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Abstract

Prion diseases are considered to be transmissible. The existence of sporadic forms of prion diseases such as scrapie implies
an environmental source for the infectious agent. This would suggest that under certain conditions the prion protein, the
accepted agent of transmission, can survive in the environment. We have developed a novel technique to extract the prion
protein from soil matrices. Previous studies have suggested that environmental manganese is a possible risk factor for prion
diseases. We have shown that exposure to manganese is a soil matrix causes a dramatic increase in prion protein survival
(,10 fold) over a two year period. We have also shown that manganese increases infectivity of mouse passaged scrapie to
culture cells by 2 logs. These results clearly verify that manganese is a risk factor for both the survival of the infectious agent
in the environment and its transmissibility.
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Introduction

Prion diseases or transmissible spongiform encephalopathies

(TSE) remains a major problem in several countries despite

concerted efforts to eradicate the disease. As the pattern of

incidence rules out spontaneous outbreak of disease, evidence

suggests the environment is the source of the infective agent

[1,2,3]. This agent may enter the soil via infected carcasses, meat

products or farm effluent [4]. It has been shown that some residual

infectivity remains after three years in soil that had been exposed

to infected material [5]. Natural processes in the soil such a

bacterial activity, exposure to UV radiation and soil acidity should

be deleterious for even the most resilient organic material.

The infective agent in prion diseases is now accepted to be an

abnormal isoform of the prion protein (PrP) [6]. Therefore, in order

for the infective agent to survive in the environment, significant

amounts of PrP must be able to resist normal mechanisms of protein

degradation and it is currently not known how this would be

possible. PrP is a metal binding protein with high affinity for copper

[7,8] but also has affinity for manganese similar to other manganese

binding proteins [9]. Interactions with metals may be able to

contribute to the proteins stability and resistance against degrada-

tion in soil. For example, it has been shown that manganese can

cause PrP to fold into a proteinase resistant form [10]. Certainly,

many metals exist within soils and it may therefore be possible that

these interactions contribute to PrP’s longevity in the environment.

There is also some evidence of high manganese and low copper

levels in areas of high scrapie incidence [11].

A clear understanding of how PrP interacts with soils is

important in order to assess whether metals contribute to the

stability of PrP in the environment.

The mechanism of protein adsorption on to soil particles is far

from straight forward. Complicating factors include soil pH and

constituents and protein PI, conformation, size, charge, solubility

and flexibility [12,13]. The majority of soil/protein interactions

have, therefore, been studied with model systems, especially with

constituent clays such as kaolinite (kte) and montmorillonite (mte).

One study [14] showed the importance of electronegative

interactions in the adsorbance of bovine serum albumin (BSA)

onto mte and how the strength of these interactions could alter the

conformation and properties of the protein. Other studies have

shown specifically the very strong adsorptive nature of soil clays to

proteins, especially prions. Leita et al [1] demonstrated the

difficulty in desorbing prions from clay, especially mte and

suggested that the conditions in most soils would favour an

accumulation of stable prions in soils exposed to contaminated

material. Another such study suggested that mte would promote

an orientation of PrP towards the soil involving elements across the

entire protein in both the N and C terminus, making the

adsorption almost irreversible in its strength [15]. Another study

confirmed that PrP could adsorb strongly to clay and remain

infectious [16]. With the protein/soil interactions well charac-

terised, it is possible to construct model systems whereby the

stability of both Metal bound and apo forms of PrPc and PrPsc can

be studied.

The connection between prion disease and metals is well

established. In particular, there is evidence that patients and

animals with TSEs have altered level of manganese often in

specific regions associated with the loss of neurons

[17,18,19,20,21]. Cells infected with prions show elevated levels

of manganese and also show increased expression of the protein

DMT-1 associated with uptake of manganese into cells [22].
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Altering the diet to increase manganese results in an increased

expression of PrP in the brain [22] and increased expression of PrP

is known to increase the chance of prion infection [23]. There is

already some evidence that altered copper levels modulate prion

infection in animal models of TSE but it is still unclear as to

whether manganese changes in the brain are secondary to prion

infection or whether the increase manganese increases suscepti-

bility to infection.

The aims of the study were to assess the stability of recombinant

PrP on a model soil over a period of 24 months in the presence or

absence of copper and manganese metals. The stability of PrPc

and PrPsc in the presence of soils and metals was also studied. We

also examine the ability of manganese to modulate infection of

cultured cells with scrapie. Our results demonstrate that

manganese dramatically increases PrP survival in soils and lowers

the effective dose needed to infect cells with scrapie.

Results

Adsorption properties of model soils
Initially, an evaluation of the total capacity of mte and kte for

PrP was carried out. Various amounts of mte from 0 mg to 12 mg

were added to 15 ml falcon tubes along with 5 ml of recombinant

mPrP to a final concentration of 0.2 mg/ml. The solutions were

stirred for two hours before being centrifuged at 8006g for

10minutes. The supernatant was collected and submitted to BCA

analysis. The amount of mPrP remaining in solution was recorded

and used to assess the amount that had adsorbed to the mte.

Controls that omitted the protein or mte were used. Figure 1

compares the capacity of the clays for the protein. Under the

conditions used, mte has an adsorptive capacity of 50 mg of mPrP

per mg of mte. The controls excluding the mte or protein prove

that no other factors are responsible for the data obtained. Based

on the known physical characteristics of the clay used, this gives a

specific adsorbance of 150 mg PrP/M22 mte. Kte has an

adsorptive capacity of 25 mg of mPrP per mg of kte. This

translates to a specific adsorbance of 750 mg PrP/M22 kte.

Therefore, 40 mg of both kte and mte was used to adsorb 1 mg of

protein for future experiments.

The Initial Desorption of mPrP from Kte and Mte
Previous reports have suggested that the adsorption of PrP to

clay is irreversible [15]. Various desorption conditions were

therefore tested to confirm whether desorption was possible. Mte

or Kte (40 mg) was added to 1.5 ml eppendorfs along with 1 ml of

recombinant mPrP to a final concentration of 1 mg/ml protein.

The tubes were then rotated for two hours at room temperature

before being centrifuged at 8006g for 10 minutes and the

supernatant collected. A variety of solutions were then added to

the tubes and thoroughly mixed by vortexing. The tubes were then

incubated for 10 minutes at either 25 uC or 100 uC. The solutions

used were sodium acetate at pH 3 or pH 5, MES/Tris at pH 8 or

pH 10, 10% SDS, Desorption buffer (100 mM Tris-pH 8, 10%

SDS, 7.5 mM EDTA, 100 mM DTT, 30% glycerol), 2 M sodium

chloride and MilliQ water. After treatment in the solutions, the

tubes were allowed to equilibrate to room temperature before

again being centrifuged at 8006g and the supernatant collected.

The supernatant was then submitted to BCA assay and Western

blot analysis. Two antibodies were used, ICMS-18 (anti PrP C-

terminal residues 143–153) and 8B4 (anti-PrP N-terminal residues

35–45). Table 1 summarises the attempts at the desorption of

mPrP from mte and kte. All methods were more efficient at

recovering the protein at 100 uC. By far the most successful

method was by boiling the mte in deadsorption buffer, which

yielded over 95% recovered protein.

When compared to fresh recombinant PrP, the desorbed

protein was smaller than expected (Figure 2) by around 2–

3 kDa. The antibody used, ICMS-18, is specific to the C-terminus

of the protein. An antibody raised to the N-terminus region 35–45

produced no reactivity to protein desorbed by any of the

conditions. This suggests that a section of protein at least 20

residues long is missing from PrP post deadsorption. It is not clear

at this stage whether this fragment is cleaved by the desorption

conditions or if it is left adsorbed to the clay.

Electrophoretic Desorption as Novel Method for
Desorption of Protein from Soils in it Native State

There is clearly a need to develop a method to remove the

adsorbed protein from the clay in a way that will allow for more

detailed analysis. A method that does not expose the protein to

high temperatures or harsh denaturing conditions was therefore

developed. The base idea behind the method is to use the proteins

existing electrostatic charge by developing a polar potential

difference across the clay, while trapping the substrate and

allowing the protein to deadsorb and become trapped on a

membrane. PrP is a basic protein with a PI of 9.6. Using this

theory, a desorption apparatus was constructed. Protein/clay

mixtures in 20 mM MES buffer, pH 5 were set in cooling

polyacrylamide gel inside plastic tubes of 5 mm diameter. A 20%

polyacrylamide plug was then set into the top of the tube to seal it

(Figure 3A). These tubes where then attached to 3 kDa

membranes at one end and set into 0.8% agarose gel. The gel

was then submerged in a gel tank containing TAE buffer, pH 5

and a current of 35 mV passed across the gel (Figure 3B). The

entire apparatus was cooled in ice to prevent overheating.

Electrophoretic desorption was tested using 40 mg amounts of

recombinant protein/clay mixtures that were electrophoresed for

24 hours. It is clear from figure 3C that the N-terminal region

previously lost by the harsh desorption conditions is still present

when the protein is extracted by this method. This method of

protein desorption was therefore adopted for further studies.

Extracts were prepared from SMB cells that express proteinase

K (PK) resistant PrP and also from SMB-PS that express only

PrPc, which is PK sensitive. Extracts from the cells were prepared

Figure 1. Adsorpative capacity of mte and kte for rPrP. The
equilibrium of adsorbed PrP to clay for kte and mte over a range of
aqueous protein concentrations from 0.4 to 1 mg/ml.
doi:10.1371/journal.pone.0007518.g001
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and absorbed onto Mte for six months. Electrophoretic desorption

was then used to extract the protein from the Mte and the

recovered protein was analysed with western blot (Figure 4). The

protein was clearly of the correct size. Adsorption/desorption to

the soil matrix had no effect on the PK resistance of the protein as

shown by treatment with 8 mg/ml PK for 1 hour at 37uC.

Effect of Metals on Long Term Survival of PrP on a Soil
Matrix

In order to investigate whether key metals played any role in the

stabilisation of PrP in soil, mte was mixed with copper or

manganese. 1 mM solutions of the sulphate salt of each metal were

mixed with mte for 2 hours shaking at room temperature.

Previous work has shown the adsorpative capacity of mte for Cu

and Mn to be relatively equal, with the clay having a capacity of

3.04 mg/g for Cu and 3.22 mg/g for Mn [24]. The mixture was

then centrifuged to sediment the soil matrix and the supernatant

discarded. The clay was then dried in a dessicator for 72 hours

before use. Experiments were also carried out as before to assess

the PrP binding capacity of mte after exposure to the metals. No

significant differences were observed in the binding capacity of

mte and mte-Cu or mte-Mn for rPrP. rPrP solutions of 1 mg/ml

were then mixed with 40 mg of mte to produce an aqueous metal/

soil/protein mixture and incubated at room temperature for either

0 or 24 months. The protein was then extracted from the clay by

the electrophoretic desorption as described above and analysed by

western blot and immunodetection for PrP. In each case following

desorption, 30 ml of the sample was loaded on the gel.

Densitometric analyses was carried out using the Adobe Photo-

shop package and subjected to ANOVA tests. Figure 5 shows the

blot for the protein extracted immediately after 24 hours

incubation on the clay. It is clear from figure 5 that, after 2 years

incubation on the clay, PrP is able to survive better when in the

presence of metals, especially manganese. Relative to the

manganese condition, there is around half as much protein

recovered from the clay with copper (n = 3, p,0.001) and around

Figure 2. Desorption Causes Protein Truncation. Blot comparing protein desorbed from the clay probed with (i) ICMS-18 and (ii) 8B4 ant-PrP
antibody. The conditions are compared with 1) Fresh recombinant PrP and rPrP desorbed from mte with 2) 10% SDS 25uC, 3) desorption buffer 25uC,
4) 2 M NaCl 25uC, 5) 10% SDS 100uC, 6) desorption buffer 100uC, 7) 2 M NaCl 100uC.
doi:10.1371/journal.pone.0007518.g002

Table 1. Summary of the results from the methods used to deadsorb PrP from mte and kte.

Desorption Solution Temperature (uC) Amount of mPrP released from mte Amount of mPrP released from kte

mg % mg %

Sodium acetate pH 3 25 0.05 5 0.01 1

Sodium acetate pH 5 25 0.04 4 0.01 1

MES/Tris pH 8 25 0.09 9 0.03 3

MES/Tris pH 10 25 0.09 9 0.05 5

10% SDS 25 0.18 18 0.09 9

Desorption buffer 25 0.39 39 0.20 20

2 M Sodium Chloride 25 0.13 13 0.07 7

MilliQ water 25 0.01 1 n/d n/d

Sodium acetate pH 3 100 0.14 14 0.11 11

Sodium acetate pH 5 100 0.10 10 0.10 10

MES/Tris pH 8 100 0.11 11 0.09 9

MES/Tris pH 10 100 0.14 14 0.10 10

10% SDS 100 0.28 28 0.24 24

Desorption buffer 100 0.95 95 0.70 70

2 M sodium chloride 100 0.24 24 0.21 21

MilliQ water 100 0.05 5 0.08 8

n/d–not detected.
doi:10.1371/journal.pone.0007518.t001
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6 times less protein from the clay with no metals present

(p,0.001).

In order to verify that this result with recombinant protein was

relevant to native protein, the experiment was repeated with

protein extracted from SMB cells. Again the protein was absorbed

to Mte and left under aqueous conditions for 24 months. After that

time the protein was deadsorbed eletrophoretically and the

amount of PrP remaining assessed by western blot and

immunodetection (Figure 6). The extracts from the aqueous soil

with no metals present (lane 1) show only traces of protein

remaining. Densitometric analyses reveals only 863% protein

present relative to the manganese condition (n = 3, p,0.01). The

Figure 3. Electrophoretic Desorption. A Schematic diagram of the
desorption device. The cartridge with the membrane at the base is
loaded with the components as indicated. The agarose component is
mixed with the sample and added over the buffer when the cartridge is
in the upright position. Once the agarose has solidified the
polyacrylamide plug is added. B The cartridge with the components
added is laid flat in a standard DNA electrophoresis chamber. Buffer is
then added to cover the cartridge and current applied. C Western blot
of recombinant PrP detected with and antibody 8B4. The protein was
the same molecular weight before and after absorption and desorption
from the mte clay matrix and retained its N-terminus.
doi:10.1371/journal.pone.0007518.g003

Figure 4. Desorption of Cell Extracts and PK resistance. Western
blot and immunodetection for PrP (ICMS-18) of the cell extracts
following desorption from mte after 6 months incubation. Desorbed
samples were divided in two and half was treated with PK. The results
show that the mte retained PK resistant and non resistant protein
equivalently.
doi:10.1371/journal.pone.0007518.g004

Figure 5. Metals and Survival of recombinant PrP. Western blots
to detect PrP (ICMS-18) in recombinant PrP desorbed from mte after
either 0 or 24 months. Samples of fresh control protein (con) not
absorbed to the mte were also run on the same blots. The mte was
either treated with no additional metals (H2O) or with the addition of
manganese of copper. Densitometric analyses of 3 western blots for
each condition is shown at the bottom. Quantitation was of the 25 kD
band. All intensity readings are relative to the protein desorbed from
the mte with manganese. Shown are the mean and s.e.
doi:10.1371/journal.pone.0007518.g005
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extracts from the aqueous clay in the presence of copper (lane 2)

show evidence of an increase in protein stability, but have still

suffered significant degradation, with only 1662% protein relative

to the manganese (p,0.001). The extracts from the clay

containing the infectious material in the presence of manganese

(lane 3) show a considerable amount of PrP still remaining.

Role of Metal Binding Sites on Protein Survival
It is well established that histidines in the N-terminus of PrP are

important for the copper binding properties of PrP. We have

generated a mutant form of PrP with the six histidines in the N-

terminus (four in the octameric repeat region and the histidines at

residues 95 and 110) with substitution mutations for alanine. We

have previously shown that this mutant does not bind copper [8].

In parallel with wild-type protein, this recombinant PrP mutant

protein was absorbed to Mte for two years and then electropho-

retic deadsorption was used to recover the protein as described

above. After analysis by western blot (Figure 7) it was clear that in

comparison to the manganese treated samples, the metal free and

copper treated samples were more degraded than the wild-type

protein (compare Figure 5). The implication of these findings is

that the histidines present in the N-terminus of the protein provide

stability for PrP bound to a soil matrix. However, the stability

resulting in the interaction with manganese is far greater and is not

dependent on the histidines of the N-terminus.

Manganese and Infectivity
We have demonstrated that manganese present in a model soil

can enhance the survival of PrP. We have also previously shown

that manganese binds to PrP [9]. What remains to be determined

is whether manganese enhances the infectivity of prions. We used

a cell cultured based assay system. Uninfected cells (SMB-PS),

stably overexpressing mouse PrP via transfection with the plasmid

pCDNA3 carrying the open reading frame of mouse PrP, were

cultured at 50% confluence and treated with an extract from SMB

cells (infected cells) at a range of dilutions from 1:10 to 1 to 104 .

The cells were exposed to the extract for four days after which the

cells were washed to remove any residual extract and maintained

in culture for a further 7 days. Extracts were prepared from the

cells and treated with PK before gel electrophoresis and western

blotting to detect PrP. The presence of PK resistant PrP via

western was considered indicative of successful infection. Under

these conditions infection was only seen at the 1:10 dilution

(Figure 8). Higher dilutions did not result in detectible PK resistant

bands. The experiments were repeated in the presence of 50 mM

MnSO4 in the culture media during the 4 day infection period.

Following similar analysis PK resistant bands were also observed

Figure 6. Metals and the survival of native PrP. SMB cell extracts
were applied to mte and the residual protein desorbed 24 months later.
Western blot and immunodetection for PrP (ICMS-18) were used to
detect the relative amounts of PrP that survived the incubation. The
mte either contained no additional metals (H2O) or copper and
manganese. Densitometric analyses of 3 western blots for each
condition is shown at the bottom. Quantitation was of the visible
bands. All intensity readings are relative to the protein desorbed from
the mte with manganese. Shown are the mean and s.e.
doi:10.1371/journal.pone.0007518.g006

Figure 7. Role of metal binding sites in PrP survival. A
recombinant PrP mutant was generated that had the six N-terminal
histidines replaced with alanines. This mutant has greatly diminished
metal binding capacity. This protein was also absorbed to mte and then
desorbed after 24 months. A sample of fresh control protein (con) not
absorbed to the mte was also run on the same blot. The mte was either
treated with no additional metals (H2O) or with the addition of
manganese of copper. Densitometric analyses of 3 western blots for
each condition is shown at the bottom. Quantitation was of the 25 kD
band All intensity readings are relative to the protein desorbed from the
mte with manganese. Shown are the mean and s.e.
doi:10.1371/journal.pone.0007518.g007

Prion Survival and Infectivity

PLoS ONE | www.plosone.org 5 October 2009 | Volume 4 | Issue 10 | e7518



for the 1:102 and 1:103 dilutions as well as the 1:10 dilution

observed for controls (Figure 8). The implication is that the

infectivity of the SMB extract was increase by 100 fold by the

presence of manganese. These results demonstrate that manganese

enhances prion infection.

Infection experiments were also attempted with Mn-PrP

desorbed from the clay matrices. Treatment of the cells resulted

in significant cell death. This prevented analysis of the infectivity of

the desorbed protein. This was possibly due to trace amounts of

the clay matrix remaining associated with the protein.

Discussion

There is a strong need to establish how TSE’s are transmitted

from one infected entity to another. Without this knowledge, the

full eradication of the disease from both animal and human

populations will remain little more than a pipedream. Most

evidence suggests that the mode of infection within animals is via

the ingestion of infected material [25] and that some of this

material is sourced from the environment such as contaminated

soil that animals graze [15,26,27,28]. As the TSE’s are caused by

an infectious protein [6,29], this evidence raises more questions

than it answers, the primary one concerning the proteins

mechanism of stability within soil.

There have been many attempts to correlate unusual distribu-

tions of soil metals and minerals with incidence of TSE

outbreak [16,30,31,32,33,34,35,36,37]. These studies have pro-

duced a varied group of results, some strongly suggesting that

soil mineral and metal contents are important for survival

[11,30,31,34,37,38,39] and others suggesting otherwise [32]. Of

these studies, many have highlighted imbalances of copper and

manganese as possible factors [11,30,31,21,35]. When this factor is

combined with evidence showing these metals have significant

affects on protein stability [10] and that infected animals show

imbalance of these metals [17,19,20,21,40] there is clearly a need

to assess what affect these metals have on PrP in soil.

The first aim of this study was to assess whether it was possible

to remove PrP once adsorbed to the surface of common minerals

found in soils. However, normal soils are an unacceptable medium

for rigorous scientific analysis because of the multiple variables

present in their constituents. The clay montmorillonite is used to

provide a controlled substrate for the analysis because of its highly

defined character. Initial attempts to remove the protein from the

clay provided evidence of just how strong the PrP-mte association

is. Despite all the methods tested, it was impossible to remove

much protein unless severe denaturing and heat treatments were

used. These methods, although effective, meant that any useful

information stored within the protein would be lost on desorption.

Additionally, significant degradation to the protein was observed

which proved to be N-terminal loss, an element not only required

for infection but also for stable adsorption to the clay [41]. This fits

in well with other tandem studies that have shown PrP is difficult

to remove [1,16,25,27] or even impossible [15]. A previous study

[16] also demonstrated N-terminal loss on extraction from a clay

matrix. None of these methods are therefore suitable for removing

protein from the clay matrix.

A previous attempt has been made to extract rPrP from mte

using electrophoretic methods [42]. This study relied on harsh

denaturing conditions involving SDS and DTT but we wanted to

devise an extraction process which would avoid such conditions.

Additionally, the study relied on the charge conferred to the

protein by SDS binding. All proteins carry a specific charge at pH

above or below their point of ionisation (PI). For PrP, a basic PI of

9.6 confers a strong positive charge at neutral or acidic pH. By

using this property of protein, PrP was removed successfully from

the clay using electrophoretic desorption without any need to

denature secondary structure. This allowed for an assessment of

how well the entire protein survived on the clay over time. Even in

the absence of metals, rPrP resisted degradation remarkable well

and after 24 months some trace amounts were still detectible. This

supports other studies which have shown increased PrP stability

when associated with clays [16,37]. In fact, these studies have

demonstrated that PrP may even be more infectious via oral

ingestion when associated with clay. However, a period of around

2 years does appear to reduce the amount of PrP surviving

significantly. There was a clear difference between protein

adsorbed to clay with metals present and absent. PrP adsorbed

to a Cu-mte matrix resisted degradation significantly better than

that adsorbed to clay alone, although after 2 years exposure, the

majority of the protein had degraded to a 16 kDa fragment. The

most striking effect was when protein was adsorbed to a Mn-mte

matrix. Even after 24 months, there was little evidence of any

significant degradation and the full length protein was still

apparent on Western blots. This effect was mirrored by the

studies using cellular and disease PrP, an important fact that

demonstrated that neither the PK resistance nor glycosylation of

the protein play a significant role in the proteins stability in soil.

The implication is that the presence of manganese in the soil is the

main governing factor as to whether the protein is degraded or

not. This observation is closely supported by studies showing that

manganese can cause PrP to fold into a protease resistant form

[10] and further studies highlighting increased manganese levels in

Figure 8. Manganese Enhances Infectivity of Prions. SMB-PS
cells, transfected to overexpress mouse PrP, were treated with or
without manganese while exposed to PK treated extracts from scrapie
infected SMB cells. Different dilutions of the extracts were applied. After
treatment and further incubation, protein extracts were prepared from
the treated cells. Half of each extract was treated with PK and
equivalent amounts electrophoresed and western blotted. Immunode-
tection of PrP showed bands corresponding to PrP in all PK untreated
lanes but bands were only present in PK treated lanes where infection
was successful. Treatment with manganese increased the sensitivity of
SMB-PS cells to infection. Experiments were repeated 4 times with the
same result.
doi:10.1371/journal.pone.0007518.g008
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brains of affected individuals [21]. It also provides a potential link

to whether studies showing elevated manganese in soil are relevant

to disease outbreak [11,30,31,32,33]. It should be noted, however,

that many other factors present in soil would accelerate protein

degradation, such as microbial activity. However, given the 10 fold

difference in PrP survival in the presence of manganese, if PrP was

to survive it is mostly likely to be in a manganese rich soil matrix.

Our laboratory has previously demonstrated some interesting

consequences when manganese is bound to PrP, not least the

dramatic affects on the protein’s redox chemistry [9]. Our work

showed that the protein was capable of taking part in and being

altered by manganese catalysed redox chemistry that could

significantly alter the properties of PrP. This ties in well with

other work that demonstrated an affect by manganese oxides on

PrP [36], although this study did suggest a deleterious affect,

although not in the presence of soil, and with a form of manganese

that would be extremely toxic to animals.

The mechanism of PrP stabilisation in the presence of

manganese does not appear to involve known metal binding

elements within the protein. Studies with Mn-mte using a mutant

PrP with all N-terminal histidines removed did not reduce the

proteins resistance to degradation when compared to wildtype

protein. This suggests that the interaction between Mn and PrP

that allows increased survival is via the low affinity site associated

with the octa-repeat region in the N-terminus [9] or elsewhere in

the protein.

While the ability of the protein to survive in soil is an important

aspect of transmission from the environment, infection requires

interaction of the protein with cells. Although manganese has been

suggested as a risk factor for increased infection, there is currently

no evidence that it alters susceptibility to infection. Our data

provides evidence for a 100 fold increase in cellular sensitivity to

infection in the presence of elevated (non-toxic) manganese levels.

These data provide another link in that while manganese may

enable prion survival in soil, it would also endow a selective

advantage to PrPSc with manganese bound to cause infection in an

animal when ingested. In other words a Mn associated prion is a

100 times more likely to cause infection than a ‘‘metal-free’’ prion.

While numerous reports about TSE associations with manganese

rich areas have suggested that increased ingestion of Mn leads to

increased TSE incidence are possibly misguided in that dietary

absorption of manganese is highly limited [43], the possibility that

the environment might allow prions to survive and be more

infectious is a possibly more reasonable hypothesis.

In conclusion, soil metals do have a significant affect on PrP

stabilisation on clays. This is in addition to an already striking

ability for the protein to stably adsorb to minerals in soils and

survive the harsh conditions in the soil environment. It is therefore

possible that where areas of high manganese are present, PrP in

both its cellular and disease forms could survive for longer periods

and hence potentially be transmitted to new hosts. The association

of PrP with manganese potentially makes prions more infectious as

cell culture studies show increased susceptibility to infection in the

presence of elevated manganese. These results suggest that

methods to separate prions from manganese might render them

less infectious.

Methods

Unless stated all materials were purchased from Sigma.

Model Clays
The two most commonly used model soil systems used for

protein-soil interaction studies are montmorillonite (mte) and

kaolinite (kte). Mte is a mineral clay of the smectite family and very

well defined. Its composition is (Na,Ca)0.33(Al,Mg)2Si4O10(OH)2
[13]. The Aluminium atoms are situated between two silicon

layers sharing the valancies of the oxygens. This forms a

tetrahedral structure with an expandable gap between interlayers.

This space cannot expand beyond 2 nm [44] and will therefore

not allow globular PrP to pass into the clay structure. Kaolinite is

another silicate mineral of the phyllosilicate family and is also very

well defined, with a composition of Al2Si2O5(OH)4 [13]. It is a

layered silicate mineral, with one tetrahedral sheet linked through

oxygen atoms to one octahedral sheet of alumina octahedral [45].

Again, the gap between sheets does not allow for passage of large

globular proteins into the clay.

Recombinant Protein Generation
Wild-type recombinant mouse prion protein and mutants were

prepared as previously described [46]. Briefly, bacterial expression

was used to generate recombinant protein. Bacteria were

transformed with a plasmid (pET) containing the open reading

frame of wild-type mouse PrP (amino acid residues 23–231) or

mutants of this construct. Protein expression was induced with

1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) and inclu-

sion bodies isolated from the bacteria with standard techniques.

The inclusion bodies were solubilised in a buffer containing 8 M

urea. Recombinant PrP was purified using immobilised metal

affinity chromatography (IMAC). The column was charged with

copper and the protein bound to the column eluted with 300 mM

imidazole in 8 M urea. All proteins were generated tag-free.

0.5 mM EDTA was added to the protein to chelate any metals

present. All subsequent steps used double deionised water treated

with Chelex resin, to remove residual metal ions. The denatured

protein was refolded by a ten fold dilution of the urea in deionised

water, concentration by ultra-filtration and two rounds of dialysis

to remove residual urea, imidazole and EDTA. Protein concen-

trations were measured using theoretical extinction coefficients at

280 nm (http://us.expasy.org/tools/protparam.html) and con-

firmed by BCA assay (Sigma). Protein purity was checked using

polyacrylamide gel electrophoresis under denaturing conditions

stained with Coomassie brilliant blue.

Bradford Assay
Triplicate protein standards of 0 to 1 mg/ml bovine serum

albumin (BSA) in 0.1 mg/ml intervals were prepared using MilliQ

water to 10 ml. For each protein of interest, 10 ml samples were

also prepared. Bradford reagent was then diluted 5 fold n MilliQ

water. 1 ml of this solution was then added to each of the

standards and samples, vortexed and incubated at 25uC for 5

minutes. The solutions were then transferred to plastic cuvettes

and spectrographically analysed at 595 nm in a Cary UV Vis

spectrophotometer. From the standards, a calibration curve was

calculated and used to determine the protein concentration of the

samples.

Western Blotting
Protein samples of either recombinant protein or from cultured

cells were electrophoresed on 12% polyacrylamide gels. Protein

immobilised within the gel was transferred to a PVDF membrane

by a semi-dry transfer method. Blotting paper was soaked in

transfer buffer (500 ml 1 x running buffer, 200 ml methanol and

300 ml ddH2O). PVDA membrane (pre-soaked in methanol) was

placed on top of the blotting paper with the 2D gel placed on top

of this. A final piece of blotting paper was placed on top. The

transfer was run for 90 minutes at 50 mA, 25 V using a Bio-Rad

semi-dry blotter. The membrane was then blocked in tris buffered
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saline containing 0.1% (v/v) Tween and 5% (w/v) (TBS-T) milk

powder for 1 hour, shaking. Membranes were probed with either

ICMS-18 or 8B4 monoclonal mPrP primary antibody. After

rinsing the membrane in TBS-T 3 times, the antibody was diluted

15000 times in TBS-T containing 5% milk powder overnight at

4uC overnight. The membrane was then washed again in TBS-T 5

times before being incubated to secondary HRP antibody, again

diluted 15000 times in TBS-T containing 5% milk powder for 45

minutes at room temperature. Following extensive washing in

TBS-T, the membrane was developed for 2 minutes with ECL

reagent and exposed to film for between 15 seconds and 30

minutes. A Compact X-ray processor was used to develop the film.

The relative amount of protein present on the blot was quantified

using the densitometer function in Adobe Photoshop.

Cell Culture
The cells used to prepare PrP rich extracts were SMB (scrapie

mouse brain) which express PrPSc and the pentosan sulphate cured

control line (SMB-PS) which only expresses PrPc [47] were

maintained at 37uC and 5% CO2 in a humidified incubator. Cells

were cultured in DMEM (Lonza) supplemented with 10% FBS

(Lonza) in 75 ml culture flasks. Following achievement of 95%

confluency, cells were split 1 in 4 to ensure continued health. This

was carried out by aspirating off the used media and releasing the

cells by digestion with 2 ml trypsin (Lonza) for 5 minutes at room

temperature. Trypsin was then inactivated by the addition of

10 ml fresh media and the cells divided into 4 fresh flasks.

For infection experiments SMB-PS cells were plated at 50%

confluency in 6 well trays. An extract in PBS was prepared from

SMB cells by scraping the cells from the flask. The extracts were

sonicated and the debris pelleted by centrifugation at 14 k r.p.m.

The protein content of the supernatant was quantified and diluted

to 200 mg/ml before digestion with 50 mg/ml proteinase K (PK)

for 1 hour at room temperature. The PK activity was inhibited by

the addition of pefabloc (Roche). Dilutions of the PK treated

extract were then added to the cells for four days. After that time

the extract was removed and the washed with fresh medium which

was then replaced. The cells were then incubated for a further

seven days before the cells were harvested again by scraping the

cells from the wells. The cells were extracted in PBS with 1%

igepal. Extracts were divided into two halves. Half of which was

treated with PK before electrophoresis, western blot and

immunodetection for PrP.
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