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Abstract
In this paper we present a novel method for estimating a field of asymmetric spherical functions,
dubbed tractosemas, given the intra-voxel displacement probability information. The peaks of
tractosemas correspond to directions of distinct fibers, which can have either symmetric or
asymmetric local fiber structure. This is in contrast to the existing methods that estimate fiber
orientation distributions which are naturally symmetric and therefore cannot model asymmetries
such as splaying fibers. We propose a method for extracting tractosemas from a given field of
displacement probability iso-surfaces via a diffusion process. The diffusion is performed by
minimizing a kernel convolution integral, which leads to an update formula expressed in the
convenient form of a discrete kernel convolution. The kernel expresses the probability of diffusion
between two neighboring spherical functions and we model it by the product of Gaussian and von
Mises distributions. The model is validated via experiments on synthetic and real diffusion-
weighted magnetic resonance (DW-MRI) datasets from a rat hippocampus and spinal cord.

1 Introduction
The estimation of neuronal fiber orientations from diffusion-weighted MR images (DW-
MRI) and the reconstruction of complex structures such as splaying and decussating fibers
are problems whose solutions contribute toward achieving tractography in regions of the
brain such as the optic chiasm, the hippocampus, the brain stem and others.

The local orientation of a single fiber bundle can be estimated easily from diffusion tensor
images (DTI). In DTI datasets, a 2nd-order tensor has been commonly employed to
approximate the local diffusivity [1]. However, it is known that 2nd-order tensors fail to
approximate more complex fiber structures such as crossings, splaying and kissing
structures [2].

More than one distinct fiber tract structure within a voxel can be estimated by employing
more sophisticated models for reconstruction of the diffusion-weighted MR signal. Some of
the models that have been proposed in literature include discrete [3] and continuous [4]
mixture of Gaussians, higher-order tensors [5], and the spherical harmonic transformation
[6]. After reconstruction of the signal, one has to compute its Fourier transform in order to
obtain the displacement probability whose peaks correspond to distinct fiber orientations.
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The displacement probability profiles can also be computed by transforming the diffusivity
profiles using the diffusion orientation transform (DOT) [7]. Multiple fiber orientations can
also be estimated by reconstructing the orientation distribution function (ODF) [8] using the
so called Q-ball imaging [9]. Most of the above techniques ([1,3,8,4]) can be expressed as a
special case of a more generalized method in which the DW-MR signal can be expressed as
the convolution over the sphere of a fiber bundle response function with the ODF [10,11]. In
this spherical deconvolution approach there is no limitation regarding the number of the
distinct fiber populations in the estimated ODF.

The result produced by all the above models is in the form of a spherical function
representing either an ODF or an iso-surface of the displacement probability profile. In both
cases the estimated spherical function characterizes the intra-voxel fiber structure without
taking into consideration any inter-voxel information. As a result, the computed function is
always anti-podally symmetric and therefore it can only model either single fiber tracts or
symmetric crossings of multiple fiber tracts. However, it is well known that neural fiber
tracts can also form asymmetric local structures such as in sprouting fibers [2]. To date there
are no existing methods in literature for estimating locally asymmetric fiber orientation
functions and one has to resort to an existing fiber tracking procedure that can accommodate
for multiple fibers at a voxel [12,13,2], in order to infer the presence of a sprouting or anti-
symmetric crossing structures.

In this paper we present a novel method for estimating an intra-voxel asymmetric spherical
function that can model complex local fiber structures using inter-voxel information. The
peaks of the estimated spherical function correspond to directions that point to distinct local
fiber tracts and are appropriately dubbed tractosemas. Tractosema is a pointer/sign used here
for neural tracts and has its roots in the Greek word sēma (sign). In our work here, we
extract a field of tractosemas from a given field of ODFs or displacement probabilities by
following asymmetric and orientation depended diffusion of spherical functions. The kernel
that controls the diffusion process between two elements (in our case spherical functions) is
defined as a function over the spatial location (ℜ3) and the domain (S2 unit sphere) of the
two elements, which leads us to the space (ℜ3 × S2) × (ℜ3 × S2). We construct the diffusion
kernel as a tensor product of the von Mises and Gaussian probability distributions and by
using it we derive an update formula for the field of tractosemas which is expressed in the
form of a discrete kernel convolution.

The main contribution of this paper is that the tractosemas can depict complex asymmetric
fiber structures without the need for fiber tracking. To the best of our knowledge, it is the
first method that estimates a field of asymmetric spherical functions for modeling splaying
fibers and other asymmetric as well as symmetric structures. Furthermore, the estimated
field of tractosemas can be used as input by any existing fiber tracking algorithm for finding
fiber junctions and branches without the need for multiple seeds (a common requirement in
many existing methods [12,14,15,2]). Finally, the experimental results demonstrate the
robustness and accuracy of our model in estimating fiber orientations in the presence of
varying amount of noise as demonstrated via simulation experiments with realistic MR data
synthesis [16].

2 Estimation of Tractosemas from DW-MRI
In this section we present our method on extracting tractosemas from a given field of
displacement probability iso-surfaces.

2.1 Displacement Probability Estimation
The water molecule displacement probability is given by the Fourier integral
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(1)

where q is the reciprocal space vector, S(q) is the DW-MRI signal value associated with
vector q, S0 the zero gradient signal and r and r0 is the direction and magnitude respectively
of the displacement vector [17]. There are several existing methods for computing P(r0r) in
which we either first reconstruct the signal S(q) and then evaluate Eq. 1 [4], or we directly
estimate the displacement probability from given diffusion-weighted MR data [7,18]. Also,
one may obtain an alternative representation called the fiber orientation distribution (from
the Q-Ball images) from which one can find the optimal fiber orientations [13,19].

In order to estimate the orientations of the underlying distinct fiber bundles a spherical
function p(r) is extracted from the volume of P(r0r) by either fixing r0 [7] or by integrating
over r0 [3]. Then the orientations that correspond to the maxima of p(r) are estimated and
are used either for neural fiber tracking or further analysis [20,13,21].

S(q) is naturally modeled by an anti-podally symmetric function and therefore its Fourier
transform exhibits antipodal symmetry as well. As a result the estimated probability iso-
surface p(r) in a single voxel can not model asymmetric local neural structures such as
splaying fibers. Using inter-voxel information it is possible to estimate tractosemas – which
are spherical functions that are not necessarily symmetric – by diffusing a field of
probability iso-surfaces. The peaks of tractosemas point to directions of distinct fiber tracts
and we can extract them by employing the method presented in the following section.

2.2 Extracting Tractosemas by Diffusing Probability ISO-Surfaces
After having estimated the displacement probability px(r) ∀x ∈ ℜ3, where x is the lattice
index, we use the obtained spherical function field in the following diffusion process. In this
process the spherical functions are updated iteratively by diffusing the displacement
probability field. In general, diffusion can be seen as a smoothing process which can be
performed by minimizing a smoothness measure. In our case, we minimize the following
function with respect to px(r).

(2)

Eq. 2 is expressed in the form of a kernel integration, where dist(.) can be any norm or
“edge-stopping ”function [22], the kernel K(.) is a function of x, y, r, v, and the integration
is over all vectors y and unit vectors v. In our particular application, the kernel is a
probability function expressing the probability of diffusion between the elements px(r) and
py(v). The kernel we seek should exhibit the following properties: a) the probability of
diffusion between locations x and y decreases with their distance, b) the probability of
diffusion between orientations r and v decreases with the angle between them, and c) the
probability of diffusion is larger at the locations along the maxima of px(r). These properties
are satisfied by single peaked distributions. One such function used here is,

(3)
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The first property mentioned above is imposed by defining Kdist using a multivariate
Gaussian distribution.

(4)

The most natural way to impose the last two properties is to employ the single peaked von
Mises distribution for both Korient and Kfiber, given by,

(5)

where φ is the angle between r and v, and the angle between r and (y − x) in Korient and
Kfiber respectively. The distribution parameters σ and κ in Eq. 4 and 5 respectively control
the sharpness of the kernel.

Having a discrete lattice of probabilities px(r) the integral over ℜ3 in Eq. 2 becomes
summation over the lattice. Furthermore, since the Gaussian part of the kernel takes its
largest values in the region around its center (at location x), we can define a set N (x) that
contains the lattice indices in the neighborhood of x. Furthermore, we discretize the space of
unit vectors by using a 4th order subdivision of the icosahedral tessellation of the unit
sphere. By using the above discretization, Eq. 2 can be written in the following form

(6)

By setting for simplicity dist(a, b) = (a − b)2 and taking the derivative of Eq. 6 with respect
to px(r) and setting it equal to zero, we derive the following update formula for the field of
spherical functions (tractosemas)

(7)

Eq. 7 is expressed in the form of a discrete kernel convolution and it is applied iteratively to
all indices x and vectors r on the discretized S2. This method produces very efficient
implementations since only kernel multiplications are involved in the evaluation of Eq. 7,
which is a fully parallelizable process. Furthermore, only few iterations (2 to 3) are required
to observe visually the diffused asymmetric tractosemas. Finally, choosing a different dist
(e.g. L1 norm), would lead to more anisotropic solutions, something we are currently
investigating.

3 Experimental Results
In the experiments presented in this section, we tested the performance of our method using
simulated diffusion-weighted MR signal and real HARDI data sets from an isolated rat
hippocampus and an excised rat spinal cord.
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For the validation of tractosemas we synthesized a dataset representing splaying fiber
bundles, whose orientations were taken to be tangent to two ellipsoids centered at the two
lower corners of the image. The data set was of size 16×16×16 and was generated by
simulating the diffusion-weighted MR signal using the realistic simulation model in [16] (b-
value=1250s/mm2, 81 gradient directions). After that, we estimated the displacement
probability field (Fig. 1a) from the simulated signal by using the method in [18] (one can
also use any other method).

The above obtained field of probability functions was then input to our proposed method for
extracting tractosemas (σ = 1, κ = 10, 3 iterations). Fig. 1b shows the field of tractosemas
computed by our technique. By observing the figure, we can see that our method estimated
correctly single fiber distributions in the lower part of the image and splaying fibers in the
central region of the field, which demonstrates the effectiveness of our technique. Note the
smooth transition from single fiber to splaying structure in the ROI, and the expected anti-
aliasing effect observed in the voxels close to the splaying fibers.

Furthermore, to quantitatively test the performance of our method in estimating fiber
orientations we added varying amounts of Riccian noise (SNR between 20:1 and 3.3:1) to
the data. We applied our method to these noise corrupted data sets and then computed the
estimated fiber orientation errors. Figure 1d depicts a plot of the mean and the standard
deviation of the angle error between computed and ground truth orientations (in degrees).
These results validate the accuracy of our model and demonstrate its robustness to noise.

The proposed method was also applied to a real DW-MRI from an isolated rat hippocampus
(Fig. 2 left). The dataset consists of 22 images acquired using a pulsed gradient spin echo
pulse sequence with TR=1.5 s, TE= 28.3 ms, G= 415 mT/m, δ = 2.4 ms, Δ = 17.8 ms, Tδ =
17 ms and b ≃ 1250s/mm2.

Figure 2 shows a region of interest (ROI) in the hippocampus containing mixture of CA3
stratum pyramidale, stratum lucidum and part of the hilus. The rest of the images in this
figure show a comparison of the estimated local fiber structures using a) Diffusion tensors
(order-2 DTs), b) fourth order tensors, and c) tractosemas. In the DT field we can observe
two dominant orientations one pointing to the upper left and the other to the upper right
corner of the ROI, however, the structure at the junction is lost. The junction was recovered
using the fourth order tensors however, they depict the two aforementioned fiber
orientations as symmetric structures. The complicated junction structure is correctly
captured in the estimated field of tractosemas with asymmetric structures that depict
splaying fibers. Fig. 3 depicts fiber tracks estimated from the hippocampal data set by
following the peaks of tractosemas. The capability of tractosemas in capturing various
structures is demonstrated on the left of this figure.

Finally, we extracted tractosemas from 2 control and 3 injured rat’s spinal cord datasets (21
diffusion-weighted images, b ≃ 1125s/mm2). Fig. 4 shows the Cornu Posterius region in one
of the control (left) and one of the injured (center) spinal cords. A variety of different fiber
structures are shown (single bundles, crossings, branchings). In order to compare the
estimated structures we plotted the average percentage of tractosemas with 1,2,3… peaks
found in all control and injured sets. As it was expected, we observe a decrease in the
number of peaks in the injured cords due to loss in connectivity as a result of the injury.

4 Discussion
The key difference between the proposed tractosemas and the fiber orientation distributions
is that the first one is asymmetric, while the latter is symmetric. The peaks of tractosema
correspond to directions that if we follow we will find the body of a distinct fiber bundle.
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This capability of tractosemas is due to the intervoxel information taken into consideration
during the spherical function diffusion process. Finally, tractosemas are less sensitive to
noise in the DW-MRI data than the displacement probability or the fiber orientation
distribution. This property is evident since large amount of noise is removed by minimizing
the proposed regularization term.
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Fig. 1.
Synthetic data example: a) Simulated data, b) The field of computed tractosemas, c)
Tractosemas in ROI under varying noise, d) Plot of fiber orientation errors
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Fig. 2.
Real hippocampal data. Left: The data set shown in 3D (top) and the region of interest
shown enlarged (bottom). The rest of the plates depict the displacement probability profiles
(bottom) and the orientations corresponding to their maxima shown as tubes (top) obtained
by using: a) DTI, b) fourth order tensors, and c) Tractosemas.

Barmpoutis et al. Page 8

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2009 October 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
The field of tractosemas estimated from the hippocampal data set. Left: Three zoomed
voxels depicting the variability in the estimated structures. Right: The fiber sprouting with
the estimated tractosemas superimposed.
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Fig. 4.
Tractosemas extracted from a control (left) and an injured (center) rat’s spinal cord dataset.
Right: comparison of the number of peaks in the estimated tractosemas.
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