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Evolutionary, pattern forming partial differential equations (PDEs)
are often derived as limiting descriptions of microscopic, kinetic
theory-based models of molecular processes (e.g., reaction and
diffusion). The PDE dynamic behavior can be probed through di-
rect simulation (time integration) or, more systematically, through
stability/bifurcation calculations; time-stepper-based approaches,
like the Recursive Projection Method [Shroff, G. M. & Keller, H. B.
(1993) SIAM J. Numer. Anal. 30, 1099–1120] provide an attractive
framework for the latter. We demonstrate an adaptation of this
approach that allows for a direct, effective (“coarse”) bifurcation
analysis of microscopic, kinetic-based models; this is illustrated
through a comparative study of the FitzHugh–Nagumo PDE and
of a corresponding Lattice–Boltzmann model.

Introduction

C omplex, spatially varying physicochemical processes are of-
ten accurately modeled by systems of partial differential

equations (PDEs). Dissipative, pattern forming PDEs can arise
as limiting descriptions (e.g. mean-field approximations) of the
evolution of microscopic, kinetic calculations [Monte Carlo
(MC), molecular dynamics (MD), or Boltzmann equation-based
schemes]. The long-term dynamics of (discretizations of) these
PDEs can be studied computationally through direct simulation
(integration in time) of the corresponding large sets of coupled
ordinary differential or differential algebraic equations. The
same is true for microscopic models: long-term dynamics can
be studied through extended direct simulation in time. A sys-
tematic analysis of the dynamics is, however, more efficiently
performed in the PDE case through numerical bifurcation cal-
culations, relying on the solution of large systems of algebraic
equations. Such calculations are, in principle, not accessible
to direct microscopic simulation codes. The purpose of this
communication is to illustrate how the so-called “time-stepper-
based” bifurcation algorithms for PDE discretizations can be
adapted to perform the “coarse” bifurcation analysis of models
for which only microscopic evolution rules are available.

PDE steady states and their dependence on parameters can
be obtained through Newton’s method and its implementation
in continuation/bifurcation algorithms. This implementation is
easy and efficient if the right-hand sides of the PDEs can be
explicitly obtained. If a transient integration scheme (a “time-
stepper”) is available, it can be used to locate stable steady
states after (possibly long) integration. Shroff and Keller (1)
introduced a scheme, named the Recursive Projection Method
(RPM), which is built around an existing time-stepper. Steady
states of the PDE are found as fixed points of the time-stepper.
The scheme, by repeatedly calling the time-stepper for several
(nearby) initial conditions and for short periods of time, effec-
tively converts an available, possibly complicated (e.g., split step)
time-stepper into a bifurcation code with minimal programming
effort. Exploiting the dissipative nature of the PDE and the
concomitant separation of time scales, RPM treats the time-
stepper as a black-box and adaptively identifies a low dimen-
sional subspace P, along which time-evolution is slowest (even
slightly unstable). It performs Newton iterations with a (small)
approximate Jacobian in this subspace and Picard iterations on

its orthogonal complement Q. These small Jacobians are, in
principle, easy to invert. The procedure is well-suited for the
bifurcation analysis of large systems close to low-codimension
bifurcations, because it sidesteps the problem of constructing
and inverting large Jacobians (see also refs. 2 and 3).

PDE (“coarse”) steady states correspond to stationary profiles,
in space, of moments (e.g., concentrations) of populations in mi-
croscopic simulations. In other words, “coarse” steady states can
be thought of as projections of the stationary states of micro-
scopic simulations. The exact steady (not stationary, but actually
steady) states of, say, an MD simulation (e.g., all molecules hav-
ing zero velocity and zero acceleration) are not necessarily the
same (in fact we do not expect them to be) as the averaged,
coarse steady states of interest here, for which fluctuations at
the molecular level persist.

Traditionally, the parameter-dependent behavior of a system
is analyzed by first obtaining a “coarse” model (e.g., a mean-
field PDE) and then performing bifurcation analysis of the PDE.
Here we propose to adapt RPM-type methods in order to per-
form “coarse” bifurcation studies using microscopic evolution
rules directly, i.e., to perform “coarse bifurcation calculations”
without first explicitly constructing a “coarse” model. The basic
building block of the approach remains a call to a time-stepper.
If a “coarse” model exists, this call involves (i) prescription of
a “coarse” initial condition (concentration profile) and (ii) inte-
gration of the “coarse” model, the discretized PDE. The macro-
scopic time interval used (the time-stepper reporting horizon) is
dictated by the dissipative nature of the PDE and corresponds
to a natural separation between the “slow” and “fast” mode time
scales (the gap between the corresponding linearization eigen-
values, see ref. 4). If the coarse model is not available, the evolu-
tion of a “coarse” initial condition (IC) can be obtained through
(i) translating the coarse IC in one—or more—microscopic re-
alizations consistent with it, (ii) evolving the realization(s) using
microscopic rules for the same macroscopic time interval, and
(iii) appropriately averaging the results over fine space and/or
fine time and/or number of realizations to obtain the coarse time-T
map. Thus, coarse concentration profiles can be evolved through
either coarse model (discretized PDE) time-steppers or micro-
scopic time-steppers. This conceptual procedure is illustrated in
Fig. 1. The structure of the RPM-based “coarse bifurcation”
code remains unchanged, and a coarse bifurcation analysis is
performed even in the absence of an explicitly derived and dis-
cretized mean-field PDE (or other evolutionary rule). A vital
point, of course, is the translation of a coarse IC to one or more
consistent microscopic ICs. While a multitude of consistent mi-
croscopic ICs exist, our illustration was chosen to be relatively
insensitive to this major issue.

Abbreviations: PDE, partial differential equation; RPM, Recursive Projection Method; MC,
Monte Carlo; MD, molecular dynamics; IC, initial condition; FD, finite difference; LB,
Lattice–Boltzmann; FHN, FitzHugh–Nagumo.
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Fig. 1. Schematic of time-stepper-based bifurcation analysis for macroscopic and
microscopic systems.

The Model
The example we chose to demonstrate the coarse bifurcation
analysis concept is one where the mean-field PDE is available, in
order to assess the performance of RPM applied to a “micro-
scopic” time-stepper. We use a two-variable reaction-diffusion
system, namely the FitzHugh–Nagumo model (FHN), in one
spatial dimension (5–7):

ut = uxx + u− u3 − v [1]

vt = δvxx + ε�u− a1v − a0� [2]

In pattern formation terminology, u is the activator and v the
inhibitor concentration.

The kinetic parameter values chosen are a0 = −0:03 and
a1 = 2:0; δ = 4:0 is a diffusion coefficient. The time-scale ratio,
ε, is our bifurcation parameter; both a Hopf and a saddle-node
bifurcation arise in this particular one-parameter diagram. Sta-
bility/bifurcation calculations were performed through (i) a stan-
dard finite difference (FD) discretization, direct linear algebra
steady solvers, and standard Newton/continuation techniques,
for reference; (ii) RPM implemented around an (implicit Eu-
ler) time-stepper of the same FD spatial discretization, for con-
firmation; and (iii) RPM implementated around a “microscopic”
Lattice–Boltzmann (LB) simulator of the same system.

LB models (8, 9) were introduced as an alternative to the
macroscopic description of hydrodynamic systems; they lack the
statistical noise inherent in lattice-gas models, but they are still
conceptually simple and easily amenable to computational im-
plementation and solution. The LB models are based on a finite
difference-type disretization of the continuum Boltzmann–BGK
equation (10), which describes the evolution in space and time
of a single particle distribution function. Particle transport in LB
consists of streaming (particles moving towards adjacent sites in
a lattice of fixed size), and of (non-reactive) collisions (particles
colliding at a site). In the LB–BGK model we have implemented
for the reaction-diffusion system the evolution equations for u
are (11):

Nu
i �x+ ci; t + 1� −Nu

i �x; t� = −ωu�Nu
i �x; t� −Nu;e

i �x; t��
+ Rui �Nu

j ;N
v
k� [3]

(and correspondingly for v). Here, Nu
i �x; t� is the population

density of activator (u) particles at position x on the lattice at

time t, with velocity ci. In this one-dimensional system, particles
can move only toward the two available adjacent sites (N2, N3)
or (allowing for rest particles) stay in place (N1). For unitary
LB temporal and spatial increments, therefore, ci = �0; 1;−1�
and i = 1; 2; 3 respectively. Nu;e

i is the local equilibrium u pop-
ulation, homogeneous in all velocity directions, and ωu is the
BGK relaxation parameter; the first part of the right-hand side
computes post-collision populations. Rui is the reaction term; we
use the (strong) assumption (11) of local diffusive equilibrium
for the reaction term. The left-hand side computes the parti-
cle streaming. In this case, there are 2 concentrations (u,v) at
each lattice site and 3 discrete possible velocities per concentra-
tion (6 population densities overall). While concentrations can
be uniquely computed as the 0th moments of the populations,
e.g.,

u�x; t� =
3∑
i=1

Nu
i �x; t�; [4]

the opposite is not true. If a “coarse” initial condition (concen-
trations, zeroth moments) is specified, any 3 random numbers
(weights) wi summing up to 1 would be a possible choice, i.e.,

Nu
i �x; t� = wiu�x; t�: [5]

It so happens that in our LB–RPM the choice of initial weights
is not critical; initial disturbances caused by such random choices
decay much faster than the (macroscopic) time interval used in
the time-stepper (as we will discuss below).

Results and Discussion
We first constructed the bifurcation diagram of a detailed FD
discretization of the FHN model, to benchmark our RPM time-
stepper calculations. For a domain of length L = 20:0 with 200
discretization nodes, a Hopf bifurcation was found at ε 8 0:015
and a saddle-node at ε 8 0:944; the one-parameter diagram is
shown in Fig. 2, where �u�, the spatial average of u, is plotted
against ε.

We then implemented an RPM-continuation code around a
time-stepper employing an implicit Euler scheme for this dis-
cretization. The time-stepper reporting horizon, T, should cor-
respond to a time scale long enough for the fast modes (but not
the slow stable ones) to decay; for our problem T ranged from
15 to 25. Let us clarify that this is not an economic alternative
to direct bifurcation calculations for this problem; a single im-
plicit integration step clearly costs as much as a direct steady

Fig. 2. Bifurcation diagram (spatial average �u�, vs. ε) of the one-dimensional
FHN equations. Solid (dashed) line, stable (unstable beyond turning point) steady
states; open circles, unstable steady states beyond the Hopf bifurcation. (Insets)
Steady state profiles u(x) at representative ε values.
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Fig. 3. Blow-ups of the bifurcation diagram (a) near the Hopf point. Steady FD
code (FD-SS), stable branch (open diamonds), unstable (open squares); FD time-
stepper with RPM (FD-RPM), stable branch (solid line), unstable (filled triangles); LB
time-stepper with RPM (LB-RPM), stable branch (open circles), unstable (filled cir-
cles). (b) Near the saddle-node bifurcation. FD-SS (solid line), FD-RPM (open circles),
LB-RPM (filled circles).

state calculation; it is only done for RPM benchmarking. In the
RPM implementation around this time-stepper the dimension of
the subspace P was increased (by 1 or 2, depending on whether
one or two additional eigenvalues became “large” enough to im-
pede convergence). RPM enabled the time-stepper to converge
to unstable portions of the steady state branches, both beyond
the Hopf (Fig. 3a) and the turning point bifurcations (Fig. 3b),
and reproduce the bifurcation diagram. The dimension, m, of
P ranged from m = 0 (far from the instabilities) up to m =
3 as the instabilities were approached; the size of the reduced
Jacobians was therefore minimal (up to 3 3 3).

A Lattice–Boltzmann time-stepper was then implemented to
study the dynamics of the LB–FHN model. The lattice consid-
ered here had 400 sites. The model performance was first tested
against FD-based integrations. The spatiotemporal behavior of
u�x; t� on a limit cycle computed through the FD and the LB
time-steppers (at ε = 0:006) is depicted in Fig. 4 a and b, re-
spectively; the agreement is very good. Performing long, tran-
sient LB simulations for different values of ε, steady states of
the system can be computed, but only on the stable branch (see
Fig. 4c). The LB model, predicts (especially at higher values
of ε) slightly different stationary spatial profiles for u (and v)
from the steady state profiles of the FD code; the relative dif-
ference here is of the order of 7 1%, comparable with the FD
discretization error.

As mentioned above, a systematic way of converting nearby
coarse (macroscopic) initial conditions to consistent ICs of the
microscopic integrator is a vital issue for coarse stability calcu-
lations via RPM. A number of (reasonable) different LB initial-
izations was tested to ensure the robustness of the RPM pro-
cess. We had to translate 400 numbers (two concentrations at

Fig. 4. Spatiotemporal behavior of u on a limit cycle (ε = 0:006) computed by
LB (a) and FD (b) time-steppers. Dark (light) gray corresponds to higher (lower)
concentrations of u. (c) Comparison of FD-SS (solid line) and LB (dashed line) steady
states. (Inset) The front portion of the steady state u(x) profile, computed through
FD-SS (solid line) and LB (dashed line).

200 points each) to 2,400 numbers (three densities each for two
quantities at 400 lattice points, respectively). All of our initializa-
tion tests were performed for ε = 0:8, starting from a “coarse”
steady state profile on the stable branch, obtained by 200-node
FD simulations at a nearby parameter value (ε = 0:5). We used
three equal weights in Eq. 4 as well as random weights sum-
ming up to 1. We performed both “fine” and “coarse” initializa-
tions. For “fine” initializations, starting from the (interpolated)
steady state coarse concentration profile, three equal weights
(wi = 1/3) were first used as in Eq. 5 to initialize each popula-
tion at each lattice site. Triads of random weights (wi) with sum
1, different for each site, were also employed. For coarse ini-
tializations, starting from the same coarse steady state profile,
locally averaged values of u and v (u and v) every 10 consec-
utive FD nodes were calculated. These averages were used to
initialize (in a “step” fashion) the corresponding lattice site pop-
ulations through both equal and random weights. Even in the
more severe “coarse” case with random weights, the discrep-
ancy between (the projections on the zeroth moments of) dif-
ferent trajectories, caused by the different initializations, were
practically eliminated after times much shorter than the RPM-
time-stepper reporting horizon (after t 8 0:1 as compared to
T = 15− 25).

The LB time-stepper was then coupled to RPM, taking
enough microscopic collision/streaming steps to match the
macroscopic reporting horizon. The LB–RPM “microscopic”
system was able to accurately reproduce the “coarse” PDE bi-
furcation diagram in the neighborhood of the Hopf bifurcation
(Fig. 3a). Both stable and unstable branches converged on, were
essentially the same as the steady states computed through the
“coarse” code (the FD PDE discretization). This also holds in
the neighborhood of the saddle-node bifurcation; in this case
the discrepancy between the stationary states of the LB–RPM
and the steady states of the PDE was slightly more pronounced.

A natural byproduct of RPM-type methods applied to a dis-
cretized PDE time-stepper is the leading eigenspectrum of the
PDE Jacobian, reconstructed from the eigenvalues and eigen-
vectors of the small Jacobian in the slow subspace. The eigen-
values µi of this small “coarse Jacobian” at a fixed point of
the time-stepper are related to the eigenvalues λi of the “full”
coarse Jacobian of the system: µi = exp�λiT �. An attractive fea-
ture of the LB–RPM technique is that it correspondingly ap-
proximates the leading “coarse” eigenspectrum of the system
in question, from the approximated small “coarse” Jacobian. In
these simulations the dimension of this small Jacobian ranged
from 0 to 3. RPM also accurately predicted the value of ε where
eigenvalues cross the imaginary axis (here 7 0:015). Finally, the
leading eigenvectors of the system linearization were also suc-
cessfully reconstructed. They are depicted in Fig. 5 a and b for
ε = 0:01. In all cases the eigenvectors compare well with the

Fig. 5. (a) u- and (b) v-components of leading eigenvectors for ε = 0:01: FD-SS
(solid lines) and corresponding coarse LB-RPM (dashed lines). Pairs 1 and 2, real
and imaginary part of the leading eigenvector. Pair 3, eigenvector of the next (real)
eigenvalue.
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ones from the FD code despite the fact that they were recon-
structed from a small (three-dimensional) LB simulation-based
subspace.

Conclusions
What was illustrated here for LB-based time-steppers can, in
principle, also be accomplished for other microscopic (MC, MD)
or hybrid simulators [e.g., CONNFFESSIT, Brownian configura-
tion fields (12–14), and DSMC (15)]: the action of the (coarse)
Jacobian on the presumably low-dimensional subspace of slow
(or slightly unstable) coarse system modes can be approximated
through a (microscopic) time-stepper and used in (macroscopic,
“coarse”) bifurcation calculations. The use of repeated, rela-
tively short-term calls to the microscopic/hybrid time-stepper
sidesteps the necessity of deriving (and closing) a macroscopic
(coarse) equation for the system moments. What the approach
extracts from the microscopic time-stepper is precisely the min-
imal information required to perform the computational bifur-
cation analysis of a coarse PDE (or other types of coarse deter-
ministic evolution rules). Vital issues for the success of the

scheme are (i) the translation of coarse initial conditions to
“good” consistent microscopic realizations, and (ii) averaging
(if necessary) the evolution result of these microscopic ICs over
fine space and/or fine time and/or realizations to obtain the
corresponding coarse short term integration result (an accu-
rate coarse time-T map). We believe that the approach holds
promise for the systematic stability and parametric analysis of
the coarse dynamic behavior of a large class of systems described
through microscopic evolution rules. In a similar spirit (aver-
aging “detailed” time-stepper results over realizations of het-
erogeneous media rather than microscopic time-stepper results
over microscopic initial conditions) it may also play a role in
the stability/parametric analysis of the coarse dynamic behavior
of phenomena in complex media for which effective equations
are difficult to obtain [e.g., reaction and diffusion on composite
catalysts (16)].
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