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Abstract
Activation of the peroxisome proliferator-activated receptor α (PPARα) is associated with increased
fatty acid catabolism and is commonly targeted for the treatment of hyperlipidemia. To identify latent,
endogenous biomarkers of PPARα activation and hence increased fatty acid β-oxidation, healthy
human volunteers were given fenofibrate orally for 2 weeks and their urine profiled by UPLC-
QTOFMS. Biomarkers identified by the machine learning algorithm random forests included
significant depletion by day 14 of both pantothenic acid (>5-fold) and acetylcarnitine (>20-fold),
observations that are consistent with known targets of PPARα including pantothenate kinase and
genes encoding proteins involved in the transport and synthesis of acylcarnitines. It was also
concluded that serum cholesterol (-12.7%), triglycerides (-25.6%), uric acid (-34.7%), together with
urinary propylcarnitine (>10-fold), isobutyrylcarnitine (>2.5-fold), (S)-(+)-2-methylbutyrylcarnitine
(5-fold), and isovalerylcarnitine (>5-fold) were all reduced by day 14. Specificity of these biomarkers
as indicators of PPARα activation was demonstrated using the Ppara-null mouse. Urinary
pantothenic acid and acylcarnitines may prove useful indicators of PPARα-induced fatty acid β-
oxidation in humans. This study illustrates the utility of a pharmacometabolomic approach to
understand drug effects on lipid metabolism in both human populations and in inbred mouse models.

Introduction
Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor
superfamily and are involved in the transcriptional activation of many target genes regulating
energy metabolism, adipogenesis, angiogenesis, cell proliferation and inflammation.1 In the
liver PPARα activates fatty acid and cholesterol catabolism, gluconeogenesis, heme synthesis
and partly regulates amino acid metabolism and the urea cycle.1-6 The fibrate group of drugs,
potent agonists of PPARα, is widely prescribed to treat hyperlipidemias.7 In particular, these
drugs mediate an increase in fatty acid β-oxidation which in turn lowers serum triglyceride
levels and reduces insulin resistance.8 It is anticipated that an in-depth study of the metabolic
changes caused by PPARα agonist administration to humans should reveal the specificity of
action for this class of drugs.

Metabolomics, the global qualitative and quantitative analysis of small molecules present in a
biofluid, shows great promise as a means to identify biomarkers of drug efficacy.9, 10 1H
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Nuclear magnetic resonance spectroscopy and liquid chromatography mass spectrometry are
two commonly deployed metabolomic platforms.9, 11 When coupled with multivariate data
analysis techniques or machine learning algorithms unique chemical fingerprints of drug
efficacy can be identified thus directing investigators to specific biochemical pathways.12-16

Hypolipidemic fibrate drugs have been studied extensively in rodent models to identify both
biomarkers of PPARα activation and early indicators of peroxisome proliferation and
hepatotoxicity.13-16 For example, non-invasive urinary biomarkers of the PPARα synthetic
agonist, Wy-14,643, were identified and found to be specific for PPARα activation by
comparing wild-type and Ppara-null mice.13 Similarly, nicotinamide and related metabolites
were found to be elevated in treated rats and were shown to correlate with PPARα activation.
14-16 These historical biomarkers of PPARα activation are summarized in Table 1. However,
such biomarkers identified in rodent models have yet to be extended to and validated in humans.

In the present investigation, urine samples from 10 healthy, unrelated human volunteers taking
fenofibrate orally (200 mg/day for 14 days) were compared using metabolomic analysis to
understand the urinary pharmacometabolomic properties of PPARα activation. Ultra-
performance liquid chromatography (UPLC) coupled with electrospray ionization quadrupole
time-of-flight mass spectrometry (ESI-QTOFMS) was used to profile each volunteer's urinary
metabolome. To identify latent, endogenous biomarkers of PPARα activation, random forests,
a machine learning algorithm, was used to model the day 0, day 7, and day 14 mass
spectrometric data purged of all fenofibrate and related drug metabolite ions. Metabolomic
analysis identified urinary metabolites associated with the fenofibrate-induced increase in β-
oxidation. The present investigation in human volunteers provides compelling evidence for the
utility of metabolomics in evaluating drug efficacy and demonstrates that the burden of
metabolic effects of fenofibrate is consistent with its action on PPARα.

Materials and Methods
Authentic Compounds

Pantothenic acid, debrisoquine hemisulfate, and 4-nitrobenzoic acid were purchased from
Sigma (St. Louis, MO). Acylcarnitines were obtained from the Metabolic Laboratory, Vrije
Universiteit Medical Center (Amsterdam, The Netherlands). Fenofibric acid was obtained from
AK Scientific, Inc. (Mountain View, CA). All other reagents were HPLC grade.

Human Volunteers
The study protocol was approved by the Ethics Committee of the General Teaching Hospital
in Prague, Czech Republic. Ten healthy unrelated volunteers (3 males, 7 females) were enrolled
after obtaining their written informed consent. The volunteer demographics are shown in Table
2. Personal history was taken from each volunteer, who also underwent clinical examination
and received a general clinical chemistry screen. Each volunteer refrained from taking any
medication 28 days prior to enrollment in the study and no drugs except the study medication
were permitted.

Animal Studies
All animal studies were approved by the National Cancer Institute Animal Care and Use
Committee prior to initiation of the study. Male C57Bl/6 wild-type (n=3) and Ppara-null (n=3)
were fed either standard NIH31 diet or an NIH31 modified diet containing 0.1% fenofibrate
ad libitum (Bioserv, Frenchtown, NJ). Control 24-h urines were collected in metabolic cages
(Tecniplast USA, Exton, PA) prior to the start of the 0.1% fenofibrate diet. After 7 days on the
diet, mice were placed in metabolic cages for 24-h urine collection. Urines were frozen at -80°
C until use.
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Fenofibrate Dosing
Each volunteer received a 200 mg capsule containing fenofibrate (Lipanthyl 200 mg,
Laboratoires Fournier S.A., Dijon/Fontaine les Dijon, France) daily for 14 days. The drug was
taken orally with lunch under the supervision of a study nurse. Urine for metabolomic analysis
was collected over a 24 h period prior to treatment (day 0) and on days 7 and 14 of the treatment.
Blood for clinical chemistry was collected between 07.30 and 08.00 h on days 0, 7, and 14.
Creatinine clearance from the timed 24-h urine collection was computed. Urines were frozen
at -80°C until use.

Sample Preparation for UPLC-ESI-QTOFMS Analysis
Urine samples were diluted with an equal volume of solvent containing 50% acetonitrile in
HPLC grade water, 1 μM debrisoquine hemisulfate (ESI+ internal standard), and 40 μM 4-
nitrobenzoic acid (ESI- internal standard). The samples were vortexed briefly and centrifuged
at maximum speed for 20 min at 4°C to remove particulates and precipitated protein. The
supernatant was transferred to an autosampler vial and sealed.

Ultra-Performance Liquid Chromatography coupled Quadrupole Time-of-Flight Mass
Spectroscopy (UPLC-QTOFMS) of Urine

Five μl of deproteinated urine was chromatographed on a 50 × 2.1 mm Acquity 1.7 μm C18
column (Waters Corp., Milford, MA) using an Acquity UPLC system (Waters) as described.
17, 18 Sample injection order was as follows: Volunteer 1 Day 0, Volunteer 1 Day 7, Volunteer
1 Day 14, to Volunteer 10 Day 14. For quantitation of urinary acylcarnitines, authentic
compounds and urine samples were chromatographed on a 100 × 2.1 mm Acquity 1.7 μm C18
column. QuanLynx (Waters) was used to calculate the urinary acylcarnitine concentrations.

Chromatogram Deconvolution
Centroided and integrated mass chromatographic data were aligned using MarkerLynx
software (Waters) to generate a data matrix consisting of peak areas corresponding to a unique
m/z and retention time. The following parameters were used: mass tolerance = 0.02 Da, mass
window = 0.05 Da, and retention time window = 0.20 min. The total ion current (TIC) for each
sample was first normalized by summing the TIC to 10,000. The peak area corresponding to
protonated creatinine (m/z = 114.0670+, retention time = 0.33 min) was used to normalize all
the peak areas in a sample. Fenofibrate and its metabolites were excluded from the data matrix
by excluding m/z measurements that ran later than 5.00 min.

Random Forests Analysis
ESI+ and ESI- data matrices were merged along with the clinical data from Table 2. The merged
matrix was constructed such that each m/z and retention time pair was represented by a unique
variable. Merging the datasets permitted the simultaneous evaluation of standard clinical
indices and the urinary metabolomics data. In the R software environment (version 2.4.1), the
machine learning algorithm, random forests,19 was used to compare day 0 and day 7, day 0
and day 14, or day 7 and day 14, and important variables were identified as those highly ranked
on the variable importance list. Twenty-five independent random forests models were
constructed (ntrees=10000) and the variable importance ranks were averaged across all 25
models. Bootstrapping the results from the 25 independent random forests was used to
determine the 95% confidence intervals of the variable importance ranks. Random forests
models were optimized by constructing 25 independent models based on a subset (e.g., the top
10, 20, 50, 75, 150, 250, 350, 500, 750, or 1000 most important variables) of the top ranked
variables. The model having the lowest classification error using the fewest number of variables
was assumed to contain the most robust variables. Bootstrapping was used to monitor the model
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variation over the set of 25 random forests models. The common significant variables spanning
the two week study were defined using the ABarray package.

Molecular Ion Concentration Measurements
For pantothenic acid quantitation, both mouse and human urine samples were diluted in an
equal volume of HPLC grade water containing debrisoquine hemisulfate (final concentration
1 μM) and separated on a Phenomenex Luna C18(2) column (Torrence, CA). The following
multiple reaction monitoring (MRM) transitions were monitored in ESI+ mode using an
API2000 SCIEX triple-quadrupole tandem mass spectrometer (Applied Biosystems/MDS
Sciex, Foster City, CA): pantothenic acid (219.9→90.1 m/z) and the internal standard,
debrisoquine hemisulfate (176.1→134.2 m/z). Fenofibric acid was chromatographed on
Phenomenex Luna Phenyl-Hexyl column and was monitored in ESI-mode using the following
transitions: fenofibric acid (316.9→221.5 m/z) and the internal standard, 4-nitrobenzoic acid
(166.0→109.6 m/z). Absolute peak areas (normalized by the internal standard peak area value)
were used for quantitation and values estimated by comparison with a standard curve. Results
were corrected for the dilution, multiplied by the 24-h urine volume, and expressed as μmol
per 24 h.

Acylcarnitines were best resolved by UPLC. Human urines were diluted in HPLC water 1:10
for propionyl-, (S)-(+)-2-methylbutyryl-, and isovalerylcarnitine measurements, and 1:100 for
acetyl- and isobutyrylcarnitine measurements. Mouse urines were diluted 1:5 for
acetylcarnitine measurements. Other acylcarnitines including butyryl-, pivaloyl-, valeryl-,
hexanoyl-, octanoyl-, decanoyl-, dodecanoyl-, tetradecanoyl-, hexadecanoyl-, and
octadecanoyl-carnitine were resolved as standards, but fell below the limit of detection in the
urine samples. Five μl of diluted urine as well as standards ranging from 0 to 50 μM were
chromatographed on a 100 × 2.1 mm Acquity 1.7 μm C18 column as above. QuanLynx
software (Waters) was used to quantify the urine metabolites based on peak area. Debrisoquine
hemisulfate (1 μM) was used as the internal standard. Absolute peak areas (acylcarnitine/
debrisoquine) were used for quantitation. Results were corrected for the dilution, multiplied
by the 24-h urine volume, and expressed as μmol per 24 h.

Statistical Analysis
Statistical analysis of differences in ion concentration was performed using GraphPad Prism
(San Diego, CA). The significance of metabolite concentration differences was determined
using repeated measures ANOVA with Bonferroni correction for multiple comparisons. An
unpaired t test was used when comparing the means of day 0 and day 7 in the mouse studies.
Outliers were detected using Grubb's test (QuickCalcs, GraphPad Software, San Diego, CA)
P-values less than p = 0.05 were considered significant.

Results
Clinical Chemistry

Prior to dosing on day 0, and on days 7 and 14 after daily oral administration of 200 mg
fenofibrate, blood was drawn for routine clinical chemistry to monitor liver function and to
assess cholesterol and triglyceride levels. Results of the clinical assays are summarized in Table
2. No significant changes in bilirubin, aspartate transaminase (AST) or alanine transaminase
(ALT) levels were observed. Uric acid levels were significantly reduced on day 7 (mean ±
standard deviation; 280 ± 55 μmol/l on day 0 to 183 ± 38 on day 7, p<0.001) and remained
reduced on day 14 (280 ± 55 μmol/l on day 0 to 183 ± 48, p<0.001). Cholesterol levels were
also reduced on day 7 (4.3 ± 0.26 mmol/l on day 0 to 3.97 ± 0.52 on day 7, p<0.05) and remained
reduced on day 14 (4.3 ± 0.26 mmol/l on day 0 to 3.76 ± 0.47, p<0.001). No significant change
was observed with high-density lipoprotein cholesterol (HDLc) serum levels (1.5 ± 0.41 mmol/
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l on day 0 to 1.5 ± 0.37 in day 7 and 1.5 ± 0.43 on day 14) while low-density lipoprotein
cholesterol (LDLc) was slightly but significantly reduced (2.4 ± 0.47 mmol/l on day 0 to 2.1
± 0.48 on day 7, p<0.05; and 2.4 ± 0.47 mmol/l on day 0 to 1.9 ± 0.65 on day 14, p<0.001).
Triglycerides were reduced on day 7 but failed significance testing (0.92 ± 0.30 mmol/l on day
0 to 0.74 ± 0.37 on day 7, p>0.05) but were significantly reduced on day 14 (0.92 ± 0.30 mmol/
l on day 0 to 0.69 ± 0.19 on day 14, p<0.05). No significant differences were observed with
creatinine clearance or glomerular filtration rate (GFR).

Random Forests Modeling
The machine learning algorithm random forests19 was used to model the urinary metabolome
and clinical indices of samples obtained on day 0, day 7, and day 14 after fenofibrate
administration. Random forests has been demonstrated to handle metabolomics datasets well,
it may be less susceptible to over-parameterization, and it can provide convenient estimates of
the most important variables used in classification.12, 20, 21 Twenty-five independent random
forests models were used to obtain an average ranked list of those variables contributing most
significantly and consistently to group classification. Optimized models of day 0 and day 7
(classification error less than 3%) as well as day 0 and day 14 (classification error
approximately 10%) are shown in Figure 1A-B. Two samples that did not cluster with the other
day 14 samples (Volunteer 6 and 9) are discernible in Figure 1B. No meaningful difference
was found when comparing day 7 and day 14 (data not shown). The subsets of variables used
to generate the optimized models were then compared to define a conservative, yet robust, set
of common variables that spanned the 2-week study (Figure 1C). Detailed results of the
common metabolomic profile are described in Table 3. Exclusion of the male human volunteer
data from the random forests analysis did not influence the results suggesting gender did not
influence the classifications (data not shown).

Identification of Biochemical Constituents in the Urine Metabolome with High Variable
Importance Scores

Putative identities of ions described in Table 3 were arrived upon following searches of the
Madison Metabolomics Consortium Database (MMCD) using a tolerance of 20 ppm.22 The
ions 242.1003+, 220.1179+, and 202.1063+ ranked as the first, second, and third most important
variables, respectively (Table 3). A search of the MMCD suggested 242.1003+ and
220.1179+ might be sodiated pantothenic acid and free pantothenic acid, respectively. Ion
202.1063+ was thought to be a fragment of 220.1179+ (-H2O). Ion 204.1233+ corresponded to
acetylcarnitine. No significant matches were found for ions 308.1831+ and 319.1658+ and
empirical formula calculations using Seven Golden Rules 23 yielded no biologically
meaningful hits. Other notable biomarkers included serum cholesterol (mean rank day 0 vs.
day 7, day 0 vs. day 14; 26.2, 15.1), free carnitine (28.2, 11.8), isovalerylcarnitine (37.3, 6.8),
and isobutyrylcarnitine (911, 29.6).

The identities of pantothenic acid and acetylcarnitine were confirmed by comparison of
retention time and tandem mass spectra from authentic compounds and the urinary constituent.
Tandem MS of authentic pantothenic acid generated the following m/z fragments (numbers in
parenthesis indicate relative percent): 220.1161+ (79.7), 202.1089+ (43.2), 184.0979+ (31.1),
142.0884+ (9.5), 124.0786+ (25.7), 90.0567+ (100), and 85.0679+ (9.5). Tandem MS of
putative urinary pantothenic acid generated the following m/z fragments: 220.1185+ (78.4),
202.1125+ (38.5), 184.0981+ (27.0), 142.0946+ (4.1), 124.0786+ (23.0), 90.0580+ (100), and
84.0703+ (9.5). Tandem MS of authentic acetylcarnitine generated the following m/z
fragments: 204.1115+ (22.1), 145.0479+ (11.8), and 85.0274+ (100). Tandem MS of putative
urinary acetylcarnitine generated the following m/z fragments: 204.1135+ (39.7), 145.0487+

(16.2), and 85.0273+ (100).
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Quantitation of Urinary Constituents in Human Volunteers
Leaving the metabolomics platform, the top biomarker identified by random forests,
pantothenic acid, was quantitated using an ABI triple-quadrupole mass spectrometer which
offers greater dynamic range as compared to ESI-QTOFMS. For each volunteer, a significant
depletion of pantothenic acid from urine, when compared to day 0, was recorded on day 7
(p<0.001) and on day 14 (p<0.001) (Figure 2A). On average, there was a 5.5-fold depletion of
urinary pantothenic acid on day 7 and on day 14 when compared with day 0. Volunteer 6
excreted greater quantities of urinary pantothenic acid on all days and upon using Grubb's test
for outlier detection was considered a significant outlier on Day 14 (p<0.05) consistent with
the random forests analysis (Figure 1B).

Urinary acylcarnitines were best resolved by UPLC. Acetylcarnitine was identified as the
second most important biomarker by random forests analysis (after excluding the in source
fragments and sodium adducts of pantothenic acid). Urinary acetylcarnitine was significantly
depleted on day 7 (p<0.05) and on day 14 (p<0.001) (Figure 2B). On day 7 there was a 8.1-
fold depletion and on day 14 there was a 20.5-fold depletion compared to day 0. The 24-h
excretion of other urinary acylcarnitines, including propionyl-, isobutyryl-, (S)-(+)-2-
methylbutyryl-, and isovalerylcarnitine, was also measured (Figure 2C-F). Propionylcarnitine
was found to be significantly depleted on day 7 (p<0.05) and all acylcarnitines were
significantly depleted by day 14 (propionylcarnitine, p<0.01; isobutyrylcarnitine, p<0.01;
(S)-(+)-2-methylbutyrylcarnitine, p<0.01; isovalerylcarnitine, p<0.05). Interestingly, the
quantities of all measured acylcarnitines in the urine of Volunteer 9 increased, as opposed to
the observed decreasing trend, on day 7 and on day 14 (data not shown). Using Grubb's test
for outlier detection, Volunteer 9 was identified as a significant outlier on Day 14 (p<0.05).

Levels of fenofibric acid, the PPARα ligand from the pro-drug fenofibrate, in the urine on day
0, day 7 and day 14 were measured to verify each volunteer's compliance and to assess each
volunteer's capacity to metabolize fenofibrate to the PPARα ligand, fenofibric acid (Figure 3).
Each volunteer was 100% compliant on days 7 and 14 and no significant differences were
observed with fenofibric acid levels.

Animal Studies
In order to verify that both pantothenic acid and acetylcarnitine, the top depleted human
biomarkers after 14 days of fenofibrate treatment, were indeed specific to PPARα activation,
male wild-type and Ppara-null mice were fed a diet containing 0.1% fenofibrate for 7 days
and their urine was collected for 24 h both prior to and after 7 days on the diet. Pantothenic
acid and acetylcarnitine were quantitated as above. Similar to the human volunteers taking oral
fenofibrate, the wild-type mice on the 0.1% fenofibrate diet exhibited a significant and dramatic
depletion of urinary pantothenic acid (40-fold less after 7 days, p<0.05, Figure 4A) and
acetylcarnitine (88-fold less after 7 days, p<0.001, Figure 4C). However, the Ppara-null mice
did not exhibit any appreciable change in either pantothenic acid or acetylcarnitine (Figure 4B
and 4D, p>0.05) urine levels.

Discussion
In this report, human urinary biomarkers of PPARα activation were identified using a
metabolomics approach consisting of UPLC-ESI-QTOFMS profiling of the urine samples and
random forests analysis. The inclusion of clinical variables into the data matrix proved to be
useful as metabolomic-independent internal controls since serum uric acid has been reported
to be depleted after fenofibrate treatment and was found to be highly ranked amongst the top
urinary biomarkers in this study.24 Total cholesterol levels were also reduced although they
were not ranked as highly (mean rank of 26.2 when comparing day 0 and day 7, mean rank of
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15.1 when comparing day 0 and day 14) compared to other urinary biomarkers identified by
metabolomic analysis. These observations alone strongly support the utility of metabolomics
for drug efficacy studies and underscore this technique's potential for the identification of
novel, non-traditional, biochemical indicators of drug effect.

Biomarker Rationalization
Activated in the presence of agonists such as fenofibrate, PPARα heterodimerizes with RXR,
binds peroxisome proliferator response elements, and activates, among others, genes essential
for β-oxidation of fatty acids in peroxisomes and in mitochondria.25 Among these genes, the
pantothenate kinase gene, PANK1, as well as an array of genes involved in carnitine transport
and synthesis, such as the carnitine palmitoyltransferase genes, CPT1 and CPT2, are strongly
and specifically induced in the presence of the ligand-bound PPARα/RXR heterodimer.26, 27

Pantothenate kinase phosphorylates pantothenic acid, an essential B vitamin, converting it to
4′-phosphopantothenate in the initial step towards CoA synthesis. Therefore the dramatic
depletion of urinary pantothenic acid and acetylcarnitine clearly reflect an increase in β-
oxidation as surplus pools of pantothenic acid and short-chain acylcarnitines are redirected
from the urinary excretory pathway to the mitochondria. Additionally, the depletion of these
metabolites points to a unique biochemical step (e.g., pantothenic acid and CoA synthesis) as
opposed to the depletion of traditional, clinical indicators such as total cholesterol and
triglycerides where only less specific biochemical pathway information can be gleaned.

The observation that short- and branched-chain acylcarnitines were depleted after fenofibrate
treatment points to a specific induction of hepatic mitochondrial short/branched chain specific
acyl-CoA dehydrogenase (SBCAD; EC 1.3.99.3) that is responsible for the catabolism of
leucine, isoleucine and valine, together with propionate and β-alanine. The human gene
ACADSB encoding SBCAD has not previously been demonstrated to be a PPARα target gene,
although the corresponding gene in the mouse appears to be upregulated by PPARα.26 Thus,
treatment of patients with drugs that can activate PPARα might be expected to cause an
increased catabolism of the branched-chain amino acids, β-alanine, and propionate.

Previous studies in rodents (Table 1) identified nicotinamide, nicotinamide 1-oxide, 1-
methylnicotinamide, 1-methyl-2-pyridone-5-carboxamide (2PY), 1-methyl-4-pyridone-3-
carboxamide (4PY), 11β,20-dihydroxy-3-oxopregn-4-en-21-oic acid (DHOPA), and 11β-
hydroxy-3,20-dioxopregn-4-en-21-oic acid (HDOPA) as potential markers of PPARα
activation. 13-16 However, in the clinical study reported here, none of those previously
identified rodent markers were among the top highly important variables identified by random
forests. Furthermore, none of the other rodent biomarkers was found to be altered by fenofibrate
treatment of volunteers (data not shown). However, this study has clearly demonstrated through
observations of fenofibrate associated changes in pantothenic acid and acetylcarnitine in both
human and rodent models that biomarkers can transcend species.

Fenofibrate Pharmacometabolomics
Pharmacogenomics generally focuses on genetic influences on drug metabolism, efficacy, and
toxicity. Similarly, pharmacometabolomics, or the use of small molecule profiling to predict
and understand drug efficacy and toxicity, is a logical extension of pharmacogenomics but has
the added advantage of being able to account for influences such as diet and environment.28

The power and sensitivity of pharmacometabolomics is exemplified in the metabolomic and
clinical profiles of volunteers 6 and 9. There were no discernible differences in individual
fenofibric acid excretion by any volunteer over the two week study (Figure 3) indicating 100%
compliance, yet the MDS plot comparing day 0 and day 14 (Figure 1B) identified two potential
outliers (volunteer 6 and 9) that were not apparent when comparing day 0 and day 7 (Figure
1A). While there was nothing abnormal regarding the clinical parameters (Table 2) for
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volunteer 6; total cholesterol concentrations in volunteer 9 increased slightly in concentration
over the two week study (4.63 to 4.8 mmol/l) as opposed to the expected decrease in total
cholesterol measured in the other 9 volunteers (mean ± standard deviation; 4.27 ± 0.25 to 3.64
± 0.32 mmol/l). Interestingly, urinary acylcarnitine concentrations for volunteer 9 also
increased over the 14-day study, yet pantothenic acid depleted, consistent with the other
volunteers. These observations may suggest the presence of a subtle defect associated with β-
oxidation. However, defects in pantothenic acid-dependent CoA synthesis are unlikely since
pantothenic acid levels were depleted consistent with the other volunteers. Volunteer 6, while
exhibiting a normal reduction of total cholesterol and triglycerides as well as acylcarnitines
and pantothenic acid, showed higher quantities of urinary pantothenic acid (nearly 4-fold
greater on day 0, day 7, and day 14) yet still exhibited the same trend for pantothenic acid
depletion. This may reflect reduced enzyme activity of pantothenate kinase due to a
polymorphic PANK1 gene or more simply a diet rich in pantothenic acid.

Conclusion
This study highlights the importance of metabolomics as a tool for uncovering metabolic
phenotypes and for understanding drug efficacy. It also exemplifies the utility of metabolomics
for understanding and/or predicting an individual's response to drug treatment. In combination
with traditional diagnostics (e.g., clinical chemistry), the application of metabolomic profiling
throughout the drug discovery and development process and extending into the clinic is likely
to lead to improved pharmacotherapy by supporting individualized drug treatment. In this
regard, determination of urinary pantothenic acid and short-chain acylcarnitines may prove
useful monitors of PPARα activation by fibrate drugs.
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Figure 1.
Modeling of day 0, day 7, and day 14 urine metabolomics data from optimized random forests
models using the proximity matrix. (A) A multidimensional scaling (MDS) plot of day 0 and
day 7 using the random forests proximity matrix. Black squares indicate day 0 and red circles
indicate day 7. (B) An MDS plot of day 0 and day 14. Black squares indicate day 0 and red
circles indicate day 14. Two potential outliers are indicated as red triangles and with arrows.
(C) A Venn diagram describing the number of specific (day 0 and day 7, 13 highly ranked
biomarkers; day 0 and day 14, 3 highly ranked biomarkers) that generated the optimal model
and the number of common important variables, 7.
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Figure 2.
Quantitation of urinary pantothenic acid and acylcarnitines by comparison with standard curves
of authentic compounds and serum clinical biochemistry. Results were adjusted by 24-h urine
volumes and expressed as μmol per 24 h. (A) pantothenic acid (B) acetylcarnitine (C)
propionylcarnitine (D) isobutyrylcarnitine (E) 2-methylbutyrylcarnitine and (F)
isovalerylcarnitine. P-values were calculated using repeated measures ANOVA with
Bonferroni's test for Multiple Comparisons. P-values represent comparison with day 0. Error
bars represent standard error of the mean (SEM). ns, not significant.
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Figure 3.
Fenofibric acid quantitation in urine from day 0, day 7, and day 14 in 10 human volunteers.
Urine values were adjusted by the 24 h volume and are expressed as μmol per 24 h. P-values
were calculated using repeated measures ANOVA with Bonferroni's test for Multiple
Comparisons. P-values represent comparison with day 0. Error bars represent SEM.
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Figure 4.
Percent change of urinary pantothenic acid (A-B) and acetylcarnitine (C-D) in male wild-type
(n=3) and Ppara-null (n=3) mice. P-values were calculated using an unpaired t-test. Error bars
represent SEM. ns, not significant.
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