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Abstract
The epithelial cells of multicellular organisms form highly organized tissues specialized for the tasks
of protection, secretion and absorption, all of which require tight regulation of the core processes of
cell polarity and tissue architecture. Disruption of these core processes is a critical feature of epithelial
tumors. Cell polarity and tissue architecture are intimately linked, as proteins controlling cell shape
are also responsible for proper localization and assembly of cell-cell junctions and three-dimensional
tissue organization. The extracellular matrix underlying epithelial tissues supports tissue architecture
and suppresses malignant growth through regulation of cell adhesion and activation of protective
signaling cascades. Emerging evidence is uncovering the mechanisms by which polarity pathways
alter the way epithelial cells organize and interact with the tissue microenvironment to promote
aberrant growth and invasion during tumorigenesis. We discuss how cell polarity pathways regulate
cell-cell junctions and highlight the new insights gained by investigating the role played by polarity
pathways during transformation of epithelial cells.

Introduction
Normal epithelial cell structure and organization is lost early during tumorigenesis. We are far
from developing an understanding of the molecular mechanisms by which cell and tissue
structure is lost during carcinogenesis, however, we are beginning to understand how epithelial
cells establish structure and undergo morphogenesis during development. Cell-cell adhesions
play critical roles during establishment and maintenance of cell structure and tissue
organization and hence understanding how they are regulated is likely to provide novel insights
into the mechanisms by which cell and tissue structure is lost in carcinoma.

Epithelia in glandular structures contain an apical membrane that faces the lumen and a
basolateral surface that interacts with the neighboring cells and the basement membrane. This
asymmetric organization is referred to as apical-basal cell polarity and is a characteristic trait
of epithelial cells. Cell-cell adhesions are mediated by different types of junctional complexes,
including tight junctions (TJ), adherens junctions (AJ), gap junctions and desmosomes. These
junctions are comprised of transmembrane proteins with extracellular domains that mediate
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interactions between neighboring cells and intracellular surfaces that facilitate interaction with
signaling molecules and cytoskeletal proteins. In polarized epithelial cells, the junctional
complexes are asymmetrically localized. For example, TJ are located at the apical-basal border
and act to separate the apical and basolateral membrane domains, hold adjacent cells together
and create an impermeant fluid barrier between cells [1]. Adherens junctions are located basal
to the tight junctions and are considered as primary determinants of cell-cell adhesion [2]. The
mechanisms by which cells develop cell-cell junctions and localize proteins to create the
intracellular asymmetry are an active area of investigation. Most of our understanding of the
molecular mechanisms by which cell polarity is established and maintained stems from genetic
studies in model organisms and biochemical studies in cultured epithelial cells. This review
will focus on how cell polarity pathways regulate the establishment and maintenance of cell-
cell junctions and highlight the new insights gained on initiation and progression of carcinoma
by investigating the role played by polarity pathways during transformation of epithelial cells.

Cell junctions and polarity pathways
The spatially asymmetric localization of these junctional complexes are mediated by an
evolutionarily conserved class of proteins that are herein referred to as polarity proteins [3].
Functional analysis of the polarity determinants in a broad array of model organisms has
resulted in their placement into three functional groups: the Crumbs complex, the Scribble
complex and the Par complex. The apical domain is specified by the Crumbs complex, which
is made up of the transmembrane protein Crumbs (Crb) and intracellular signaling adaptors
PALS1 (Protein associated with lin-7) and PATJ (PALS1-associated tight junction protein)
[4]. The basolateral domain is thought to be specified by the Scribble complex, consisting of
signaling adaptors Scribble (Scr), Discs large (Dlg) and Lethal giant larvae (Lgl) [5]. The sub-
apical domain that defines the apical-basal border is specified by the Par (Partitioning
defective) complex, which consists of Par3, Par6, atypical protein kinase C (aPKC) and Cdc42
[6]. These protein complexes cross regulate each other during epithelial polarization. For
example, in addition to its role in regulating tight junctions formation, Par6 interacts with the
Crumbs complex [7] and aPKC negatively regulates Lgl [8-10] (Figure 1).

Cell polarity proteins regulate tight junctions
Tight junctions are composed of transmembrane proteins such as occludins and claudins and
intracellular proteins such as Zonula occludens 1 (ZO-1) that coalesce apical to adherens
junctions and seal the spaces between neighboring epithelial cells, separate apical and basal
membrane domains, and interact with the cytoskeletal network [1]. The Par3/Par6/aPKC
complex localizes to mammalian TJs and is required for TJ assembly and maintenance [11,
12]. Overexpression of Par6 in Madin-Darby canine kidney (MDCK) epithelial cells disrupts
the localization of Par3 at cell-cell adhesion sites and alters TJ structure as measured by
mislocalization of the TJ marker ZO-1 (zona occludens-1) [12]. Par3 mediates it's effects on
TJ formation through a direct interaction with junctional adhesion molecule (JAM), a TJ
component that associates with ZO-1 [13]. Par3 localizes to the apical region of TJs and
overexpression of Par3 in MDCK cells leads to rapid onset of transepithelial electrical
resistance (TER), a hallmark of TJ function [14]. In addition, loss of Par3 disrupts TJ formation,
and rescue experiments provided evidence that Par3 coordinates TJ assembly through its C-
terminus, independently of interaction with Par6, JAM and aPKC [15]. However, inhibition
of aPKC activity, through the expression of a dominant negative aPKC mutant, leads to aberrant
redistribution of Par3 and ZO-1 during TJ assembly [16], suggesting that aPKC is required for
TJ formation.

The nature and identity of targets of the Par complex that are required for TJ assembly are only
beginning to be understood. The C-terminal region of Par3 binds directly to the Rac guanine
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nucleotide exchange factor (GEF), Tiam1. Loss of Tiam1 alone disrupts TJ formation in
epidermal keratinocytes [17]. While Tiam1 is not required for development of primordial
junction complexes, it is required for maturation of tight junctions in a Rac1 activation
dependent manner [17]. It is likely that Par3 localizes Tiam1 to sites of developing cell-cell
adhesions and activates Rac to promote TJ maturation [15]. Par3 also regulates actin dynamics
at the TJ through inhibition of LIM kinase 2 (LIMK2) activity, which leads to activation of
cofilin and promotion of TJ formation [18].

Phosphorylation of Par complex components plays critical roles in the regulation of TJ
maintenance. Activation of epidermal growth factor receptor (EGFR) signaling leads to
phosphorylation of Par3 by c-Src and c-Yes and subsequent dissociation of the Par3/LIMK2
interaction [19]. The protein phosphatase PP2A accumulates at TJs, binds to aPKC and inhibits
aPKC activity, leading to impaired TJ assembly [20]. Similarly, the protein phosphatase PP1
associates with Par3 and regulates the Par3/aPKC interaction [21]. These results underscore
the possibility that signaling pathways that alter TJ dynamics interact with and post
transcriptionally modify the Par polarity proteins.

Par complex also interacts with other polarity complexes. Expression of Crb3 in a human
mammary epithelial cell line, MCF-10A, which lacks TJs, induces de novo TJ formation,
highlighting the importance of this complex in TJ assembly [22]. Crb3 can either interact
directly with Par6 or indirectly through PALS1 [7,23]. Expression of a dominant negative
PATJ in MDCK cells led to redistribution of PALS1 and aPKC away from TJs [7]. Par complex
proteins also interact with the basolateral polarity proteins. For example, aPKC phosphorylates
and inactivates Lgl [8-10] and Lgl is required for the disassembly of Par3-Par6-aPKC complex
in remodeling epithelia [24]. Thus, polarity proteins form an intricate signaling system within
epithelial cells to assemble and maintain TJ integrity.

Cell polarity proteins regulate adherens junctions
The role polarity proteins play during AJ biogenesis and function is only begining to be
understood. Several polarity proteins have been implicated in AJ formation and maintenance
through regulation of E-cadherin. The basolateral polarity protein Scr is recruited to AJs in an
E-cadherin-mediated manner, and loss of E-cadherin in human colorectal adenocarcinoma
Caco-2 cells results in Scr mislocalization [25]. Loss of Scr decreased cell adhesion in a cell
aggregation assay, although no changes were observed in levels of cellular E-cadherin.
However, cells lacking Scr were deficient in binding to tissue culture plates coated with the
extracellular domain of E-cadherin, suggesting a role for Scr in E-cadherin-mediated cell-cell
adhesion. There has been no evidence of a direct interaction between Scribble and the E-
cadherin complex, so it is likely that Scribble regulates E-cadherin in an indirect manner.
Similarly, Dlg co-localizes with E-cadherin and knockdown of Dlg in Caco-2 cells inhibited
the localization of E-cadherin and F-actin at cell junctions [26]. At the AJ, Dlg binds directly
to PI3K (phosphatidylinositol 3-kinase) and is required for E-cadherin-mediated signaling.
Finally, loss of PALS1 in MDCK cells disrupts AJ formation and E-cadherin localization
[27]. In PALS1-deficient cells E-cadherin is retained in intracellular puncta suggesting a role
for PALS1 in E-cadherin exocytosis to the plasma membrane. Thus, analysis of cell polarity
proteins are providing novel insights into the mechanisms by which AJ are formed and
maintained.

Cell polarity, epithelial morphogenesis and cancer initiation
In addition to regulating cell junctions, cell polarity pathways also play important roles during
morphogenesis of epithelial cells. Disruption of polarity, by overexpression or loss of polarity
proteins, induces defective morphogenesis. When plated on a bed of extracellular matrix, the
MDCK and MCF-10A cells undergo a programmed morphogenetic process that results in
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formation of three dimensionally organized glandular structures composed of polarized
epithelial cells surrounding a central lumen. These model systems have been used extensively
to study the role played by polarity proteins during three-dimensional morphogenesis.
Overexpression of Crumbs or downregulation of Junctional adhesion molecule-A (JAM-A) in
MDCK cells significantly delays establishment of apical polarity in monolayer cultures and
blocks lumen formation in 3D cysts [28,29]. Par6 and aPKC are required for lumen formation
in MDCK cysts, regulating both polarization and cell death through a pathway involving
glycogen synthase kinase 3β [30]. We have shown that deregulation of Scribble in MCF-10A
cells, while only producing moderate effects on establishment of apical-basal polarity,
significantly blocks morphogenesis by inhibiting cell death during lumen formation in 3D
structures [31]. Loss of Lgl re-orients the apical membrane to the basal surface and blocks
lumen formation in MDCK cells [24] demonstrating that disruption of polarity proteins can
significantly affect morphogenesis. Furthermore, components of the polarity complex such as
Rac1 and Cdc42 are critical regulators of MDCK and Caco2 3D morphogenesis where they
play critical roles during polarization of MDCK cells and establishment of normal lumen in
3D cysts [32-34].

Consistent with the role for polarity proteins in tissue morphogenesis, loss of polarity proteins
can initiate tumorigenesis in animal models of cancer. For example, downregulation of Scribble
is sufficient to induce initiation of mammary tumors in an immortalized pluripotent mouse
mammary epithelial cell line that harbors a mutant allele of the tumor suppressor gene p53
[31]. Loss of Crb3 is required for loss of contact inhibition of mouse kidney epithelial cells
[28,29] and loss of Lgl1 results in severe dysplasia in the mouse brain [35]. Loss of the polarity
proteins can directly deregulate cell adhesion processes, which in turn will disrupt
morphogenesis and promote tumorigenesis. Consistent with this notion, loss of E-cadherin
cooperates with p53 to induce invasive mouse mammary tumors [36]. Thus, cell polarity
pathways are likely to constitute a new class of tumor suppressors, disruption of which can
initiate tumorigenesis (Figure 2).

Cell polarity pathways function downstream of oncogenes
Oncogenes transform cells by deregulating multiple processes including cell proliferation and
apoptosis proliferative pathways and disrupting of apoptosis. In addition, oncogenes have been
known to disrupt cell polarity and architecture of epithelial cells, although the mechanisms by
which this process is accomplished are just beginning to be uncovered. While high levels of
expression of v-Src are sufficient to transform MDCK cells, low levels of v-Src in MDCK cells
are unable to induce anchorage independent growth. However, cells expressing low levels of
v-Src have defective cell-cell junctions and are unable to undergo normal 3D morphogenesis,
suggesting that the ability of epithelial cells to form proper cell-cell junctions and undergo
normal morphogenesis is exquisitely sensitive to the presence of aberrant oncogenic signals
[37]. In addition, aberrant expression of genes associated with cell transformation such as v-
K-ras, RhoA, Rac1, Raf-1 and β-catenin affect cell polarity and morphogenesis [38-41].
Several other oncogenes and soluble factors have been shown to disrupt cell polarity, including
hepatocyte growth factor (HGF) [42] and the insulin-like growth factor receptor (IGFR) [43].
Interestingly, not all oncogenes have the ability to disrupt polarity. For example, activation of
c-Myc or expression of Cyclin D1 does not induce disruption of polarity in mammary epithelial
cells [44-46].

The precise mechanisms by which oncogenes disrupt epithelial polarity are only beginning to
be understood. We demonstrated that the oncogene ErbB2 disrupts apical polarity of epithelial
cells and this property of ErbB2 requires an interaction with the Par6 polarity protein [47].
Activation of ErbB2 causes mislocalization of ZO-1 and Par6 from the apical-lateral border,
increases TJ permeability, and dissociates Par3 from the Par6/aPKC complex. ErbB2 associates
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with Par6 and this interaction is required for ErbB2 to disrupt polarity, 3D morphogenesis and
inhibition of apoptosis. Interestingly, the ErbB2-Par6 pathway is not required for ErbB2 to
induce cell proliferation, demonstrating that the ability of ErbB2 to disrupt polarity can be
uncoupled from its ability to induce cell proliferation.

ErbB2 also cooperates with the β4 integrin to disrupt tight junction organization through
activation of signal transducer and activator of transcription 3 (STAT3) [48]. Expression of a
dominant negative β4 integrin blocked the ability of ErbB2 to disrupt TJ in a STAT3-dependent
manner. However, inhibition of the ErbB2-β4 pathways had no effect on the ability of ErbB2
to activate Erk and also to induce cell proliferation, further demonstrating that ErbB2 uses
separate mechanisms to induce cell proliferation and disrupt cell-cell adhesions. Together these
observations demonstrate that disruption of cell-cell junctions and induction of uncontrolled
proliferation are regulated by separate pathways during oncogene-induced transformation of
mammalian epithelial cells.

Cell polarity pathways and tumor progression
Defects in cell and tissue polarity are recognized hallmarks of advanced epithelial tumors. The
mechanisms by which oncogenes regulate polarity proteins during cancer progression are now
beginning to emerge [49]. The first indication that loss of cell polarity genes cooperate with
oncogene activation to induce tumor progression was demonstrated in Drosophila, where flies
expressing an activated form of Ras were screened for secondary mutations that would lead to
metastatic growth [50]. This screen identified several polarity proteins, including Scr, Dlg and
Lgl, whose loss induced noninvasive Ras tumors to spread. Subsequently, cooperation between
loss of Scr and Ras or Raf has been observed to cause invasive growth in mammalian cells in
a MAPK-dependent manner [51].

Transforming growth factor β (TGFβ) cooperates with oncogenes to induce epithelial to
mesenchymal transition (EMT) [52]. Loss of polarity and disruption cell-cell adhesion is
associated with cells undergoing EMT and is thought to be a critical step during metastatic
tumor progression. TGFβ-induced disruption of TJ and EMT in a mouse mammary epithelial
cell line, NMuMG, requires an interaction between TGFβ receptor I and Par6 [53]. Upon
TGFβ stimulation, TGFβRII is recruited to this complex where it phosphorylates Par6 at
Ser345. This phosphorylation is required for the ability of TGFβ to disrupt TJs. In this context,
Par6 functions as a scaffolding protein to facilitate an interaction between Smurf1, an E3
ubiquitin ligase, and RhoA to promote localized degradation of RhoA, a required step for TJ
disruption [53]. In rat proximal epithelial cells, TGFβ disrupts polarity through downregulation
of Par3 and mislocalization of the Par6/aPKC complex [54], the precise mechanism for this
process is unknown. Interestingly, Snail, a transcriptional repressor that induces EMT, can
target polarity proteins upon TGFβ stimulation [55]. Overexpression of Snail in MDCK cells
leads to dissociation of both the Par and Crumbs complexes from TJs. In addition, Snail binds
to the promoter region of Crb3 and directly represses Crb3 promoter activation in response to
TGFβ [55]. The transcriptional repressor ZEB1, another inducer of EMT, inhibits transcription
of several polarity proteins including Crb3, PATJ and Lgl2 [56,57]. Thus, multiple regulators
of EMT require an interaction with polarity proteins demonstrating a role for polarity proteins
during tumor progression.

Summary
Polarity pathways regulate important functions during formation and maintenance of cell-cell
junctions and during morphogenesis. In addition, cell polarity pathways are emerging as critical
regulators of initiation and progression of carcinoma by functioning as tumor suppressors,
downstream of oncogenes, or promoters of the metastatic process (Figure 2). It is highly likely
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that further analysis of cell polarity proteins and the pathways they control will identify novel
biomarkers and potential drug targets for managing and treating patients with carcinoma.
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Figure 1.
A simplified view of polarity protein complexes. The figure depicts subcellular localization of
polarity proteins along the apical-basal axis of polarized epithelia and positive (arrows) and
negative (blunt head) interactions between the polarity complexes.
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Figure 2.
A model that attempts to summarize the relationships between cell polarity, cell adhesion,
morphogenesis and tumorigenesis pathways.
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