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The generalized master equations (GMEs) that contain multiple time
scales have been derived quantum mechanically. The GME method
has then been applied to a model of charge migration in proteins that
invokes the hole hopping between local amino acid sites driven by the
torsional motions of the floppy backbones. This model is then applied
to analyze the experimental results for sequence-dependent long-
range hole transport in DNA reported by Meggers et al. [Meggers, E.,
Michel-Beyerle, M. E., & Giese, B. (1998) J. Am. Chem. Soc. 120,
12950–12955]. The model has also been applied to analyze the
experimental results of femtosecond dynamics of DNA-mediated
electron transfer reported by Zewail and co-workers [Wan, C., Fiebig,
T., Kelley, S. O., Treadway, C. R., Barton, J. K. & Zewail, A. H. (1999)
Proc. Natl. Acad. Sci. USA 96, 6014–6019]. The initial events in the
dynamics of protein folding have begun to attract attention. The GME
obtained in this paper will be applicable to this problem.

1. Introduction

Charge migration is a very important process in biomolecules and
other large polymeric systems. It has been found that charge

migration in proteins or similar systems is highly efficient, but the
mechanistic origin is still not well understood even though various
models have been advanced (1, 2).

Recently we have demonstrated that the photoionization of
positive charge at a specific chromophore in a series of polypeptides
can lead to facile migration of this charge over long peptide chains
(3–5); we have studied neutral peptides of natural amino acids of the
type (X)n-Y (n 5 1, 2, 3, where Y denotes the aromatic amino acid)
in the gas phase. They have been prepared by laser desorption and
supersonic cooling. Local ionization is performed by resonant laser
excitation in aromatic acid Y located at the C terminus. Subsequent
UV photofragmentation of the cation is shown to directly reflect
the prior charge migration in these large molecules. The distance
and direction of the charge migration is determined to a first order
by the ionization energies of the individual amino acids, rather than
the ionization potential of the entire supramolecule (6). It has been
found that the charge migration can be blocked by as small a local
barrier as 0.2–0.3 eV (differences in ionization potentials between
different neighboring amino acids). In this work, we shall propose
a model that is compatible with experiments and supported by ab
initio (6) and molecular dynamics (7) calculations. The charge is
initially localized at the chromophore in the form of an electronic
hole in its ground electronic state of the cation. After photoexci-
tation of the cation, the electron is promoted into a charge transfer
(CT) state (or by a photoexcitation to a localized state followed by
internal conversion to a CT state) and the new hole thus created can
hop between local sites in the chain. We propose that the coupling
strength between local charge states, which is responsible for charge
transfer sites, varies with torsional motion, which is the result of the
floppy peptide backbone. When the wiggling molecule attains a
favorable conformation, the coupling strength is strong enough to
ensure high probability of charge transfer between two adjacent
amino acids.

Because of the importance of DNA damage and its repair,
diverse biophysical and biochemical studies have sought to under-
stand the electron transfer (ET) in DNA (8–11). The strong

resemblance of the base-pair stack of DNA to conductive one-
dimensional aromatic crystals has prompted the proposal that
long-range charge transport might proceed through DNA. Recently
Zewail and co-workers (8) have reported with femtosecond reso-
lution the direct observation in DNA of ultrafast ET, initiated by
excitation of tethered ethidium, the intercalated electron acceptor.
The electron donor is 7-deazaguanine, a modified base, placed at
various, fixed, distances from the acceptor. The ultrafast ET
between these reactants in DNA has been observed with time
constants of 5 ps and 75 ps and was found to be essentially
independent of the donor–acceptor separation (10–17 Å). Zewail
and co-workers assigned the 5-ps decay component to direct ET
from 7-deazaguanine and the slower, 75-ps, component to the
process that requires the reorientation of tethered ethidium before
ET. In other words, in DNA the motion of the base pairs controls
the time scale and the rate of charge transport.

From the above discussion, one can see that charge (or electron)
transfer in biological systems often takes place in at least two
modes—e.g., rotation and electron (or hole) transfer. It is the
purpose of this paper to present a formalism to treat this type of
charge transport.

2. General Theory
We shall propose the model described by the following generalized
master equations (GMEs)

dCni

dt
5 O

m

m Þ n

9 O
j

~kmj,niCmj 2 kni ,mjCni!

1 O
i9

~kni9,niCni9 2 kni ,ni9Cni!, [2-1]

where (n, m) denote the sites of proteins and (i, j) represent the
rotational states of the protein chain. Here Cni represents the
probability to find the charge at the nth site of proteins with the
rotational bond state i of the protein chain. The derivation of the
above GME by the quantum mechanical approach is given in
Section 3. For simplicity, the loss channels (if they exist) have been
ignored. An important case will be

kni ,ni9, kni9,ni .. kmj,ni, kni ,mj [2-2]

where m Þ n. In this case, we have

Cni 5 CnPni, Cmj 5 CmPmj, [2-3]

where (Pni, Pmj) represent the equilibrium distribution, and Eq. 2-1
becomes
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dCn

dt
5 O

m

~km,nCm 2 kn,mCn! [2-4]

where

km,n 5 O
i

O
j

Pmjkmj,ni [2-5]

and

kn,m 5 O
i

O
j

Pnikni ,mj . [2-6]

It should be noted that in Eq. 2-1 at least two different time scales
described by (kmj,ni, kni,mj) and (kni9,ni, kni,ni9) are involved. For the
case in which one time scale is much shorter than the other, the
equilibrium approximation like that given by Eq. 2-3 can be
introduced and the new set of master equations will involve only the
slow time scales. The rate constants involved in the new set of
master equations represent the rate constants averaged over the
short time-scale states.

From Eqs. 2-1 and 2-4, we can see that in this case the charge
migration (or ET) is through hopping. If the hopping takes place
only through nearest neighbors and all the protein sites are equiv-
alent, then

dCn

dt
5 kn 1 1,n~Cn 1 1 2 Cn! 1 kn 2 1,n~Cn 2 1 2 Cn!

[2-7]

where

Cn 1 1 5 C~~n 1 1!L!; Cn 5 C~~nL!!, [2-8]

and L denotes the length between equivalent sites along the chain.
Applying the Taylor expansion to Cn11 and Cn21 in terms of L yields

­C
­t

5 kL2
­2C
­x2 , [2-9]

where k 5 kn21,n 5 kn11,n and Cn 5 C. That is, under this condition
the charge migration can be described by a diffusion process. This
type of charge migration has a special feature in which at equilib-
rium the charge distribution will be uniform among the protein
sites. This is true provided that there is no absorbing boundary at
one end and no reflecting boundary at the other.

We now discuss another type of charge migration. That is, the
charge migration can take place only at a certain rotation state, say,
,. In this case, from Eq. 2-1 we obtain

dCn

dt
5

d
dt O

i

Cni

5 O
m

O
i

O
j

~kmj,niCmj 2 kni ,mjCni!

5 O
m

~km,,n,Cm, 2 kn,,m,Cn,!. [2-10]

Furthermore, if the charge migration can take place only between
the nearest neighbor and only in one direction, then

dCn

dt
5 kn 2 1,,n,Cn 2 1, 2 kn,,n 1 1,Cn, [2-11]

and

dCn,

dt
5 kn 2 1,,n,Cn 2 1, 2 kn,,n 1 1,Cn,

1 O
i

~kni ,n,Cni 2 kn,,niCn,!. [2-12]

That is, here we have assumed that the charge migrates from the
n 2 1 site to the n site, and from the n site to the n 1 1 site. This
set of equations is very difficult to solve in general. However, for the
case in which the rotational motion is much faster than charge
migration, then again Eq. 2-3 can be used to obtain

dCn

dt
5 k~Cn 2 1 2 Cn! [2-13]

where k 5 kn21,,n,Pn21, 5 kn,,n11,Pn,.
It should be noted that in Eq. 2-7 charge can migrate both

forward and backward, whereas in Eq. 2-11 or Eq. 2-12 charge can
only migrate forward, that is, from the n site to the n 1 1 site.

Eq. 2-13 can easily be solved by using the Laplace transformation
method to obtain

C0~t! 5 Cn~0! z
kn

~n 2 1!! E
0

t

dt tn 2 1e 2 kt . [2-14]

Notice that C0(0) 5 0 and C0(`) 5 Cn(0). That is, in this case, the
yield is very high even though the charge migration rate is slowed
down because of the presence of Pn, or Pn21, in k. For example, if
n 5 3, then Eq. 2-14 becomes

C0~t! 5 C3~0!F ~1 2 e 2 kt! 2 kte 2 kt 2
~kt!2

2
e 2 ktG .

[2-15]

Eq. 2-15 shows that the yield of charge migration is very high (unity)
and exhibits only a very weak distance dependence through k rather
than kn. We realize that the above model (i.e., Eqs. 2-13 and 2-14)
is too ideal, assuming that the charge migration is unidirectional and
allows for no decay (i.e., ignoring the loss channels). However, it
serves the purpose of demonstrating how a long-distance charge
transfer can be accomplished effectively in multiple steps. It should
be noted that, using this type of model, we can also describe the real
time-dependent behaviors of the charge migration in the protein
systems. Because of the existence of reversible processes in the
charge migration, the yield of charge migration cannot be as high
as that given by Eq. 2-13.

Recently long-range hole transport in DNA has attracted con-
siderable attention (8–11). Guanine (G) bases are a target for
oxidative damage in DNA (8). This damage is often the conse-
quence of an oxidation of G to a guanine radical cation (G z

1) (9, 10)
that reacts further with H2O or O2 (11). Barton and co-workers (12)
and Gasper and Schuster (13) have observed that oxidation damage
can occur at G bases that are far away from the oxidant. Meggers
et al. (14) have studied a hole transport process in DNA in which
a guanine radical cation (G z

1) was site-selectively generated in
double-stranded DNA and the charge transfer in different oligo-
nucleotides was investigated. Their results are reproduced in Fig. 1.
They analyzed the hole transfer from G z

1 to a GGG unit through
one, two, three, and four AzT base pairs and found that the transfer
efficiency decreases by about one order of magnitude with each
intervening AzT base pair.

We shall analyze the results reported by Meggers et al. as follows,
with G denoting the relative concentration of G, etc.:

G -|0
kf

kb

G1 -|0
k12

k21

G2 -|0
k23

k32

G3

dG
dt

5 2kfG 1 kbG1 [2-16]

dG1

dt
5 kfG 2 kbG1 2 k12G1 1 k21G2 [2-17]
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dG2

dt
5 k12G1 2 k21G2 2 k23G2 1 k32G3 [2-18]

dG3

dt
5 k23G2 2 k32G3 . [2-19]

At steady or equilibrium state we find that

G1 5
kf

kb
G [2-20]

G2 5
k12

k21
z

kf

kb
G [2-21]

G3 5
k23

k32
z

k12

k21
z

kf

kb
G. [2-22]

From Fig. 1 we can see that for the case of G23TGGG, kfykb . 1,
k12yk21 . 1, and k23yk32 ,, 1 so that (k23yk32)z(k12yk21)z(kfykb) ,
1. It should be noted that this last inequality is only conditionally
valid. Its validity is compatible with the experimental results shown
in Fig. 1. In other words, from the ratios of individual peaks in Fig.
1 one can determine kfykb, k12yk21, and k23yk32, that is, the free
energy differences of different charge transport processes.

The fact that the relative intensities of the three peaks in various
systems are approximately constant could happen, if the intercon-
version among the Gs is fast compared to their input rate.

From Eq. 2-13 we can see that if the reversible processes do not
exist, then the charge transport yield will be unity. On the other
hand, from Eqs. 2-16–2-19 we can see that if the reversible process-
es do exist, then as long as all of the ratios of forward rate to
backward rate are much larger than unity, the charge transport will
still be very efficient. In other words, the charge transport can be
made ineffective if the intermediate group is modified chemically
(e.g., ionization potential) so that one of the ratios is much smaller
than unity.

Next we shall compare the charge transfer by the so-called
superexchange mechanism in one step versus the charge transfer by
hopping in multiple steps. For the case in which there exists no
reversible process, in real-time measurements an exponential decay
would be observed in the super-exchange mechanism case, while
multi-exponential decays would be involved in the multistep hop-
ping mechanism. In this case, the charge transfer yield will be nearly
unity in both mechanisms, but the distance dependence of the
charge transfer rate constant would be different in the two
mechanisms.

3. Quantum Mechanical Foundations
In this section, we shall provide the quantum mechanical formu-
lation of the model presented in this paper. In refs. 15–17, the
general formulations of the density matrix method have been
presented. In this section, we shall show the application of the
formalisms to a model of charge migration in biological systems.
A main feature of this model is that processes with different
time scales are involved. We start with the stochastic Liouville
equation (15)

dr̂

dt
5 2

i
\

@Ĥ0, r̂# 2
i
\

@Ĥ9, r̂# 2 Ĝr̂, [3-1]

where Ĥ0 and Ĥ9 denote the zeroth-order Hamiltonian and inter-
action Hamiltonian, respectively, and Ĝ represents the so-called
damping operator due to the interaction between the system and
heat bath, which is responsible for describing the relaxation and
dephasing processes of the system. Using M and N as basis sets, we
obtain

drN,N

dt
5

2
\
O
M

Im~H9N,MrM,N! 2 O
N9

GNN
N9N9rN9N9 [3-2]

and

drM,N

dt
5 2~ivM,N 1 gM,N!rM,N 1

i
\

H9M,N~rM,M 2 rN,N!

1
i
\S O

M9

M9 Þ M

9 rM,M9H9M9,N 2 O
N9

N9 Þ N

9 H9M,N9rN9ND , [3-3]

where 2GNN
N9N9 (N9 Þ N) denotes the relaxation rate constant for N9

3N, while gM,N represents the dephasing rate constant. Notice that
GNN

NN describes the total relaxation of the N state, i.e., GNN
NN 5 2¥N9

N9ÞN

GN9N9
NN . These types of relations make sure that the principle of

detailed balance is satisfied, and for the system embedded in a heat
bath it can reach thermal equilibrium properly.

Using the Markoff approximation and applying the perturbation
method to Eq. 3-1 by regarding Ĥ9 as a perturbation, we find, to the
second-order approximation

rM,N 5

i
\

H9M,N

ivM,N 1 gM,N
~rM,M 2 rN,N! [3-4]

and

drN,N

dt
5 O

M

~rM,M 2 rN,N!WM,N 2 O
N9

GNN
N9N9 rN9N9 ,

[3-5]

where

WM,N 5
2
\2uH9M,Nu2

gM,N

gM,N
2 1 vM,N

2 . [3-6]

Fig. 1. Histograms demonstrating that with increasing numbers of intervening
AzT base pairs the ratio of damage GGGyG23 or GGGyG23A24 decreases.
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So far the electronic motion and nuclear motion of molecules have
not been explicitly taken into consideration. For this purpose, the
adiabatic approximation can be used.

According to the adiabatic approximation, we can make the
changes M3mvj and N3 nui, where (v, u) denote the vibrational
states, while (n, m) represent the electronic (or site) states and (i,
j) denote the rotational (or other) states. For the case in which
vibrational relaxation is much faster than charge migration (or
electron transfer), the thermal distribution (Pnu, Pmv) for vibrational
states can be used. In this case, Eq. 3-5 reduces to Eq. 2-1 with the
following correspondences,

kmj,ni 5 O
u

O
v

PmvWmvj,nui [3-7]

and

kni9,ni 5 2O
u

PnuGnui ,nui
nui9,nui9 . [3-8]

Notice that the rate constant kmj,ni can be written as

kmj,ni 5
2
\2O

u

O
v

PmvuH9mvj,nuiu2
gmvj,nui

gmvj,nui
2 1 vmvj,nui

2 . [3-9]

Using the Condon type approximation, which is used to separate
the vibration from the rotation and electronic motions, we obtain

kmj,ni 5
2
\2uH9mj,niu2O

u

O
v

Pmvu^QmvuQnu&u
gmvj,nui

gmvj,nui
2 1 vmvj,nui

2 ,

[3-10]

where H9mj,ni denotes the electronic interaction matrix element. It
should be noted that kmj,ni denotes the charge transfer rate constant
for m3 n for the particular rotational configuration (i, j). At this
particular configuration, the interaction energy Ĥ9 and the energy
gap vmj,ni may depend on (i, j). In this case (i.e., in the second-order
approximation with respect to Ĥ9), kmj,ni describes the charge
transfer through space (or direct charge transfer) and u^QmvuQnu&u2
represents the Franck–Condon factors. If the dephasing constant
gmvj

,nui is small or negligible, then the Lorentzian reduces to a delta
function, i.e.,

kmj,ni 5
2p

\
uH9mj,niu2O

u

O
v

Pmvu^QmvuQnu&u2d~Emvj 2 Enui!.

[3-11]

A main feature of our model here is the energetics (Emvj, Enui)
depends on the (i, j) states (i.e., rotational or configurational states).
That is, the energy gap in the transfer rate constant depends on
(i, j) states.

As in Eq. 2-1, the notations n, m denote the sites and the
notations i, j represent the rotational configurations (or states)
associated with particular sites.

From Eq. 3-8 we can see that the rate constant kni9,ni for rotational
motion is assumed to be induced by the heat bath through Ĝ; kni9,ni

can also be induced intramolecularly through Ĥ9 like H9nu9i9,nui.
In previous papers (16, 17), we have shown that carrying out the

perturbation calculation to the fourth order of approximations, for
the case in which the electronic states of the bridge groups are
higher than the donor electronic state one would obtain the
conventional superexchange mechanism (i.e., the Raman type). On
the other hand, if the electronic states of the bridge groups are lower
than the donor state, one would obtain the resonance Raman type
of electron transfer. This type of electron transfer can be as effective
as (or even more effective than) the process involving the hopping
through the bridge group.

Notice that (16, 17)

kFI 5
2p

\
O
v

O
v0

PIvu^wFv0uT̂uwIv&u2d~EFv0 2 EIv!, [3-12]

where I and F denote the initial and final electronic states,
respectively, and

^wFv0uT̂uwIv& 5 ^QFv0uH9FIuQIv&

1 O
K

O
v9

^QFv0uH9fKuQKv9&^QKv9uH9KIuQIv&

EIv 2 EKv9 1 igIv,Kv9
. [3-13]

For the case in which the manifolds {Kv9} are much higher than the
manifolds {Iv}, we can use the Plazcek approximation EIv 2 EKv9

> EI 2 EK to obtain

^wFv0uT̂uwIv& 5 KQFv0UH9FI 1 O
K

H9fKH9Ki

EI 2 EK
UQIvL

5 ^QFv0uTFIuQIv&. [3-14]

That is, in this case (similar to the Raman scattering) the second
term gives us the conventional superexchange electron transfer.

On the other hand, for the case EIv . EKv9 we obtain

^wFv0uT̂uwIv& 5 ^QFv0uH9FIuQIv&

1 O
v9

^QFv0uH9FKuQIv&^QKv9uH9KIuQIv&

EIv 2 EKv9 1 igiv,Kv9
. [3-15]

The second term of this expression gives us the resonance
superexchange ET (i.e., the resonance Raman type ET). For
example, if we are interested in D* BA 3 D1BA2, then the
resonance superexchange ET can take place by invoking the
state D1B2A as the resonance intermediate state. As in the case
of resonance Raman scattering, the resonance superexchange
ET can be enhanced by several orders of magnitude. The
resonance superexchange ET and stepwise ET are usually in
competition. Only for the case in which the former is faster than
or comparable with the latter do we have to consider the
resonance superexchange ET.

The exact master equations for charge migration (or ET) like Eq.
3-5 can be derived as follows. We shall rewrite Eq. 3-1 as

dr̂

dt
5 2iL̂0r̂ 2 iL̂9r̂ 2 Ĝr̂, [3-16]

where (L̂0, L̂9) represent the Liouville operators corresponding to
Ĥ0 and Ĥ9, respectively. Applying the Laplace transformation to Eq.
3-1 yields

pr# ~p! 2 r̂~0! 5 2iL̂0r# ~p! 2 iL̂9r# ~p! 2 Ĝr# ~p!,
[3-17]

where r̂(0) denotes the density matrix at t 5 0 and

r# ~p! 5 E
0

`

dte 2 ptr̂~t!. [3-18]

We shall introduce the projection operator D̂ for the purpose of
picking up the diagonal elements of r̂,

r̂1 5 D̂r̂, r̂2 5 ~1 2 D̂!r̂. [3-19]

Here r̂1 contains diagonal elements, while r̂2 contains the off-
diagonal elements.

9852 u www.pnas.org Schlag et al.



Applying D̂ and (1 2 D̂) separately to Eq. 3-8 yields

pr̂1~p! 2 r̂1~0! 5 2iD̂~L̂0 1 L̂9!r̂~p! 2 D̂Ĝr# ~p! [3-20]

and

pr# 2~p! 2 r̂2~0! 5 2i~1 2 D̂!~L̂0 1 L̂9!r# ~p! 2 ~1 2 D̂!Ĝr# ~p!.
[3-21]

Eliminating r# 2(p) from Eq. 3-20, we obtain

pr# 1~p! 2 r̂1~0! 5 2D̂Ĝr# 1~p! 2 M̂~p!r# 1~p!, [3-22]

where M# (p) represents the so-called memory kernel,

M# ~p! 5 D̂L̂9
1

p 1 ~1 2 D̂!~iL̂ 1 Ĝ!
~1 2 D̂!L̂9 [3-23]

and L̂9 5 L̂ 2 iĜ. Here the random phase approximation has been
used, i.e. r̂2(0) 5 0. Applying the inverse Laplace transformation to
Eq. 3-22 yields

dr̂1

dt
5 2D̂Ĝr̂1 2 E

0

t

dtM̂~t 2 t!r̂1~t!. [3-24]

Using the perturbation method to the second-order approximation
with respect to Ĥ9 and the Markoff approximation, Eq. 3-24 will
reduce to Eq. 3-5. Higher-order calculations can be carried out
similarly by using Eq. 3-24.

From the above discussion, we can see the charge migration (or
ET) due to the strong electron correlation can be treated by using
our formulation in the density matrix method (i.e., using Eq. 3-1).
In this case, Ĥ0 and Ĥ9 will contain only the electronic degrees of
freedom; in this case the electron transfer takes place before any
nuclear motion. The ordinary ET does not concern electron
correlation.

4. Discussion
In this section, to show the application of the model discussed in this
paper we shall consider a simple two-site and two-state model
described in the following

C11 -|0
kf

kb

C12

k12 ( k21 k912 ( k921

C21 -|0
kf

kb

C22

where (k12, k21) and (k912, k921) denote the charge migration (or ET)
and (kf, kb) describe, for example, the rotation of protein backbones.
Here for simplicity we assume that the charge migration takes place
between C11 and C22, and that between C12 and C21 can be
ignored.

Notice that

dC11

dt
5 ~kbC12 2 kfC11! 1 ~k21C21 2 k12C11! [4-1]

dC21

dt
5 ~kbC22 2 kfC21! 1 ~2k21C21 1 k12C11! [4-2]

dC12

dt
5 ~2kbC12 1 kfC11! 1 ~k921C22 2 k912C12! [4-3]

and

dC22

dt
5 ~2kbC22 1 kfC21! 1 ~2k921C22 1 k912C12!. [4-4]

For simplicity, we shall assume that

C12~0! 5 C21~0! 5 C22~0! 5 0 [4-5]

and

k912 5 k12 k921 5 k21. [4-6]

Various cases can be considered. For example, for the case in which
kb 5 0, we find

C11~t!
C11~0!

5
k21

k21 1 k12
e2kf t 1

k12

k12 1 k21
e2t~kf 1 k21 1 k12! [4-7]

C21~t!
C11~0!

5
k12

k12 1 k21
e2kf t 2

k12

k12 1 k21
e2t~kf 1 k21 1 k12! [4-8]

C22~t!
C11~0!

5
k12

k12 1 k21
2

k12

k12 1 k21
e2kf t

2
k12

k12 1 k21
e2t~k12 1 k21! 1

k12

k12 1 k21
e2t~kf 1 k21 1 k12! [4-9]

and

C12~t!
C11~0!

5
k21

k12 1 k21
2

k21

k12 1 k21
e2kf t

1
k12

k12 1 k21
e2t~k12 1 k21! 2

k12

k12 1 k21
e2t~kf 1 k21 1 k12! . [4-10]

In this case, as t3 `, C113 0, C213 0,
C12

C11~0!
3

k21

k12 1 k21
and

C2 2

C11~0!
3

k12

k12 1 k21
.

Next we shall attempt to analyze the experimental results of
femtosecond dynamics of DNA-mediated electron transfer (7). For
this purpose, we shall assume that C12 represents the inactive states,
that is, k912 5 0 and k921 5 0. Furthermore, for simplicity we assume
that C21 and C22 do not communicate and that k21 is negligible. In
this case, Eqs. 4-1 and 4-2 reduce to

dC11

dt
5 ~kbC12 2 kfC11! 2 k12C11 [4-11]

dC12

dt
5 ~2kbC12 1 kfC11! [4-12]

and

dC21

dt
5 k12C11 2 k23C21 . [4-13]

Here k23 denotes the ET rate constant for the process initiated from
C21 in case it exists.

From Eqs. 4-11 to 4-13, we can see that C12 and C11 are involved
only in Eqs. 4-11 and 4-12 and not in Eq. 4-13. k23 appears only in
Eq. 4-13. That is, only C12 and C11 are coupled through Eqs. 4-11
and 4-12. The solution of Eqs. 4-11 and 4-12 yields

C11~t!
C11~0!

5
~2l1 1 kb!

~l22l1!
e2l1t 1

~2l2 1 kb!

~l1 2 l2!
e2l2t , [4-14]

where l1 and l2 denote the slow time constant and fast time
constant, respectively,

l1 5
kf 1 kb 1 k12

2
2 FSkf 1 kb 1 k12

2 D 2

2 kbk12G
1
2

[4-15]

and

l2 5
kf 1 kb 1 k12

2
1 FSkf 1 kb 1 k12

2 D 2

2 kbk12G
1
2

.

[4-16]
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Here we have assumed that C11 represents the photoexcited initial
state; that is, C11(0) Þ 0, C12(0) 5 0, C21(0) 5 0. The charge
transfer takes place between C11 and C21, and C12 represents the
dark states. Zewail and co-workers (8) followed the time evolution
of C11(t) and found that 1yl1 5 75 ps and 1yl2 5 5 ps. Here for
simplicity we have ignored the 2-ns component. For the 5Z case,
they found that

34
23

5
l2 2 kb

2l1 1 kb
. [4-17]

It follows that 1ykb ; 11 ps. Similarly for the 7Z case, we obtain
1ykb ; 9.1 ps and for the 9Z case, we obtain 1ykb ; 12 ps. As can
be seen from the above analysis, the rates of kb are nearly the same
and the ET rate is not too much faster than that of kb if kb ; kf.

Recently Bixon et al. have studied the long-range charge
hopping in DNA (ref. 19 and the references therein). In our
theoretical treatment of long-range charge migration in proteins
and DNA, the torsional motion of floppy backbones is empha-
sized to play a very important role in the hole hopping between
local amino acid sites in proteins. We have derived the generalized
master equations which can describe the time evolution of the
charge migration (and/or other dynamical processes) in complex
systems. We emphasize that the long-range charge transfer can be
effectively accomplished dynamically in multisteps. It is to be noted
that the GME can be employed directly to analyze the time-resolved
and/or steady-state experimental results.

To understand how proteins fold up into their compact three-
dimensional forms is a central problem in modern structural
biology and has attracted considerable experimental and theoret-
ical attention (20, 21). Most experimental studies on the dynamics
of protein folding have been confined to time scales of 1 ms and
longer (20). Yet it is obvious that many phenomena that are
obligatory elements of the folding processes occur on much faster
time scales. For example, it is now clear that the formation of
secondary and tertiary structures can occur on nanosecond and
microsecond times, respectively. Thus it is obvious that theoretically
to treat the dynamics of protein folding one has to deal with the
processes ranging from picoseconds to seconds or longer. The
GME approach presented in this paper is an ideal tool for this
purpose.

In conclusion, in this paper, we have derived quantum mechan-
ical GMEs that can be used in treating processes with various time
scales. In particular, we have applied this GME method to develop
a model of charge transport in proteins that invokes the hopping
between local amino acid sites assisted or driven by the torsional
motions of the floppy backbones.
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