003a). Structural analysis of the soluble ectodomain of WNV E proteins
reveals three domains (Kanai et al., 2006; Nybakken et al., 2006), consistent with earlier studies
on related flaviviruses (Modis et al., 2003; Rey, 2003; Rey et al., 1995). Domain I is an 8-
stranded β-barrel that participates in the conformational changes associated with the
acidification of the endosome (Modis et al., 2004). Domain II, which contains 12 β-strands,
has important roles in dimerization, trimerization, and virus-mediated fusion (Modis et al.,
2003; Modis et al., 2004; Rey et al., 1995). Domain III adopts an immunoglobulin-like fold,
contains the most distal projecting loops on the mature virion (Mukhopadhyay et al., 2003;
Zhang et al., 2003a; Zhang et al., 2003b), and has been hypothesized to contain the binding
site for cell attachment (Beasley and Barrett, 2002; Bhardwaj et al., 2001; Rey et al., 1995;
Roehrig et al., 2001). The 180 E monomers lay relatively flat along the virion surface as sets
of three anti-parallel homodimers. This mature flavivirus virion has quasi-icosahedral
symmetry, such that three E monomers are found in the asymmetric unit resulting in distinct
chemical environments that are available for antibody or receptor binding.

Most strongly neutralizing type-specific antibodies against WNV that have been generated in
mice recognize epitopes on Domain III of the E protein (Beasley and Barrett, 2002; Choi et
al., 2007; Li et al., 2005; Oliphant et al., 2005; Sanchez et al., 2005; Volk et al., 2004). The
crystal structure of a Fab fragment of a neutralizing antibody (E16) in complex with Domain
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III of WNV E protein provided structural insight into the type-specificity of antibody
neutralization (Nybakken et al., 2005). The E16 Fab fragment engaged four discontinuous
segments of Domain III including the N-terminal region (residues E302-E309) and three
strand-connecting loops: BC (E330–E333), DE (E365–E368) and FG (E389–E391).
Comparison of available WNV sequences revealed nearly complete conservation of the
structurally defined E16 epitope. Sequence analysis of other flaviviruses revealed diversity in
the four segments of the E16 epitope. As individual flavivirus-specific neutralizing antibodies
have been mapped to analogous binding regions on Domain III (Gromowski and Barrett,
2007; Hiramatsu et al., 1996; Sukupolvi-Petty et al., 2007; Volk et al., 2004; Wu et al.,
2003), this structural epitope, although specific for individual flaviviruses, may have an
important role in neutralization of all flaviviruses. More recent studies with human and
chimpanzee derived monoclonal antibodies against WNV and related flaviviruses suggest that
additional strongly neutralizing antibody epitopes are located within DI, at the DI-DII hinge,
and along the DII-dimer interface (Goncalvez et al., 2008; Lai et al., 2007; Vogt et al., 2009).

Infection experiments in animals have contributed to our understanding of the pathogenesis of
WNV encephalitis (reviewed in (Diamond et al., 2009; Samuel and Diamond, 2006)). Based
on studies with related flaviviruses, initial replication after mosquito inoculation is believed to
occur in the skin in dendritic cells (Ho et al., 2001; Libraty et al., 2001; Marovich et al.,
2001; Wu et al., 2000); these infected cells migrate to draining lymph nodes (Johnston et al.,
2000) where infection and the risk of dissemination are countered by the development of an
early immune response (Bourne et al., 2007; Purtha et al., 2008). After reaching secondary
lymphoid tissues, a new round of infection occurs, leading to entry into the circulation via the
efferent lymphatic system and thoracic duct. Viremia ensues and after spread to visceral organs
(e.g., kidney, and spleen), WNV crosses the blood-brain barrier and enters the central nervous
system (Diamond et al., 2003a; Wang et al., 2004; Xiao et al., 2001) through an incompletely
understood mechanism. Although WNV likely enters the central nervous system via a
hematogenous route (Diamond et al., 2003a; Johnson and Mims, 1968), perhaps as a result of
TNF-α or matrix metalloproteinase-9 induced changes in capillary permeability (Wang et al.,
2008a; Wang et al., 2004), other mechanisms of entry include retrograde axonal transport
through peripheral nerves (Samuel et al., 2007b), transport across the brain microvascular
endothelium (Verma et al., 2009), active replication in endothelial cells (Verma et al., 2009),
or a “Trojan horse” mechanism in which WNV is carried into the brain by infected
inflammatory cells (Burke and Monath, 2001; Dai et al., 2008; Wang et al., 2008b).

In animal models, WNV is first identified in the central nervous system about three to four
days after infection. Infectious West Nile virus is detected in multiple sites in the brain and
spinal cord. Patchy infection of neurons is observed in the cerebral cortex, hippocampus, basal
ganglia, cerebellum, brain stem, and anterior horn of the spinal cord (Diamond et al., 2003a;
Eldadah and Nathanson, 1967; Eldadah et al., 1967; Xiao et al., 2001). Neuronal infection is
associated with degeneration, a loss of cell architecture, and caspase-3 associated apoptosis
(Samuel et al., 2007a); this correlates with the development of microglial nodules that surround
infected neurons. Later in the course of infection a mononuclear cell infiltrate appears diffusely
throughout infected regions although it is not clear whether these inflammatory cells eradicate
infection or contribute to pathogenesis by destroying infected neurons and releasing potentially
toxic cytokines (Getts et al., 2008). Of note, Purkinje neurons in the cerebellum (Diamond et
al., 2003a; Xiao et al., 2001; Zhang et al., 2008) and motor neurons in the spinal cord are highly
vulnerable (Morrey et al., 2008a; Samuel et al., 2007b; Siddharthan et al., 2009). Indeed, the
more virulent North American strains of West Nile virus cause a polio-like syndrome in humans
that predominantly affects lower motor neuron function (Glass et al., 2002; Leis et al., 2003;
Leis et al., 2002). Infection of neurons causes vacuolization, a proliferation of rough
endoplasmic reticulum and Golgi-derived membranes, and apoptosis. The expression of WNV
proteins may directly induce apoptotic cell death of neurons (Samuel et al., 2007a; Shrestha et
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al., 2003), possibly due to activation of the unfolded protein response pathway (Medigeshi et
al., 2007): accumulation of West Nile virus capsid (Yang et al., 2002; Yang et al., 2008a) and
NS3 (Ramanathan et al., 2006) proteins cause apoptosis through activation of caspases 3, 8
and 9.

D. Immune Control
Although an immunocompromised status predisposes to more severe disease in humans, the
individual risk factors, beyond the aforementioned CCR5 and OAS1 genes, are not fully
characterized. The severity of WNV infection is increased in immunosuppressed patients
(Bode et al., 2006; Chan-Tack and Forrest, 2006; Kumar et al., 2004a; Kumar et al., 2004b;
Murray et al., 2006) suggesting an essential role for immune control mechanisms. The high
incidence of WNV neuroinvasive disease in patients on anti-T cell therapies (Kleinschmidt-
DeMasters et al., 2004) and in mice with CD4 or CD8 T cell deficiencies (Brien et al., 2007;
Brien et al., 2008; Purtha et al., 2007; Shrestha and Diamond, 2004; Sitati and Diamond,
2006; Wang et al., 2003b) indicate that the integrity of adaptive cellular immune responses is
essential for clearance of WNV. B cells also protect against disseminated infection as SCID,
RAG1 mice and B cell deficient mice uniformly succumb to WNV infection (Chambers et al.,
2008; Diamond et al., 2003a; Diamond et al., 2003b; Halevy et al., 1994). Humoral immunity
has been linked to peripheral clearance of WNV whereas T cells appear more critical for
clearance within the CNS. For example, in CD4 or CD8 T cell deficient mice, which exhibit
increased WNV encephalitis, serum viral loads and IgM levels were no different from wild-
type animals but T cell trafficking and/or function in the CNS was impaired (Sitati and
Diamond, 2006), indicating that survival is not solely a function of preventing CNS
dissemination but also of clearing it.

The past five years has provided new perspective as to how different components of the innate
immune response restrict WNV infection. Host cells recognize and respond to RNA virus
infection through endosomal the nucleic acid sensors, Toll-like receptor 3 (TLR-3) and 7
(TLR-7), and the cytoplasmic dsRNA sensors, retinoic acid-inducible gene I (RIG-I) and
melanoma-differentiation-associated gene 5 (MDA-5) (Colonna, 2007; Kawai and Akira,
2006). Binding of RNA to these pathogen recognition receptors (PRRs) results in downstream
activation of transcription factors, such as interferon regulatory factors 3 and 7 (IRF-3 and
IRF-7), and the expression of IFN and IFN-stimulated genes (ISG). Each of these PRRs
demonstrate specificity for different RNA virus families with RIG-I, MDA5, and TLR-3
essential for IFN responses in response to flavivirus infections (Kato et al., 2006). Cultured
fibroblasts deficient in RIG-I, MDA5, or IPS-1 demonstrate delayed induction of host
responses, decreased IRF-3 activation, and augmented WNV replication (Fredericksen and
Gale, 2006; Fredericksen et al., 2008; Fredericksen et al., 2004). In vivo, however, MDA5 may
be less essential for cellular recognition and host response as IFN production by MDA5−/−

myeloid dendritic cells remains largely intact after WNV infection (Gitlin et al., 2006).
Systemic IFN-α production in mice appears largely independent of the transcription factor,
IRF-3 (Bourne et al., 2007; Daffis et al., 2007) but is dependent on IRF-7 (Daffis et al.,
2008b). Individual cell types (myeloid, fibroblast, and neuronal) use IRF-3-depedent responses
to protect against WNV infection through IFN-dependent and independent pathways (Daffis
et al., 2007). In cells that generate robust IFN responses after WNV infection in the absence
of IRF-3, alternate sets of PRRs and transcriptional regulators are likely used, including
TLR-7/8 and IRF-7.

Recognition of WNV by TLR is mediated by TLR3, which likely binds to viral dsRNA, and
TLR7/8, which bind ssRNA, including uridine-rich RNA motifs. Activation of both TLR3 and
TLR7/8 in response to viral infection induces production of type I IFN (Alexopoulou et al.,
2001; Diebold et al., 2004). However, the signaling pathways that TLR3 and TLR7/8 utilize
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differ. TLR7/8 recruits the adaptor protein MyD88, which forms a complex with TRAF3,
TRAF6, IRAK1 and IRAK4. This complex recruits TAK1, a kinase that activates NF-κB, or
TBK1 and IKKε, kinases that activate IRF-3 and/or IRF-7. TLR3 recruits TRIF, which
stimulates the IRF-3/IRF-7-dependent induction of type I IFN genes via interactions with
TRAF3, TBK1 and IKKε.

Despite several in vitro studies showing that binding of TLR3 by dsRNA in vitro regulates
IFN and other cytokine responses, its role in protection against viral infection in vivo remains
less clear. Conflicting results have been observed during WNV infection in mice. Two studies
using same TLR3−/− mice reported somewhat opposing phenotypes: Wang and colleagues
showed a detrimental role of TLR3 as deficient mice had improved survival rates after WNV
infection. This was associated with a mildly increased WNV burden in peripheral tissues yet
a decreased pro-inflammatory cytokine response. The diminished inflammatory response
reduced blood-brain barrier permeability and direct entry of WNV into the brain (Wang et al.,
2004). A contrasting study showed a protective role with decreased survival of TLR3−/− mice
after WNV infection, mildly elevated viral titers in peripheral tissues, and early viral entry in
the CNS (Daffis et al., 2008a). At present, it remains unclear why the results are discordant
although the disparate route of inoculation and passage history of the virus could impact
cytokine responses. TLR3 appears to have an independent role in the CNS, potentially by
restricting WNV replication in neurons. TLR3−/− cortical neurons sustained enhanced WNV
viral replication, although type I IFN responses were normal. TLR3−/− microglia and astrocytes
showed reduced activation and production of proinflammatory cytokines (TNF-α, IL-6 and
IL-12 p40) after poly (I:C) challenge (Kim et al., 2008; Town et al., 2006). Thus, the exact
contribution of TLR3 for WNV protection requires further study but likely involves direct
effects in the CNS.

TLR7 was initially identified as a trigger of the IFN-α response after exposure to ssRNA from
influenza or other viruses (Hornung et al., 2008). TLR7 was also characterized as the primary
PRR responsible for systemic IFN production by plasmacytoid DC through a MyD88-
dependent pathway (Asselin-Paturel and Trinchieri, 2005). The contribution of TLR7 in
protecting from WNV infection in vivo was recently examined (Town et al., 2009). TLR7−/−

mice were more vulnerable to WNV infection and sustained increased viremia after infection.
These mice showed a defect of immune cell homing to WNV-infected tissues via a novel IL-23-
dependent mechanism. Interestingly, systemic levels of proinflammatory cytokines (IL-6,
TNF-α, and IL-12) and type I IFN were higher in TLR7−/− mice when compared to wild type
animals. This result suggests that abrogation of the TLR7 pathway has little systemic impact
on IFN production after WNV infection.

The complement system is a family of serum proteins and cell surface molecules that participate
in pathogen recognition and clearance. Complement contributes to host protection through
direct oposnization and/or cytolysis, chemotaxis, immune clearance, and modulation of B and
T cell functions (Carroll, 2004). Complement is required for protection from lethal WNV
infection in mice. WNV activates complement in vivo, and mice lacking in the central
complement component C3 or complement receptors (CR)1 and 2 showed enhanced lethality
after WNV infection (Mehlhop and Diamond, 2006; Mehlhop et al., 2005). All three
complement activation pathways coordinate control against WNV, as mice deficient in
molecules of the alternative, classical, or lectin pathway exhibit increased mortality.
Interestingly, the activation pathways modulated WNV infection through distinct mechanisms.
Alternative pathway deficient mice demonstrated normal B cell function but impaired CD8+

T cell responses, whereas classical and lectin pathway deficient mice had defects both in WNV-
specific antibody production and T cell responsiveness (Mehlhop and Diamond, 2006).
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Complement also augments the efficacy of IgG antibodies against WNV. Whereas initial
studies with anti-WNV IgM antibodies suggested that complement could efficiently enhance
WNV infection in macrophages in vitro (Cardosa et al., 1986; Cardosa et al., 1983), more recent
investigations indicate that the complement component C1q augments the potency of
neutralizing antibody against WNV in an IgG subclass-specific manner (E. Mehlhop, S.
Nelson, T. Pierson, and M. Diamond, manuscript submitted), analogous to that observed for
other viruses including measles (Iankov et al., 2006), influenza (Feng et al., 2002;
Mozdzanowska et al., 2006), vesicular stomatitis (Beebe and Cooper, 1981), and human
immunodeficiency (Aasa-Chapman et al., 2005; Spruth et al., 1999) viruses. C1q also restricts
antibody-dependent enhancement of WNV infection in vitro and in vivo (Mehlhop et al.,
2007).

While few studies have directly addressed the function of cellular innate immunity in WNV
infection, macrophages and dendritic cells likely inhibit WNV though direct viral clearance,
enhanced antigen presentation, and cytokine and chemokine secretion. Consistent with this,
depletion of myeloid cells systemically or in the draining lymph nodes enhanced lethality in
mice after WNV infection (Ben-Nathan et al., 1996; Purtha et al., 2008). Macrophages basally
express key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and thus,
restrict WNV infection by inducing type I IFN (Daffis et al., 2007) and other inhibitory
cytokines. Macrophages may also control flaviviruses through the production of nitric oxide
(NO) intermediates (Kreil and Eibl, 1996; Lin et al., 1997), although the role of NO in WNV
infection has not been established.

γδ T cells also function in early immune responses and directly limit WNV infection. As they
lack MHC restriction, γδ T cells can react with viral antigens in the absence of conventional
antigen processing (Steele et al., 2000). γδ T cells expand following WNV infection (Welte et
al., 2008), and increased viral burden and mortality and delayed priming of adaptive immune
responses were observed in mice deficient in γδ T cells (Wang et al., 2006; Wang et al.,
2003a). Bone marrow chimera reconstitution experiments demonstrated that γδ T cells require
IFN-γ to limit WNV infection (Shrestha et al., 2006b). Natural killer (NK) cells also have the
potential to control WNV infection through recognition and elimination of virus-infected cells.
NK cell activity was transiently activated and then suppressed following flavivirus infection
in mice (Shresta et al., 2004; Vargin and Semenov, 1986). As WNV infection increases surface
expression of class I MHC molecules by enhancing the transport activity of TAP and by NF-
κB-dependent transcriptional activation of MHC class I genes (Douglas et al., 1994; King and
Kesson, 1988; Liu et al., 1988), natural killing may be inhibited (Diamond, 2003; King and
Kesson, 2003; King et al., 1989). Notably, antibody depletion of NK cells in mice did not alter
morbidity or mortality after WNV infection (Chung et al., 2007; Shrestha et al., 2006a).

II. Candidate anti-WNV Therapeutics
At present, no specific therapy has been approved for use in humans with WNV infection as
current treatment is supportive. Tissue culture and animal model studies have applied multiple
strategies for the generation of novel therapies against WNV, and possibly other flaviviruses.
Nonetheless, the development of therapeutics that mitigate or abort disease is challenging as
patients with the most severe disease often have underlying immune deficits and present to
clinical attention relatively late in their course (Granwehr et al., 2004; Jackson, 2004). Among
the additional impediments will be developing therapeutics that efficiently cross into the central
nervous system and clear virus from infected neurons. Finally, once a candidate agent is
identified, regulatory hurdles will be encountered in the design and implementation of multi-
center trials given the sporadic temporal and spatial occurrence of WNV infections (Jester et
al., 2006).
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A. Ribavirin and Mycophenolic acid
Ribavirin is a broad-spectrum antiviral agent and has been used clinically to treat respiratory
syncytial (Hall et al., 1983), hepatitis C (Davis et al., 1998), Lassa (McCormick et al., 1986),
Hantaan (Huggins et al., 1991) and La Crosse (McJunkin et al., 1997) viruses. It acts as a
guanosine analogue and competitively inhibits inosine monophosphate dehydrogenase (IMP),
resulting in depleted intracellular guanosine pools (Leyssen et al., 2005). This may interfere
with the guanylylation step of RNA capping, inhibit viral polymerases or compromise the
integrity of the viral genome by being incorporated directly into the nascent RNA strand and
serving as a template for both cytidine and uridine (Crotty et al., 2000; Day et al., 2005).
Ribavirin has inhibitory activity against WNV infection in cell culture (Anderson and Rahal,
2002; Day et al., 2005; Jordan et al., 2000) at high doses (EC50 of 60 to 100 µM). Limited
animal studies have been performed with less than promising results. Treatment of WNV-
infected hamsters with ribavirin increased mortality (Morrey et al., 2004). Moreover, during a
WNV outbreak in Israel in 2000, 37 patients received ribavirin and a high mortality rate (41%)
was observed in this group (Chowers et al., 2001).

Mycophenolic acid (MPA) is a non-nucleoside inhibitor of IMP dehydrogenase that is used
clinically to prevent rejection of transplanted organs. The immunosuppressive properties of
MPA are attributed to its anti-proliferative effect on lymphocytes in vitro (Allison and Eugui,
1993; Nagy et al., 1993). MPA inhibits to varying degrees the replication of a number of DNA,
RNA, and retroviruses in vitro including arenaviruses, Sindbis virus, reovirus, parainfluenza
virus, coxsackie virus, Epstein-Barr virus, hepatitis B virus, and HIV (Gong et al., 1999;
Ichimura and Levy, 1995; Neyts and De Clercq, 1998). Four studies have demonstrated that
MPA inhibits flavivirus infection including WNV in cells by limiting viral RNA replication
(Diamond et al., 2002; Morrey et al., 2002; Ng et al., 2007; Takhampunya et al., 2006).
Although MPA blocked WNV infection efficiently in cell culture, in vivo its inhibitory
properties were overshadowed by its immunosuppressive effects. Increased mortality after
WNV infection was observed in mice treated with several different doses of MPA (B. Geiss
and M. Diamond, unpublished results). Thus, the preclinical data suggests that inhibitors of
guanosine biosynthesis are not therapeutic candidates against WNV infection, likely because
of their effects on immune system function.

B. Interferon-α
Type I IFNs (IFN-α and β) comprise an important innate immune system control against viral
infections. IFNs induce an antiviral state within cells through the induction of antiviral proteins
and by modulating adaptive immune responses (Samuel, 1991). Pretreatment of cells in vitro
with type I IFN potently inhibits flaviviruses including WNV (Anderson and Rahal, 2002;
Best et al., 2005; Crance et al., 2003; Diamond and Harris, 2001; Diamond et al., 2000;
Fredericksen et al., 2004; Samuel et al., 2006). However, the inhibitory effect of IFN is
markedly attenuated after viral replication has begun (Diamond et al., 2000; Lin et al., 2004)
as flavivirus non-structural proteins antagonize type I IFN effects by preventing JAK1 and
Tyk2 phosphorylation, STAT1 and STAT2 signaling, and IFN-β gene transcription (Ashour
et al., 2009; Best et al., 2005; Evans and Seeger, 2007; Jones et al., 2005; Lin et al., 2008; Lin
et al., 2004; Liu et al., 2004; Liu et al., 2006; Liu et al., 2005; Munoz-Jordan et al., 2005;
Munoz-Jordan et al., 2003). Nonetheless, IFN may still have therapeutic potential. Mice that
were deficient in IFN-α and β receptors were acutely vulnerable to WNV infection with 100%
mortality and a mean time to death of ~4 days after subcutaneous inoculation with 1 PFU of
virus (Samuel and Diamond, 2005). Pretreatment of rodents with IFN-α inhibited St. Louis
encephalitis virus infection and resulted in decreased WNV viral loads and mortality (Brooks
and Phillpotts, 1999; Morrey et al., 2004). Treatment with IFN-α reduced complications in
human St. Louis encephalitis virus cases and has been used in an uncontrolled manner to treat
small numbers of human cases of WNV encephalitis (Kalil et al., 2005; Lewis and Amsden,
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2007; Rahal et al., 2004; Sayao et al., 2004). Nonetheless, in Vietnam, a double-blinded,
randomized placebo controlled clinical trial was performed on 1112 children with suspected
or documented Japanese encephalitis virus infection; treatment with IFN α2a failed to improve
outcome (Solomon et al., 2003).

C. Antibodies
Although antibody has been utilized as a therapeutic against several viral infections (Sawyer,
2000; Zeitlin et al., 1999), with the exception of its prophylactic use against tick-borne
encephalitis virus, it has not been used extensively against flavivirus infections in humans.
Most neutralizing antibodies recognize the structural E protein, although a subset also have
been described against another virion-associated protein, the prM or membrane protein
(Colombage et al., 1998; Falconar, 1999; Pincus et al., 1992; Vazquez et al., 2002). Several
groups also have generated non-neutralizing, yet protective mAbs against NS1 (Chung et al.,
2006; Chung et al., 2007; Despres et al., 1991; Falgout et al., 1990; Henchal et al., 1988; Putnak
and Schlesinger, 1990; Schlesinger et al., 1986; Schlesinger et al., 1990; Schlesinger et al.,
1987; Schlesinger and Chapman, 1995), a protein that is absent from the virion. Thus,
protection against flavivirus infections in vivo does not always correlate with neutralizing
activity in vitro (Brandriss et al., 1986; Roehrig et al., 1983; Schlesinger et al., 1985). The
ability to cure rodents of flavivirus infection with immune serum or monoclonal antibodies
depends on the dosage and time of administration (Camenga et al., 1974; Chiba et al., 1999;
Kimura-Kuroda and Yasui, 1988; Oliphant et al., 2005; Phillpotts et al., 1987; Roehrig et al.,
2001), and polyclonal antibodies that prevent infection against one flavivirus do not provide
durable cross-protection against heterologous flaviviruses (Broom et al., 2000; Roehrig et al.,
2001).

Although these studies suggest that antibodies could have a potential therapeutic role, there
are at least theoretical concerns that treatment could exacerbate disease. Sub-neutralizing
concentrations of antibody enhance flavivirus replication in myeloid cells in vitro (Cardosa et
al., 1986; Cardosa et al., 1983; Gollins and Porterfield, 1984; Gollins and Porterfield, 1985;
Peiris and Porterfield, 1979; Peiris et al., 1981; Peiris et al., 1982; Pierson et al., 2007) and in
vivo (Goncalvez et al., 2007; Mehlhop et al., 2007), and thus could complicate the antibody
therapy. This phenomenon of antibody-dependent enhancement of infection (ADE) may cause
the pathologic cytokine cascade that occurs during secondary dengue virus infection (Halstead,
1989; Halstead et al., 1980; Kurane and Ennis, 1992; Morens, 1994); despite its extensive
characterization in vitro, the significance of ADE in vivo with WNV or other flaviviruses
remains uncertain. Apart from or perhaps related to ADE, an “early-death” phenomenon
(Morens, 1994) has been reported that could also limit the utility of antibody therapy.
According to this model, animals that have pre-existing humoral immunity but do not respond
well to viral challenge may succumb to infection more rapidly than animals without pre-
existing immunity. Although it has been described after passive acquisition of antibodies
against yellow fever and Langat encephalitis viruses (Barrett and Gould, 1986; Gould et al.,
1987; Gould and Buckley, 1989; Webb et al., 1968), this phenomenon was not observed after
transfer of monoclonal or polyclonal antibodies against Japanese (Kimura-Kuroda and Yasui,
1988) or tick-borne (Kreil and Eibl, 1997) encephalitis viruses.

Passive administration of anti-WNV antibodies is both protective and therapeutic and does not
cause adverse effects related to immune enhancement. Transfer of immune serum prior to
WNV infection protected wild type, B cell-deficient (µMT), and T and B-cell deficient
(RAG1) mice from infection (Diamond et al., 2003a) and no increased mortality was observed
even when sub-neutralizing concentrations of antibodies were used. Similarly, passive
administration of immune serum (Tesh et al., 2002) or antiserum that recognized WNV E
protein (Wang et al., 2001) protected hamsters and mice against lethal WNV infection. In
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therapeutic trials, immune human γ-globulin protected mice against WNV-induced mortality
(Ben-Nathan et al., 2009; Ben-Nathan et al., 2003; Engle and Diamond, 2003; Julander et al.,
2005). Therapeutic intervention even five days after infection reduced mortality; this time point
is significant because WNV spreads to the brain and spinal by day 4. Thus, passive transfer of
immune antibody improved clinical outcome even after WNV had disseminated into the CNS.

Small numbers of human patients have received immunotherapy against WNV infection.
Prophylaxis and therapy with neutralizing anti-WNV antibodies may be a possible intervention
in the elderly and immunocompromised. Case reports (Haley et al., 2003; Hamdan et al.,
2002; Saquib et al., 2008; Shimoni et al., 2001) have documented improvement in humans
with neuroinvasive WNV infection after receiving immune γ-globulin from Israeli donors.
Given the endemic nature of WNV in the Middle East, pooled human immunoglobulin from
Israeli donors was shown to contain significant neutralizing titers of antibodies against WNV
(Ben-Nathan et al., 2009; Ben-Nathan et al., 2003; Engle and Diamond, 2003). Although
promising, γ-globulin immunotherapy against WNV infection in humans has limitations: (a)
batch variability may affect the quantitative titer, functional activity, and therapeutic efficacy
of specific antibody preparations; (b) it is purified from human blood plasma, and has an
inherent risk of transmitting known and unknown infectious agents; and (c) it requires a large
volume of administration, which can increase adverse events in patients with cardiac or renal
co-morbidities.

To overcome these limitations, humanized or human monoclonal antibodies or antibody
fragments with therapeutic activity against WNV infection (Gould et al., 2005; Oliphant et al.,
2005; Throsby et al., 2006; Vogt et al., 2009) have been developed by several groups. These
human or humanized antibody fragments have high neutralizing activity in vitro and provide
excellent protection in vivo in mice. If mAbs are to be an effective therapy for WNV
encephalitis they should function after the onset of symptoms and ideally, after infection in the
central nervous system. When mouse or humanized mAbs were given as a single dose five or
six days after infection 90% of mice or hamsters were protected (Morrey et al., 2006; Morrey
et al., 2007; Oliphant et al., 2005). Acute flaccid paralysis in hamsters also was blocked by
treatment with one neutralizing mAb, E16 several days after infection (Samuel et al., 2007b).
MacroGenics has initiated a phase I/II randomized, double-blinded clinical trial to evaluate
safety and efficacy of the E16 antibody (also termed MGAWN1) against severe WNV infection
(http://clinicaltrials.gov/ct2/show/NCT00515385). Thus, neutralizing antibody therapeutics
show promise as they directly inhibit transneuronal spread of WNV infection and prevent the
development of paralysis in vivo. Future use of a combination of monoclonal antibodies that
bind distinct epitopes and neutralize by independent mechanisms could diminish the potential
risk of selecting escape variants in vivo (Zhang et al., 2009a), especially in
immunocompromised individuals who generate high-grade viremia and tissue viral burden.

D. Nucleic Acids
(1) RNA Interference—RNA interference (RNAi) is a cellular process that specifically
degrades RNA within the cytoplasm of cells in a sequence-specific manner (Meister et al.,
2004). RNAi occurs in plants, nematodes, parasites, insects, and mammalian cells and is
believed to function as a regulator of cellular gene expression and possibly as an innate defense
against RNA viruses (Voinnet, 2005; Waterhouse et al., 2001). RNAi uses double stranded
RNA (dsRNA) to target and degrade sequence-specific single-stranded RNA. The cytoplasmic
ribonuclease DICER recognizes and cleaves long dsRNA molecules into 21 to 30 base pair
small interfering RNA (siRNA) molecules; these associate with the RNA Induced Silencing
Complex (RISC) to target and degrade complementary single-stranded RNA molecules
(Sontheimer, 2005).
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RNAi is now widely used to transiently disrupt various gene products to study their function
in cells. Many mammalian viruses appear susceptible to treatment with exogenous siRNA.
Cells that express virus-specific siRNA are resistant to infection by WNV (Anthony et al.,
2009; Bai et al., 2005; Geiss et al., 2005; McCown et al., 2003; Ong et al., 2008; Yang et al.,
2008b) in vitro. The sequence specific activity of siRNA against viruses has led to great interest
in its potential as a new class of antiviral therapy. Two studies have shown that administration
of siRNA to mice reduces WNV load and affords partial protection against lethal challenge
(Bai et al., 2005; Kumar et al., 2006). Studies were also performed to determine whether WNV-
specific siRNA could act efficiently as a therapeutic by administering it after viral challenge.
Although siRNA could protect against lethal infection when given within 6 hours of infection
(Kumar et al., 2006), no significant difference in survival was observed when siRNA was
delivered 24 hours after infection (Bai et al., 2005). In vitro studies may explain some of the
attenuated therapeutic effect of siRNA as pre-treatment but not post-treatment of cells with
siRNA greatly reduced WNV replication and infection (Geiss et al., 2005). Because
flaviviruses replicate in a specialized membranous compartment (Welsch et al., 2009), its
genome may not be exposed to the cytoplasmic RNAi machinery. RNAi based therapeutics
against WNV may await the development of enhanced delivery systems that allow siRNA to
efficiently cross intracellular membranes and inhibit actively replicating viruses.

(2) Antisense Technology—Antisense oligomers have been used to modulate gene
expression of pathogenic viruses, and several are in clinical development or trials (Kinney et
al., 2005; Ma et al., 2000). This class of compounds inhibits viruses by binding to RNA in a
sequence specific manner, effectively blocking access to a particular region of the viral
genome. The development of phosphorodiamidate morpholino oligomers (PMO) has
overcome prior limitations by enhancing water solubility and nuclease resistance (Summerton
et al., 1997). The conjugation of arginine-rich peptides to PMOs has facilitated cellular uptake
and inhibitory activity in cell culture systems (Neuman et al., 2004). Sequence-specific
antisense oligomers have inhibitory activity against several flaviviruses, including WNV in
cell culture (Deas et al., 2005; Kinney et al., 2005; Raviprakash et al., 1995; Stein and Shi,
2008). Low micromolar (5 to 20 µM) concentrations of arginine rich peptide-conjugated PMOs
that targeted the 5’ untranslated or 3’ cyclization sequences inhibited WNV by 5 to 6 log10
PFU/ml (Deas et al., 2005; Kinney et al., 2005). However, effective suppression of viral
replication in vitro required PMO to be present before or soon after infection, as administration
at either 2 or 4 days after infection had little or no antiviral effect. PMO directed against the
5’ and 3’ conserved sequences partially protected mice from WNV disease without causing
appreciable toxicity, although selection of resistant mutants was observed (Deas et al., 2007).
Some clinical improvement was observed even when PPO was administered to mice at day 5
after infection although statistically significant differences were not achieved. AVI Biopharma
has initiated a phase I/II human clinical study for treatment of WNV infection
(http://www.clinicaltrials.gov/ct/show/NCT00091845) with AVI-4020. This trial is a
randomized, double-blinded study that is focused on determining safety, tolerability,
pharmacokinetics, and potential efficacy.

E. Peptides
The hemagglutinin of influenza virus is a prototypical class I viral envelope fusion protein. In
response to receptor engagement and acid pH, the α helices of the viral hemagglutinin rearrange
and expose an N-terminal fusion peptide that facilitates fusion of two lipid membranes and
viral entry (Carr and Kim, 1993). Importantly, peptide mimics of the class I fusion proteins of
HIV (Sodroski, 1999), Sendai (Rapaport et al., 1995), Newcastle (Young et al., 1999), and
herpes (Okazaki and Kida, 2004) viruses efficiently inhibit entry and infection. Indeed,
Fuzeon™ is a fusion inhibitor approved for clinical use in HIV-infected patients. The flavivirus
E proteins are structurally distinct from the class I fusion proteins, and together with the
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envelope proteins of alphaviruses comprise a second class of viral fusion proteins. Class II
fusion proteins facilitate viral entry and nucleocapsid release after undergoing an analogous
series of pH-dependent conformational changes (Bressanelli et al., 2004; Kuhn et al., 2002;
Lescar et al., 2001; Modis et al., 2004). Using an algorithm that predicted peptide inhibitors
of class I fusion proteins, one group identified inhibitory peptides in WNV and dengue virus
E protein that correspond to the proposed fusion and stem anchor domains. Low micromolar
concentrations of these peptides inhibited WNV and dengue virus infection in cell culture in
a sequence-specific manner (Hrobowski et al., 2005). As an alternative approach, another group
identified two E protein peptides that could inhibit WNV infection with EC50 values as low
as ~3 µM. Mice challenged with WNV that had been administered these inhibitory peptides
showed reduced viremia and lethality (Bai et al., 2006).

F. Imino sugars
Flavivirus assembly takes place within the endoplasmic reticulum (ER). The structural
glycoproteins prM and E localize to the luminal side of the ER and encapsidate as an immature
particle with prM and E in a heterodimeric complex (Chambers et al., 1990; Zhang et al.,
2003b). In flavivirus-infected mammalian cells, a 14-residue oligosaccharide
(Glc)3(Man)9(GlcNAc)2 is added in the ER to specific asparagine residues specific on the prM
and E proteins. This high mannose carbohydrate is sequentially modified in the ER and Golgi
by resident glucosidases to generate N-linked glycans that lack the terminal α(1,2) and α(1,3)
glucose residues (Hebell et al., 1991). Trimming of N-linked carbohydrates in the ER is
required for proper assembly or secretion of flaviviruses (Courageot et al., 2000; Wu et al.,
2002). Imino sugar derivatives, such as deoxynorjirimycin or castanospermine, inhibit
endoplasmic reticulum α-glucosidases I and II. This prevents processing of high mannose N-
linked glycans from nascent glycoproteins, a step that is required for interaction with the ER
chaperones, calnexin and calreticulin. Several flaviviruses are strongly inhibited by α-
glucosidase inhibitors in vitro and in vivo (Chang et al., 2009; Courageot et al., 2000; Gu et
al., 2007; Schul et al., 2007; Whitby et al., 2005; Wu et al., 2002). More recently, a family of
imino sugar derivatives was synthesized with superior antiviral activity (EC50 of ~0.1 to 1
mM) and low toxicity (selectivity index ~ 100) against several flaviviruses, including WNV
(Chang et al., 2009). One possible advantage of α-glucosidase inhibitors is that they target a
host enzyme that is an essential step in virus secretion rather than the virus directly, and are
thus, less likely to select for resistant variants.

G. High-throughput Screens with Small Molecules
Over the last five years, high-throughput screens with small molecule libraries have been
performed by several groups and identified classes of “druggable” compounds that inhibit
WNV. Inhibitors have been identified that attenuate WNV translation, protease activity, and
replication (Borowski et al., 2002; Goodell et al., 2006; Gu et al., 2006; Johnston et al.,
2007; Nouiery et al., 2007; Puig-Basagoiti et al., 2006). Gu et al. (Gu et al., 2006) used a cell-
based WNV subgenomic replicon to screen 35,000 compounds and identify
pyrozolopyrimidine compounds with anti-WNV activity. Puig-Basagoiti et al. (Puig-Basagoiti
et al., 2006) used a full length WNV that expressed a luciferase reporter gene to identify a
triaryl pyrazoline compound that inhibits flavivirus RNA replication with an EC50 of ~15 µM.
Noueiry et al. (Nouiery et al., 2007) evaluated a chemical library of 80,000 compounds for
their ability to inhibit reporter gene expression from a WNV replicon; they identified inhibitory
secondary sulfonamides and cyclopenta pyridines with EC50 values of ~3 µM. Johnston et al.
(Johnston et al., 2007) screened a 65,000 compound library for the ability to inhibit NS2B-
NS3 protease; they identified a common 5-amino-1H-pyrazoyl-3-yl scaffold as non-
competitive inhibitors of WNV protease activity. Analogously, Mueller et al. (Mueller et al.,
2008) utilized a high-throughput assay to screen 32,000 compounds for inhibition of the WNV
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protease; lead compounds in the 8-hydroxyquinolone family bound in the substrate cleft and
inhibited the protease.

Fewer studies have been performed with small molecules in animals to assess their therapeutic
potential. One oral pyrazine derivative with broad-spectrum antiviral activity, T-705 (6-
fluoro-3-hydroxy-2-pyrazinecarboxamide) was protective in rodents when administered twice
daily beginning two days after WNV infection (Morrey et al., 2008b). However, administration
of T-705 at days 3 or 4 after infection showed little apparent efficacy. Another preliminary
study showed that oral active hexose could protect against lethal WNV infection in young and
old mice by augmenting early antibody and γδ T cell responses (Wang et al., 2009). Although
no post-exposure therapeutic trials were performed, they raise the possibility that dietary
supplementation with oral active forms of hexose could improve antiviral immune responses
and decrease the risk of severe neuroinvasive WNV disease.

III. Conclusions
Given the lack of existing therapies and its continued global emergence, the development of
antiviral agents against WNV is essential. At present, several candidate therapies that act
through distinct mechanisms are moving through various stages of pre-clinical development.
Based on the epidemiology and pathogenesis of severe WNV infection effective antiviral
agents against WNV must have minimal detrimental effects on immune system function. Even
with the identification of new classes of anti-WNV agents, a major hurdle remains as to whether
they can be administered in a timely manner before extensive and irreversible neuronal injury
occurs. Technical challenges will include creating inhibitors that efficiently cross the blood-
brain-barrier to allow for control of WNV replication within neurons. Regulatory hurdles will
be encountered in implementing multi-center trials. It may be difficult to define referral sites
that can recruit adequate numbers of patients so that statistically meaningful data can be
acquired and analyzed. Unlike other diseases with high incidence, it may take years to complete
a WNV clinical trial. With the introduction of several classes of candidate antiviral agents,
there may be competition for patient cohorts. Because of this, extensive pre-clinical
experiments in small animals, horses, and non-human primates may be useful to define whether
a candidate therapeutic against WNV reaches human clinical trials.

Ongoing pathogenesis and infection studies undoubtedly will inform novel drug design
strategies that target individual viral proteins (Dong et al., 2008). Experiments in animals
should continue to define the essential components of the protective immune response, and the
immunologic risk factors that predispose to severe neurological disease. Ultimately, a
combination drug strategy that blocks viral replication, boosts protective immune responses,
minimizes neuronal injury, and limits the development of resistant variants will likely be more
effective than single agents.
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