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Abstract
Background: Chromatin immunoprecipitation on tiling arrays (ChIP-chip) has been employed to
examine features such as protein binding and histone modifications on a genome-wide scale in a
variety of cell types. Array data from the latter studies typically have a high proportion of enriched
probes whose signals vary considerably (due to heterogeneity in the cell population), and this
makes their normalization and downstream analysis difficult.

Results: Here we present strategies for analyzing such experiments, focusing our discussion on
the analysis of Bromodeoxyruridine (BrdU) immunoprecipitation on tiling array (BrdU-IP-chip)
datasets. BrdU-IP-chip experiments map large, recently replicated genomic regions and have similar
characteristics to histone modification/location data. To prepare such data for downstream analysis
we employ a dynamic programming algorithm that identifies a set of putative unenriched probes,
which we use for both within-array and between-array normalization. We also introduce a second
dynamic programming algorithm that incorporates a priori knowledge to identify and quantify
positive signals in these datasets.

Conclusion: Highly enriched IP-chip datasets are often difficult to analyze with traditional array
normalization and analysis strategies. Here we present and test a set of analytical tools for their
normalization and quantification that allows for accurate identification and analysis of enriched
regions.

Background
Chromatin immunoprecipitation on tiling array (ChIP-
chip) studies attempt to identify genomic features such as
protein binding [1,2] or histone modification/occupancy
[3,4]. In the former, the regions of interest are generally
small, resulting in a low proportion of enriched probes
and the data can be considered to come from one of two
distributions, enriched or non-enriched. In contrast, the
regions analyzed in the latter studies are generally large

and can have multiple levels of enrichment within and
between them, making their analysis more difficult. Bro-
modeoxyuridine immunoprecipitation on tiling array
(BrdU-IP-chip) datasets, which map recently replicated
regions of the genome, have characteristics that are similar
to histone modification/occupancy experiments. While
computational tools have been developed to address the
analytical issues associated with mRNA-chip and protein
binding ChIP-chip studies, the highly enriched IP-chip
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datasets described above pose unique problems requiring
new investigative strategies. In a recent study we used
BrdU-IP-chip to investigate the effects of chromatin mod-
ifications on replication timing/efficiency in S. cerevisiae
cells [5]. We have developed a new set of computational
tools for the normalization and analysis of these and sim-
ilar experiments and we present them here.

5-Bromo-2'-deoxyuridine (BrdU) is a synthetic thymidine
analog that pairs with deoxyadenosine and, when availa-
ble to the cell, is incorporated into replicating DNA at
positions normally occupied by deoxythymidine. After
genomic DNA is extracted from a cell culture, regions that
have been replicated in the presence of the molecule can
be extracted by centrifugation or with BrdU-specific anti-
bodies. In [6,7] BrdU-incorporated DNA was separated by
isopycnic centrifugation and run on Affymetrix tiling
arrays to analyze human cell replication profiles. In [8]
BrdU-IP DNA samples from both early and late S-phase
were fluorescently labeled and co-hybridized on two-
color arrays to analyze the replication timing dynamics of
the Drosophila genome. Here we concentrate specifically
on the BrdU-IP-chip assay, which involves the labeling
and co-hybridization of BrdU-IP and genomic DNA on
two-color tiling arrays. In [9,10] this procedure was
employed to study the co-localization of replication forks
with various DNA binding factors. In [11] the authors
used BrdU-IP-chip to investigate differences in replication
fork progression in response to intra-S checkpoint activa-
tion in S. cerevisiae. More recently, this technique has been
employed in a comparative genome-wide analysis of rep-
lication activity throughout various stages of embryonic
stem cell differentiation [12].

Analyses of BrdU-IP-chip experiments aim to distinguish
true biological signals (DNA replication activity) from
array noise and to examine those signals for magnitude
and associated genomic features. Microarray datasets
(specifically from two-color platforms) typically contain
errors resulting from sample handling, preferential ampli-
fication and labeling bias, making this task difficult. In
attempts to correct for this, several ChIP-chip studies have
incorporated mock controls into their experimental
design [3,13]. Under this protocol, for each experiment a
mock sample (DNA acquired with a non-specific anti-
body or no antibody at all) is hybridized against the same
total DNA as the experimental sample. Following array
quantification, true positive signals are identified as those
that are significantly higher in the experimental data than
the mock data. Recently, it has been shown that without
these controls the false positive rate can be high [3].
Unfortunately, the use of these controls significantly
increases the cost of each experiment and furthermore, the
strategy fails to address issues pertinent to studies aimed

at comparing the magnitude of signals across different
experimental conditions.

Computational alternatives to the use of mock controls
have been developed to work with two-color array data.
These typically involve a within-array normalization step
aimed at eliminating intensity bias (where M = log2(IP/
Total) values show dependence on their corresponding A
= (log2(IP) + log2(Total))/2 values) and can be followed
by a between-array normalization step to remove location
and scale variation across multiple experiments [14-17].
Simple loess normalization is usually used in mRNA-chip
studies for within-array normalization, based on the
assumption that the M-values should follow a symmetric
distribution [14,15,17]. Briefly, probes are plotted in the
MA plane and a loess curve is fitted to the data. To remove
the intensity bias, the resultant curve is then subtracted
from the probe M-values.

While mRNA-chip M-values typically follow a symmetric
distribution, array studies involving chromatin immuno-
precipitation are often associated with asymmetric empir-
ical M-distributions [18]. To remove the intensity bias in
ChIP-chip data Peng et al. [18] proposed a two-step proc-
ess in which an initial data transformation is performed
under the assumption that chromosomally neighboring
probes should have minimal difference in their M-values
(with the exception of probes bordering bound and
unbound regions). Probes are first plotted in the δ (M) vs.
δ (A) plane, where δ (M) and δ (A) values are the differ-
ences between the M- and A-values of neighboring probes,
respectively. Under their assumption, when plotted in this
plane probe data should have a slope equal to zero. With
this in mind, the line of best fit to the probes in this plane
is taken as the x-axis for a modified MA plane into which
the probes are transformed; we refer to this line as the
rotation line. Following this, a modified loess normaliza-
tion step is performed where the loess curve is fitted to
data points within two standard deviations of the median.

If comparisons are to be made across experiments after
within-array normalization, between-array normalization
is typically applied to remove differences between the
empirical M-distributions of the arrays not attributable to
true biological variation. For ChIP-chip data, Yang et al.
[14] proposed scale normalizing by a value proportional
to the median absolute deviation (MAD). Others have
proposed quantile normalization [15,16], which forces
the M-values of all experiments to follow the same empir-
ical distribution.

Here we demonstrate that current methods for normaliz-
ing ChIP-chip datasets may be unsuitable for BrdU-IP-
chip experiments, and we describe a novel algorithm for
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within-array normalization that is robust to the nuances
of protein binding and histone modification/occupancy
ChIP-chip and BrdU-IP-chip datasets. For each experi-
ment, the algorithm identifies a subset of putative back-
ground probes and uses it to transform the data onto a
plane where the intensity bias of the dataset is low. We
then employ these subsets in between-array normaliza-
tion and peak identification strategies to prepare the data
for downstream analysis. Finally, we present a dynamic
programming algorithm that first identifies the optimal
alignment of enriched regions across experiments and
then assigns these regions to the known and/or predicted
origins from which they most likely emanate. This results
in more accurate comparisons across experiments and
also allows a precise analysis of the chromosomal features
surrounding each interesting region.

We illustrate the strategies proposed here on four replicate
wild-type (WT) and four replicate mutant S. cerevisiae
BrdU-IP-chip datasets described in greater detail in [5].
The mutants are rpd3Δ cells (Rpd3 is a histone deacety-
lase) that were shown to have earlier replication initiation
(replication fork formation) at a subset of replication ori-
gins [19]. All datasets were produced when DNA was har-
vested from cells one hour after release from α-factor (a

mating pheromone that arrests cells at the G1-S transi-
tion) into hydroxyurea (HU, a chemical that depletes
deoxynucleotides and thereby inhibits replication early in
S-phase) and BrdU. The well-studied replication land-
scape of WT S. cerevisiae cells in HU and the subset of ori-
gins whose altered replication activity in rpd3Δ cells is
known allows us to test the signal identification and
quantification capabilities of our methods in the context
of cross-experiment analysis.

Results and Discussion
Within-Array Normalization
To remove the intensity bias present in the BrdU-IP-chip
data (Figure 1A) we first attempted simple loess normali-
zation with default parameter settings. Figures 1A and 1B
show the result of this normalization on the "cleanest" (as
measured by autocorrelation of probe M-values along the
genome; cf. [20]) WT dataset. Under the assumption that
in the presence of HU earlier and more-efficient origins
fire in a higher percentage of cells than do later less-effi-
cient origins, we expect that the amount of IP DNA, and
thus M-values, associated with active origins will have
larger magnitudes than those associated with less active
origins. The green points on the MA plots signify probes
within ARS1 (an origin that fires early and efficiently in

Testing Loess NormalizationFigure 1
Testing Loess Normalization. Illustration of loess normalization for BrdU-IP-chip data. (A) The density of all WT probes 
on the MA plane (red) before normalization (probes within ARS1 are denoted with green dots). During loess normalization a 
loess curve is fitted to the probes in this plane. (B) Probes on the MA plane after the loess curve has been subtracted from 
their M-values. Note that M-values of ARS1 probes have been pulled towards 0.
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HU [21]) and these can be used as a measure of the nor-
malization procedure's performance. Due to the high per-
centage of BrdU-enriched probes the loess curve is pulled
away from the background probe set (non-BrdU-enriched
probes) during fitting. As a result, when these curves are
used for normalization they artificially lower the M-values
of some significantly BrdU-enriched probes (e.g. probes
within ARS1).

Next we applied the two-step within-array normalization
scheme for ChIP-chip data proposed in [18] to BrdU-IP-
chip data, again using default parameter settings. Figures
2A and 2B show the probes of the "cleanest" WT and

rpd3Δ datasets, respectively, plotted in the δ (M) vs. δ (A)
plane. The rotation lines identified in this plane do not
follow the slope of the background distribution in the MA
plane. After probes have been transformed using these
lines, a residual intensity bias remains that seems to be
more prominent in the rpd3Δ data (Figures 2C &2D).
Unfortunately this residual bias appears significant
enough to affect the modified loess step, resulting in a
normalized probe set with characteristics similar to
probes after simple loess normalization (a sloping back-
ground distribution and artificially lowered ARS1 probe
M-values, Figures 2E &2F). When these methods are
applied to a slightly "noisier" (as measured by autocorre-

Testing ChIP-chip Normalization MethodsFigure 2
Testing ChIP-chip Normalization Methods. Illustration of method proposed in [18] for normalization of BrdU-IP-chip 
data. Each probe in the WT (A) and rpd3Δ (B) datasets is plotted in the δ(M) vs. δ(A) plane and a line of best fit, which should 
run parallel to the slope of the background distribution, is identified. The WT (C) and rpd3Δ (D) probes transformed onto the 
modified MA plane with probes from within ARS1 highlighted (green). Following this transformation a loess curve is fitted to 
probes within 2 standard deviations of the median M-value. WT (E) and rpd3Δ (F) probes after the final loess normalization 
step. (G) Raw M-values of WT probes plotted in the chromosomal plane (chromosome XIII shown here).
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lation once more) rpd3Δ dataset, they define a rotation
line whose slope has the opposite sign to that of the back-
ground distribution (see Additional file 1), leading to a
more obviously incorrect transformation.

The methods proposed in [18] were developed under the
assumption that probe M-values follow one of two distri-
butions (enriched or non-enriched) and that these distri-
butions have relatively low variance (i.e., enriched probes
have similar M-values). While this assumption is gener-
ally valid for ChIP-chip data, it does not hold for BrdU-IP-
chip experiments. Figure 2G shows that the replicated
regions are wide (up to 30 kbp) and, due to the asyn-
chrony of replication fork movement across the cell pop-
ulation, there is no sharp boundary between enriched and
non-enriched regions, but rather an incremental decrease
in M-values on either side of each peak apex. We suggest
that these characteristics, in not following those of typical
ChIP-chip data, are the reason why the method proposed
in [18] is sub-optimal for BrdU-IP-chip datasets.

Although the data transformation proposed in [18] is not
appropriate for BrdU-IP-chip data, we agree with their
strategy of first transforming probe intensities onto an
appropriate plane before further normalization. Thus, to
remove intensity bias we have developed a data rotation
method, robust to the nuances of both ChIP-chip and
BrdU-IP-chip data, that we employ prior to the modified
loess normalization step. We demonstrate our transfor-
mation on the "clean" rpd3Δ dataset, as it best displays the
analytical issues associated with BrdU-IP-chip arrays; for
analysis of the "noisier" rpd3Δ dataset see Additional file
2.

An MA plot of the raw rpd3Δ data shows that the back-
ground probes (dark region), under the correct transfor-
mation, have a dense and relatively symmetric empirical
M-distribution (Figure 3A). As shown in [18], this is a
characteristic feature of ChIP-chip data, and thus the
methods described below will also be applicable to such
data. We propose a data transformation that takes advan-
tage of, and searches for, a subset  of the N probes
whose distribution best follows these characteristics. After
the probes in  are identified we define a rotation line
that follows their slope in the MA plane and adopt it as the
x-axis for a modified MA plane.

To identify  we first search for the D densest subsets of

probes  with sizes k1 = N/D, k2 = 2N/D,..., kD

= N. Here, the density of a probe set is measured by the
size of its minimum spanning tree in the MA plane; see
methods for details. D is a parameter that determines the
granularity of the algorithm (we use D = 100 here; for a

more precise solution D can be increased at the expense of
running time). Following this, we search for the smallest
of the D subsets whose "symmetry" measure R (defined
below) is greater than an experiment-specific cutoff RC

(also defined below), and  is defined by this subset of
probes.

To assess the symmetry of probes in the set  we calcu-

late the first and second principal components,  and

 respectively, of its probes in the MA plane, and

define its symmetry measure Ri by

where MSTi denotes the minimum spanning tree of the

subset, 1 denotes the indicator of a set, and the cutoff ci is

determined as the median of the -values of the set

. We choose this subset size because we know a pri-

ori that less than 80% of probes are enriched in the exper-
imental conditions being analyzed (this ensures that this
subset contains primarily background probes; for other
experimental conditions this subset size can be altered
accordingly).

We define  as the set of size kj where

and RC = 2 × standard deviation of R1, R2,..., R0.2N. This

choice is motivated by the observation that if ki is the size

of the largest subset of size at most | |, then the values
R1, R2, R,..., Ri fluctuate at a value close to 0, whereas the

values Ri+1, Ri+2,..., RD incrementally increase, as enriched

probes are only included in the numerator of the ratio
defining R (Additional file 3). The cutoff value RC is

dependent on the a priori knowledge that at most 80% of
all probes are enriched.

After  is identified, all probes are transformed into the
plane whose x and y axes correspond to its first and second
principle components, PC1 and PC2 respectively (Figure

3B). Following the rotation, the modified loess step pro-
posed in [18] is applied to the data (with default parame-
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ter settings) and although the large numbers of enriched
probes "pull" the loess curve away from the background
distribution (Figure 3C), the data transformation ensures
that the loess normalization does not distort the data and
that the majority of the residual intensity bias is removed
(Figure 3D).

The autocorrelation structure of probe M-values along the
chromosome is inversely proportional to array noise and
intensity bias and should increase when within-array nor-

malization methods are carefully applied [18,20]. To
assess our methods, we calculated the autocorrelations of
both the WT and rpd3Δ datasets prior to and after applica-
tion of our within-array normalization scheme at lags of 0
to 100 probes (corresponding to distances of 0 to ~300
base pairs). Figure 4 demonstrates that the proposed strat-
egies reduce the intensity bias-related noise inherent in
BrdU-IP-chip experiments. In addition the correlation
structure of the WT data is worse than that of rpd3Δ. We
think that this is due to the mutant array having a higher

Within-Array NormalizationFigure 3
Within-Array Normalization. (A) rpd3Δ probes plotted in the MA plane (ARS1 probes are indicated with green dots). (B) 
The background probe subset plotted in the MA plane. The first and second principal component axes are used as the new set 
of axes in the data rotation. (C) Probes plotted in a modified MA plane after data rotation. A loess curve is then fitted to the 
probes within two standard deviations of the median M-value. (D) Probes plotted in the modified MA plane after loess normal-
ization is complete.
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proportion of enriched probes, as noise appears to be
more significant in non-enriched regions (compare Fig-
ures 2G & Additional file 4).

Between-Array Normalization
Location Normalization

When comparing the within-array normalized data across
different experiments, further normalization is needed to

correct for the fact that the M-values in  can have dif-

ferent locations. For example, when comparing the MA

plots of WT and rpd3Δ after within-array normalization,

the median is much lower in rpd3Δ (Figures 5A and 5B).
When these data are plotted along the chromosome we

see that the baseline of the rpd3Δ plot is artificially lower
than that of WT (Figures 5C). If not corrected, this would
result in errors when testing for differences between WT

and rpd3Δ peaks. To correct for this, for each experiment

we propose subtracting the median M-value of its 

as calculated after within-array normalization (Figure 5D
&5E). This strategy successfully normalizes the baseline

S0 2. N

S0 2. N

Autocorrelation AnalysisFigure 4
Autocorrelation Analysis. The correlation structure of the WT and rpd3Δ datasets before and after within-array normaliza-
tion. y-axis: Spearman rank correlation. x-axis: lag, measured as number of probes along a chromosome.
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Location NormalizationFigure 5
Location Normalization. (A) WT probes (after within-array normalization) plotted in the MA plane. The location parame-
ter is the median M-value of . (B) rpd3Δ probes (after within-array normalization) plotted in the MA plane. (C) WT and 

rpd3Δ probes plotted in the chromosomal plane (chromosome XIII). (D) WT probes plotted in the MA plane after location 
normalization. (E) rpd3Δ probes plotted in the MA plane after location normalization. (F) WT and rpd3Δ probes plotted in the 
chromosomal plane (chromosome XIII) after location normalization.
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across arrays, allowing comparisons between experimen-
tal conditions to be performed more accurately (Figure
5F).

Scale Normalization
We observe noticeable scale differences in the empirical
M-distributions of experimental replicates. Before per-
forming comparisons across various conditions, these
experimental errors should be eliminated without remov-
ing differences attributable to true biological variation.
We tested the existing strategies for scale normalization
(MAD scaling and quantile normalization) and found
that signal differences observed consistently between WT
and rpd3Δ replicates, which we attribute to true replica-
tion landscape changes in rpd3Δ, are removed when either
is applied (data not shown). With MAD scaling, differ-
ences between larger enrichment peaks are removed and
with quantile normalization virtually all biological differ-
ences are eliminated.

Here we propose a modified quantile normalization pro-
cedure where the M-values of each set of replicates are
normalized together [16], but not with replicates from
other experimental conditions (e.g. the WT replicates are
quantile normalized with one another separately from the
rpd3Δ replicates). This forces replicates to better resemble
each other (removing experimental error) without remov-
ing true biological differences. Figure 6A shows the peak

heights from the four WT replicate datasets (for peak iden-
tification and quantification see below) plotted against
their averages (before scale normalization). The scale dif-
ferences result in discrepancies between replicate peaks
with larger heights, which can be a source of false nega-
tives when testing for peak height changes (e.g. the larger
variation in peak heights results in a smaller t-statistic).
Figure 6B shows that, when the modified quantile nor-
malization strategy is applied, these size-dependent differ-
ences are removed.

Peak Identification and Quantification
There are several ways in which peak identification and
quantification can be performed. For example, we might
average the observations from replicate experiments to get
a single set of potential peaks for each experimental con-
dition. Because there are often multiple peaks within a
given enriched region that may be lost if averaging across
replicates is used, we have found it better to identify peaks
within each replicate, and then compare peaks across rep-
licates (and perhaps conditions) using further alignment.

Several algorithms have been developed to identify
enriched genomic regions in ChIP-chip data
[13,18,20,22-27]. Many of these use Hidden Markov
Models (HMMs) with two probe states, corresponding to
enriched and non-enriched. Others have proposed sim-

Scale NormalizationFigure 6
Scale Normalization. (A) Peak heights of each WT replicate, calculated before scale normalization, plotted against the aver-
age height across replicates. (B) Peak heights of each WT replicate, calculated after scale normalization, plotted against the 
average height across replicates.
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pler methods, such as setting an enrichment threshold
based on the variability of the array noise [18]. Here we
calculate a final enrichment cutoff, used below to identify
positive signals, by taking advantage of the characteristics
of the distribution of the M-values of background probes.
We employ a strategy similar to that proposed in [24]:
identify all probes whose M-values are less than the

median of the set , as recomputed after within-array

and between-array normalization, reflect them about this
value, and set the cutoff to twice the sample standard devi-
ation of the resulting distribution. We note that we could
also use this distribution to provide p-values for ranking
probes, but we do not explore this further here.

To identify individual replication peaks, we begin by fit-
ting a loess curve to the normalized data on the chromo-
somal plane. Following this, a sliding window is applied
to search for all regions with a continuous increase in
smoothed M-values for at least 20 probes (~0.6 kbp) fol-
lowed by a continual decrease for at least 20 probes (typ-
ical replication peaks are relatively symmetric about one
apex; this choice can be changed for other types of data).
We assign each peak a height equal to the median of the
non-smoothed M-values within 500 bp of its apex and
accept it as a potential positive if its height is greater than
the enrichment cutoff (Figure 7).

After potential peaks have been identified for each exper-
iment, we align them across replicates with a dynamic
programming algorithm; see Methods for details. Follow-
ing this, peaks present across all replicates are aligned with
the known/predicted origins reported in the OriDB data-
base [28]. This second alignment allows us to further con-
firm the validity of peaks with a priori knowledge of origin
locations which, in turn, allows for an in-depth analysis of
the chromosomal features surrounding the start point of
each peak (see Methods for details).

Validation
Typical BrdU experiments aim to identify genomic regions
where there is evidence of replication activity, to deter-
mine its magnitude and to test if it is different in various
cellular conditions. Below we validate our normalization
and peak identification/quantification strategies both
experimentally and statistically.

Peak Identification
We fitted an HMM [27] to the average normalized M-val-
ues of non-overlapping 1000 bp blocks of probes. The
algorithm assigns to each such block the posterior proba-
bility of that block being in an enriched region. These
probabilities can be used to rank and call potential
enriched regions. Here, blocks with posterior probabili-
ties ≥ 0.5 were called as enriched. A comparison of the

S0 2. N

Identification of Enriched RegionsFigure 7
Identification of Enriched Regions. Peaks identified by the present method in a single replicate are marked with red stars. 
Probes in blocks called enriched by the HMM (posterior probability ≥ 0.5) are marked in blue and probes from non-enriched 
blocks are grey. Notice the agreement between the calls. Further details are provided in the text.
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HMM approach with the one presented here shows sub-
stantial agreement in positive peak calls (see Figure 7).

To validate experimentally our peak identification strate-
gies, we compared the set of peaks identified here (in WT
cells in HU) with those identified in two previous studies
[29,30] where alternatives to the BrdU-IP-chip assay (den-
sity shift assay and copy number assay, respectively) were
employed to map replication origins that fire in WT cells
in HU. There were 141 origins found to fire in HU in [29]
and 290 in [30]. Here we identified 251 origins as active
in HU, with 107 (43 percent) overlapping with those
identified in [29] and 198 (79 percent) with those identi-
fied in [30]. In total 224 (89 percent) of the origins we
identified as active were found to fire in at least one of the
two previous studies (Figure 8A).

Peak Quantification
To confirm that our array normalization and peak identi-
fication/quantification methods assign peak heights that
are proportional to origin timing/efficiency, we compared
the WT peak heights developed here to their times of rep-
lication (Treps) reported in [31]. We found that BrdU peak
heights are significantly anticorrelated with Treps(Spear-
man's Rank Correlation of -0.78), indicating that high
BrdU peaks are associated with early/efficiently firing ori-
gins, while lower BrdU peaks are associated with later fir-
ing less efficient origins (Figure 8B).

Strain Comparisons
To examine our ability to identify true biological variation
across experimental conditions, we tested for peak height

differences in the WT and rpd3Δ datasets (with empirical
Bayes t-tests [32]) and compared these results to those in
[19]. In this previous study three independent methods
were used to compare the replication activity of five ori-
gins (ARS607, ARS1, ARS603, ARS1413 and ARS501) in
WT and rpd3Δ cells. These three methods showed no sig-
nificant difference between WT and rpd3Δ cells in origin
firing times at ARS607 or ARS1 but found advanced origin
firing in the rpd3Δ cells at ARS603, ARS1413 and ARS501.
Comparisons of BrdU peak heights at these origins dem-
onstrate significant peak height differences at ARS603,
ARS1413 and ARS501 (p ≤ 0.001 for all), but no signifi-
cant differences at ARS607 or ARS1 (p = 0.122 and 0.21
respectively) (Figure 8C).

Conclusion
The BrdU-IP-chip assay provides an effective technique to
identify replication activity across the genome, and fur-
thermore, the signal magnitude in these data is propor-
tional to the percentage of cells in a culture that fire at
each origin. As whole-genome analysis of replication
dynamics continues to develop, a proper strategy for ana-
lyzing these and other datasets with similar characteristics
is essential. Here we have shown that traditional strategies
for dealing with expression and protein binding ChIP-
chip experiments may be sub-optimal for the analysis of
these types of data. We have developed strategies for both
within-array and between-array normalization that are
able to accommodate highly enriched datasets. Further-
more, we have presented peak identification, quantifica-
tion and alignment tools that use a priori knowledge to
remove both false positives and negatives. We have tested

ValidationFigure 8
Validation. (A) 251 origins are found to fire in this BrdU-IP-chip analysis as compared to the 290 identified in [30] and 141 in 
[29]. Of the 251 origins identified here 224 (89 percent) were identified in at least one of the other two studies. (B) 142 WT 
peak heights (calculated here) plotted against their times of replication (as calculated in [31]). The Spearman Rank Correlation 
between peak heights and time of replication was found to be -0.78. (C) A comparison of WT and rpd3Δ peak heights shows 
significant increases (empirical Bayes t-test, p ≤ 0.001) in rpd3Δ heights at origins ARS603, ARS1413 and ARS501 while the 
same analysis shows no change (empirical Bayes t-test, p > 0.001) at origins ARS607 and ARS1.
Page 11 of 14
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these methods both statistically and through a compara-
tive analysis with previous studies to show that they are
able to identify enriched regions correctly and that the
array normalization and peak identification/quantifica-
tion strategies are effective in detecting biologically mean-
ingful changes in experiments performed under different
conditions.

Methods
Modified k-MST Algorithm
Finding the k-vertex minimum spanning tree in a dataset
of size N ≥ k is an NP-hard problem known as k-Minimum
Spanning Tree (k-MST). Instead of solving this directly, we
employ a time-optimized version of an approximation
algorithm aimed at identifying only the set of probes con-
tained in the k-MST rather than the actual k-MST [33]. The
algorithm proposed in [33] is polynomial in time, but
current tiling array feature counts are now in the millions.
To reduce its search space, and hence its running time, we
have modified the algorithm in [33] by integrating an ini-
tial greedy step. First, probes are binned into cells of a uni-
formly spaced 128 × 128 grid (I) in the MA plane.
Following this, cells of I (which we denote by Iij, 1 ≤ i, j ≤
128) and their probes are added to a set C in descending
order of the number of probes (|Ii, j|) they contain, until k
- N/D ≤ |C| ≤ k, where |C| is the total number of probes in
the cells of C.

Following this, "layers" of cells neighboring C are added
to a set Q until |C| + |Q| ≥ k. More precisely, when a new
neighboring "layer" is to be added to Q, its cell set is
defined as

We then alter the algorithm in [33] so that all probes in C
are included in the final k-probe solution and the search
space for the additional k - |C| probes is constrained to the
cells in Q. In [33] the authors employ a set of grids G0,
G1,..., Gn whose cells each have corresponding list L. To
ensure the above constraints are followed, we initialize
the lists corresponding to the cells of the finest grid, G0 (a
256 × 256 grid here) as follows:

where x0 and m are the width of, and number of probes in,
the cell corresponding to L, respectively. After L has been
computed for each of the cells in G0, the algorithm pro-
ceeds as described in [33], with the following modifica-
tions: (i) for a larger cell c and corresponding list L, if r of
the probes in c are contained in C, L(p) = ∞ for p <r; (ii)
L(r) is calculated by merging all lists corresponding to
subcells of c that are contained in C, and (iii) for r <q ≤ k,
L(q) is calculated by merging L(r) with all lists corre-
sponding to subcells of c that are not contained in C. After
completion, the final set of k probes used for subsequent
analysis is that corresponding to L(k) for the 1 × 1 grid Gn
(see [33] for further details).

Peak Alignment Across Experiments

To identify peaks that are present across a set of r replicates
we perform a multiple global alignment on their replicate-
specific locations using a version of the Needleman-Wun-
sch algorithm [34] similar to the one described in [35].
Each element A of the alignment set  is represented in
the form of a sequence of tuples:

The first element C of each tuple defines the chromosomal
origin of a peak. The second element in the tuple, {(E1,
L1), (E2, L2),..., (Ev, Lv)} say, is a set of tuples consisting of
experiment labels (E) and corresponding chromosomal
locations (L) of peaks that are identified as aligned in
experiments E1,..., Ev. The method starts with the peak
locations identified above in each experiment; the peaks
in the jth experiment can be represented in the form

The algorithm proceeds by successively calculating all
pairwise alignments and alignment distances between
sequences in  with the Needleman-Wunsch algorithm,
each time replacing the most similar pair with its align-
ment:

where |Alignment(.,.)| is equal to the bottom right hand
corner of the Needleman-Wunsch distance matrix calcu-
lated during an alignment. During an alignment, if peaks
(C, {(E, L)}) and (C', {(E', L')}) from two inputs are
deemed close enough, they are merged into a single peak
(C", {(E", L")} in the output alignment. This new peak
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has chromosomal origin C" = C' = C, and {(E", L")} = {(E,
L)} ∪ {(E', L')}. Peaks that are not deemed close enough
are not merged and their values are inserted separately
into the new alignment.

It remains to define the distance measure to be used in the
Needleman-Wunsch algorithm. For peaks P = (C, {(Eu,

Lu)}) and P' = (C', {( , )}), we set

The gap penalty is the maximum distance permitted
between two aligned peaks. Here we set it to 2000, as an
empirical analysis across experiments showed that several
large corresponding peaks had coordinate differences up
to 1700 bp.

Peak Alignments With Known/Predicted Origins
We align peaks with known/predicted origin locations (as
listed in OriDB) to remove some false positives and to
determine the precise genomic loci that each BrdU peak
emanates from. OriDB lists origins in one of three catego-
ries: confirmed (confirmed with an ARS stability assay),
likely (inferred in two or more experiments) or dubious
(inferred in only one experiment). Based on the assump-
tion that peaks are more likely associated with confirmed
than dubious origins, we perform peak/origin alignments
in a three-step process designed to align peaks with the
highest ranking origin in their vicinity.

Alignment

We begin with the final sequence of peak locations (A =
) and three sets of chromosomally ordered origin loca-

tions OC, OL and OD (corresponding to confirmed, likely

and dubious origin sets, respectively). An origin location
in one of these sets is a triplet O = (Och, Os, Oe) giving its
chromosome, its starting coordinate and its ending coor-
dinate, respectively. The alignment proceeds as follows:

and the final set of peak/origin pairs are held in the set T.

Distance Function
Although we employ the same gap penalty as during the
alignment of replicates described above, we alter the dis-
tance function to reflect the fact that peaks located
between the start and end coordinates of an origin should
have a distance of zero from that origin. Thus, we define
the distance between a peak P = (C, {(Eu, Lu)}) and an ori-
gin O as follows:
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Additional file 1
Testing ChIP-chip Normalization Methods on Noisy Data. Illustration 
of method proposed in [18] for normalization of "noisy" BrdU-IP-chip 
data. (A) rpd3Δ probes (from the "noisy" rpd3Δ dataset) plotted in the 
MA plane (ARS1 probes are indicated with green dots). (B) Each probe 
is plotted in the MA plane and a line of best fit, which should run parallel 
to the slope of the background distribution, is employed as the x-axis on 
the modified MA plane. (C) Probes transformed onto the modified MA 
plane. Following this transformation a loess line is fitted to probes within 
two standard deviations of the median M-value. (D) Probes plotted in the 
modified MA plane after the final loess normalization step.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-305-S1.tiff]

Additional file 2
Within-Array Normalization on a "Noisy" rpd3Δ Dataset. (A) Probes 
from the "noisy" rpd3Δ dataset plotted in the MA plane. (B) The back-
ground probe subset plotted in the MA plane. The first and second princi-
pal component axes are used as the new set of axes in the data rotation. 
(C) Probes plotted in the modified MA plane after data rotation. After this 
rotation a loess curve is fitted to the probes within two standard deviations 
of the median M-value. (D) Probes plotted in the modified MA plane after 
the modified loess normalization.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-305-S2.tiff]

Additional file 3
Symmetry Measurements. During within-array normalization non-
enriched probes are identified as the largest set with a symmetry measure 
R ≤ RC = 2 × standard deviation of R1, R2,..., R0.2N. R fluctuates about 0 
while only background probes are included in its calculation. When 
enriched probes begin to be included in its calculation, R incrementally 
increases.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-305-S3.tiff]
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