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Abstract
MicroRNAs are short non-coding RNAs that function as negative regulators of gene expression.
Posttranscriptional regulation by miRNAs is important for many aspects of development,
homeostasis and disease. Endothelial cells are key regulators of different aspects of vascular biology
including the formation of new blood vessels (angiogenesis). Here we review the approaches and
current experimental evidence for the involvement of miRNAs in the regulation of the angiogenic
process and their potential therapeutic applications for vascular diseases associated with abnormal
angiogenesis.
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Introduction
All blood vessels are lined by the vascular endothelium, a critical barrier between the
circulating blood and tissue. The non-thrombogenic surface of the endothelium permits the
flow of blood to meet the metabolic demands of tissues and alterations in flow patterns are
determined by the changes in pressure and vascular resistance in a given vascular segment1.
The de novo generation and remodeling of blood vessels is essential to embryonic growth and
throughout postnatal life. With regard to the latter, dynamic regulation of vascular density is
critical for physiological organ repair during wound healing, post-ischemic tissue restoration
and the menstrual cycle. During adulthood, the endothelium remains essentially quiescent, to
fulfill their main function to conduct nutritive blood flow to organs, with turnover rates on the
orders of months to years and rapid changes in their proliferation rates occur following
activation of endothelium by angiogenic cytokines2. The loss of typical endothelial quiescence
and barrier function is a common feature of conditions such as inflammation, tumor
progression, atherosclerosis, restenosis, and various vasculopathies3.

The formation of the vascular system starts with the assembly of embryonic progenitors cells
to form the vascular plexus of small capillaries in a process known as vasculogenesis. This
phase is followed by angiogenesis resulting in the expansion of the nascent vascular plexus by
sprouting and remodeling into a highly organized and stereotypic network of larger arterial
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and venous vessels ramifying into smaller ones3,4. Therefore, vasculogenesis and angiogenesis
are physiological processes during development that are down-regulated in the healthy adult
– except for the organs of the female reproductive system – and are almost exclusively
associated with pathology when angiogenesis is induced by microenvironmental factors like
hypoxia or inflammation2,5,6. The pathological processes associated with or induced by
angiogenesis include diseases as diverse as cancer, macular degeneration, psoriasis, diabetic
retinopathy, thrombosis, and inflammatory disorders including arthritis and atherosclerosis.
Moreover, insufficient angiogenesis is characteristic of ischemic heart disease, peripheral
vascular disease and pre-clampsia3. The above examples represent the broad array of diseases
that are associated with the activated endothelial cell (EC) phenotype.

Upon angiogenic activation, EC proliferate, degrade extracellular matrix, change their adhesive
properties, migrate, avoid apoptosis, form tube like-structures and eventually mature into new
blood vessels. Therefore, the growth of vessels is a complex process involving a number of
molecular and cellular events that require to be temporal and spatial orchestrated by a finely
tuned balance between stimulatory and inhibitory signals7. Finally, all these processes are
controlled by signals received by EC from their microenvironment, signals whose transduction
pathways lead specific programs of gene expression to assure an adequate angiogenic
response8,9.

MicroRNAs (miRNAs) have emerged as crucial players regulating the magnitude of gene
expression in a variety of organisms10. This class of short (≈ 22 nucleotides) non-coding RNA
molecules have been shown to participate in almost every cellular process investigated so
far11, and their dysregulation is observed in -and might underlie- different human pathologies
including cancer, heart disease and neurodegeneration12-15. These new molecular regulators
have been identified in ECs and their role in the regulation of different aspects of the angiogenic
process has been recently investigated in a variety of laboratories16-22. The present review
focuses on the approaches and current experimental evidence for the involvement of miRNAs
in the angiogenic process and their potential therapeutic applications for vascular diseases
associated with abnormal angiogenesis.

miRNAs: biogenesis and modus operandi
Since the discovery of the first two miRNAs -lin-4 and let-723-25 hundreds of miRNAs have
been identified in plants, animals and viruses by molecular cloning and bioinformatics
approaches26. miRNAs constitute a family of short non-coding RNA molecules of 20-25
nucleotides in length that regulate gene expression at the post-trancriptional level27,28. They
generally repress target mRNAs through an antisense mechanism. In animals, miRNAs
typically target sequences in the transcript 3′ untranslated regions (3′UTR) that are only
partially complementary to the miRNA, causing a repression of the protein synthesis29. They
are involved in the control of a wide range of biological functions and processes such as
development, differentiation, metabolism, growth, proliferation and apoptosis11,12,14,27,28,30

and are the center of attention in molecular and cell biology research. More than 700 human
miRNAs have been cloned and bioinformatic predictions indicate that mammalian miRNAs
can regulate approximately 30% of all protein-coding genes29,31.

Most miRNAs are transcribed by RNA polymerase II from individual miRNAs genes, from
introns of protein coding genes, or from polycistronic transcripts that often encode multiple
related miRNAs32. These long –thousands of nucleotides- primary transcripts generate a stem-
loop containing primary miRNA (pri-miRNA). The pri-miRNA is processed within the nucleus
by a ribonuclease III (RNase III), called Drosha33, along with an RNA-binding protein DGCR8/
Pasha34 (Figure 1). Most mammalian miRNAs that are encoded in introns are processed before
splicing, however there is a subset of intronic miRNAs called “miRtrons” that circumvent the
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Drosha pathway35. The product of the Drosha cleavage event is a 70-100 nucleotides hairpin-
shaped precursor (pre-miRNA) that is transported to the cytoplasm via an Exportin-5 and Ran-
GTP dependent mechanism36. Then the pre-miRNA is further cleaved to produce the mature
≈ 22-nt miRNA:miRNA* duplex by another RNaseIII enzyme, Dicer37 (Figure 1). The miRNA
duplex is incorporated into the effector ribonucleoprotein complex RISC (RNA induced
silencing complex)38,39 whose key components are proteins of the Argonaute (AGO)
family40 (Figure 1). The miRNA duplex is unwound into the mature single-stranded form
(guide strand) and its complementary strand (passenger strand or miRNA*) that is typically
degraded. The stem loop in pre-miRNAs contributes to the strand selection, however the
miRNA* also has chance to be selected and used in gene regulation41. As part of the RISC,
the miRNA guides the complex to its RNA targets by Watson-Crick base-pairing interactions.
In cases of perfect or near-perfect complementary to the miRNA, target mRNA 3′UTR can be
cleaved and degraded. In most cases, animal miRNAs pair imperfectly with their targets and
their translation is repressed42. The mechanism(s) of translational repression by miRNAs
remains unclear and can also affect mRNA stability. These include sequestration from
ribosomes (by relocation into P bodies), blockage of translational initiation, translational
repression after initiation and target deadenylation coupled to transcript degradation42,43

(Figure 1). Recent reviews covering these topics and more general information about
biogenesis and mechanisms of action can be found11,12,29,44.

Elucidation of the function of a miRNA requires identification of putative mRNA targets that
it regulates and this is very challenging since miRNA usually are imperfectly complementary
to their targets. In mammals, the most consistent requirement, although not always essential,
of miRNA:target interaction is a contiguous and perfect base pairing of the miRNA nucleotides
2-8, representing the “seed” region. In many cases, the seed seems to determine this
recognition; in other cases, additional determinants are required, such as reasonable
complementarity to the miRNA 3′ half to stabilize the interaction, mismatches must to be
present in the central region of the miRNA-mRNA, among others12,29,45,46. It is important to
note that identifying functionally important miRNAs targets is crucial for understanding
miRNA functions. However, the possibility that a single miRNA may target multiple
transcripts within a cell type and that individual transcripts may be subject to regulation by
multiple miRNAs amplifies the scope of putative miRNA regulation of gene expression, and
indicates that the particular cellular context of a given miRNA will determine its function in a
specific cell type.

Regulation of Angiogenesis by miRNAs: global approaches
An approach to examine the spectrum of the biological significance of miRNAs is to remove
all miRNAs by mutation or disruption of Dicer, the rate limiting enzyme involved in the
maturation of miRNAs. Dicer loss of function results in profound developmental defects in
both zebrafish and mice47,48. Zebrafish lacking Dicer undergo to a relative normal
morphogenesis and organ development but die two weeks after fertilization due to a general
growth arrest48. The survival to this stage likely reflects the presence of maternal Dicer. When
an offspring of fish that lack both maternal and zygotic Dicer was created49, these Dicer-null
embryos exhibited severe defects most prominently in gastrulation, brain morphogenesis,
cardiac development associated with a disrupted blood circulation. Reminiscent of the
zebrafish dicer-null phenotype, loss of Dicer in mice by replacement of exon 21 with a
neomycin-resistance cassette leads to lethality early in embryogenesis at day 7.5 and the
embryos were depleted of pluripotent stem cells47. Another group generated Dicerex1/2 mice
have a deletion of the amino acid sequences from the first two exons of the Dicer gene50.
Dicerex1/2 homozygous embryos die between days 12.5 and 14.5 of gestation, again
demonstrating that Dicer is necessary for normal mouse development. To further explore the
consequences of Dicer deletion, several laboratories have generated mice harboring
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conditional Dicer alleles. Tissue-specific inactivation of Dicer has led to the conclusion that
Dicer is essential for proper limb formation, lung and skin morphogenesis, the maintenance of
hair follicles, T cell development, differentiation and function, neuronal survival, skeletal
muscle development, chondrocyte proliferation and differentiation, germ cell development and
spermatogenesis, autoimmunity and antibody diversity and B lymphocytic lineage
survival51-64. At the level of the cardiovascular system, cardiac specific deletion of Dicer
produces dilated cardiomyopathy associated with heart failure in neonates65 and spontaneous
cardiac remodeling when Dicer deletion was induced postnatally in the myocardium66.

Recent reports, both in vitro and in vivo, also indicate a role for Dicer-dependent miRNAs in
vascular signaling and functions related to angiogenesis16,19,20,50,67. In fact, the early
embryonic lethality observed in Dicerex1/2 mice has been suggested to be a consequence of
defective blood vessel formation and maintenance50, data that were in accordance with the
disrupted blood circulation observed in zebrafish Dicer-null embryos49. The defects observed
in Dicerex1/2 embryos and yolk sacs were associated with altered expression of vascular
endothelial growth facto (VEGF), its receptors KDR (VEGFR2) and FLT-1 (VEGFR1) as well
as the putative angiopoietin-2 receptor, Tie-1. This study suggests that Dicer has a role in
embryonic angiogenesis, probably through processing of miRNAs that regulate expression
levels of key angiogenic regulators50. These observations give rise for a series of studies
relating to miRNA and endothelial cells functions relevant to angiogenesis.

The functional role of miRNAs in endothelial cells was assessed by specifically silencing Dicer
using short interfering RNA (siRNA) in human umbilical endothelial cells (HUVECs) and
EA.hy.926 cells. Depletion of Dicer impairs the development of capillary-like structures and
exerts an antiproliferative effect16,19,20. The knockdown of Dicer in human microvascular
endothelial cell (HMECs) shows diminished tube formation and cell migration67. Accordingly,
migration was also impaired in Dicer knockdown HUVECs when fibronectin was used as
matrix16. As expected, the knockdown of Dicer in EC alters constitutive protein expression
patterns, largely affecting proteins that play a role in endothelial cell biology and angiogenic
responses, such us Tie-2/TEK, VEGFR2, endothelial nitric oxide synthase (eNOS), IL-8 and
angiopoietin like 4 (ANGPTL4)19. Some of the upregulated transcripts/protein were consistent
with the reported Dicerex1/2 embryos, such as of Tie-2/TEK and VEGFR219,50. The decrease
in growth and morphogenesis observed in EC after Dicer silencing16,19,20 was consistent
impaired vascular development in Dicerex1/2 embryos and regardless of the paradoxical
upregulation of VEGFR1 and VEGFR2 observed in Dicerex1/2 embryos50 and VEGFR1,
VEGFR2, Tie-2 and eNOS observed in Dicer knockdown ECs19. Interestingly, the Dicer
silencing in EC increased the expression of thrombospondin-1 (Tsp1)16,20, a multi-domain
matrix glycoprotein that has been shown to be a natural endogenous inhibitor of angiogenesis,
which may explain, in part, the antiangiogenic phenotypes observed in vitro. Furthermore, the
knockdown of Dicer in HMECs also reduces the expression of miRNAs that control the
expression of the HMG-box protein 1 (HBP1) transcriptional suppressor, which negatively
regulates p47phox of the NADPH oxidase complex, decreases the basal production of reactive
oxygen species (ROS) impairing aspects of redox regulation during an angiogenic
response67.

The early embryonic lethality of Dicer null alleles in mice47, 50 has limited the ability to address
the role of Dicer in normal mouse growth and development. The global effect of Dicer
deficiency in adult mice was investigated by using a Dicer hypomorphic mouse (Dicerd/d),
obtained by a gene-trap method68. Dicerd/d female mice are infertile due to corpus luteum (CL)
insufficiency and defective ovarian angiogenesis. CL is formed from the ovulated follicle and
plays a critical role in the secretion of progesterone, a hormone needed for the maintenance of
early pregnancy and requires intense angiogenesis. Impaired CL angiogenesis was partly
explained by the lack of miR-17-5p and let7b, miRNAs that participate in angiogenesis via
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targeting the anti-angiogenic factor tissue inhibitor of metalloproteinase 1 (TIMP1)69.
Although CL angiogenesis was reduced, embryonic vasculogenesis and angiogenesis were not
affected in Dicerd/d mice, indicating that angiogenesis in different tissues has different
sensitivities to the levels of Dicer protein68,69.

The first attempt to show the role of endothelial miRNAs in angiogenesis in vivo was performed
by subcutaneous injection of Dicer knockdown HUVEC (suspended in a matrigel plug) into
nude mice, demonstrating reduced sprout formation16. Finally, the requirement of endothelial
miRNAs for post-natal angiogenesis was recently tested by the generation of two EC-specific
Dicer knockout mouse lines, conditional Tie2-Cre;Dicerflox/flox mice and the tamoxifen (TMX)
inducible VECad-Cre-ERT2;Dicerflox/flox mice20. Despite the fact that Dicer protein was
reduced and miRNA production diminished (e.g. miR-126 and miR-31) in EC isolated from
Tie2-Cre;Dicerflox/flox mice, they were viable and overtly normal, suggesting the mice were
hypomorphic for Dicer expression in the endothelium. However, the lack of lethality allowed
investigation of the relevance of endothelial miRNAs in post-natal angiogenic responses using
several models of angiogenesis. VEGF (VEGF-A) is a major pro-angiogenic factor whose main
functions are to promote EC survival, induce EC proliferation, enhance cell migration and
invasion of EC, all phenotypes that promote angiogenesis. As shown previously in human EC
transfected with Dicer siRNA16,19 VEGF driven angiogenesis is reduced in mice that are
conditional EC-specific Dicer hypomorphs20. Altered miRNA expression has been implicated
in tumor formation via miRNA modulation of critical genes involved in tumor cells
proliferation or survival14,70. Importantly, angiogenesis is necessary for adequate delivery of
nutrients and oxygen to growing tumors71. Interestingly, the participation of endothelial
miRNAs in the tumor-induced neovascularization, was examined by post-natal inactivation of
Dicer in the endothelium prior to tumor implantation. Tumor growth as well as the tumor-
induced microvessel formation was reduced in VECad-Cre-ERT2;Dicerflox/flox 20. Taken
together, miRNAs participate and are required for tumor cell proliferation plus angiogenesis.
The pathophysiological relevance of endothelial miRNAs was also further investigated in
response to limb ischemia and wound healing20. The vascular supply to limbs and peripheral
tissues is essential for normal physiological functions. Under certain pathologic conditions,
however, vascular supply may be reduced to such an extent that it leads to necrosis of the tissue.
After ischemia, inactivation of Dicer in EC reduced the angiogenic response to limb ischemia
indicated by a reduction in capillary densities and blood flow recovery. The reduced flow
impaired lower limb function and resulted in higher ischemic damage scores20. Recent works
on the significance of miRNA in skin morphogenesis and development provide important
insight that lays the foundation for wound healing process53,54, the potential significance of
miRNAs in cutaneous wound angiogenesis has also been discussed72. As mentioned before,
angiogenesis is necessary for wound repair since the new vessels provide nutrients to support
the active cells, promote granulation tissue formation and facilitate the clearance of debris.
Cutaneous wound-healing was delayed when Dicer was inactivated in EC. Tie2-
Cre;Dicerflox/flox and post-natally in VECad-Cre-ERT2;Dicerflox/flox showing larger areas of
granulation tissue devoid of hair follicles with less granulation tissue deposition and collagen
accumulation20, hallmarks of an angiogenic response.

The knockdown of Drosha –involved in the processing of pri-miRNAs- was also undertaken
to globally reduce miRNAs. The silencing of Drosha in EC produces less pronounced effects
on angiogenesis than Dicer silencing16,19, although capillary sprouting and tube forming
activity were blunted; the knockdown of Drosha does not exert significant effects on the in
vivo matrigel plug model16. This may be explained by the processing of pri-miRNA
independent of Drosha35. On the other hand, the angiogenic potential of EC disappeared when
Ago2 –component of the RISC- was knockdown73. Of the four mammalian Argonautes
(Ago1-4), only Ago2 functions in the RNA interference pathway74,75, whereas all four seem

Suárez and Sessa Page 5

Circ Res. Author manuscript; available in PMC 2010 February 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to participate in the miRNA-mediated repression, indicating that the global impairment of
repression by impeding miRNA-mRNA interaction also affect EC angiogenic responses.

These experimental approaches likely reveal the consequences of a block in miRNA
biogenesis, however it is important to consider when interpreting the data, the fact that Dicer
may participate in other processes unrelated to miRNA biology, such as formation of the
heterochromatin76 and that there are alternative Drosha-independent pri-miRNA processing
pathways35. Deciphering the miRNA network responsible for the modulation of the
angiogenesis might lead to novel therapeutic approaches for cancer, wound healing and
ischemic conditions such myocardial ischemia, peripheral vascular disease and vascular
diabetic complications.

Role of individual miRNA in angiogenesis
Although the previous studies emphasize the importance of the miRNA pathway in several
aspects of the angiogenic process, the majority does not provide information regarding the
functions of specific miRNAs. Studies aimed at elucidating the role of individual miRNAs in
the regulation of angiogenesis are increasingly being performed and most of the examples that
illustrate principles of miRNA function in angiogenesis are presented here.

Many miRNAs exhibit striking organ specific expression patterns suggesting cell type-specific
functions77-79. Consequently, dysregulation of miRNA expression and function may lead to
human diseases12. The first large-scale analysis of miRNA expression in EC was carried out
in HUVECs and identified 15 highly expressed miRNAs with receptors of angiogenic factors
(Flt-1, Nrp-2, Fgf-R, c-Met as c-kit) as putative mRNA targets, according to prediction
algorithms18. Additional studies also profiled the expression of miRNAs in ECs16,19. The
highly expressed miRNAs that were common in at least two out of the three studies, included
miR -15b, -16, -20, -21, -23a and b, -24, -29a and b, -31, -99a, -100, -103, -106, 125a and b,
-126, -130a, -181a, -191, -221, -222, -320, -let-7, let-7b, let-7c and let-7d16,18,19. However,
their specific targets and functions in EC related to angiogenesis has only been characterized
for a few of them (Table 1).

The prediction algorithms utilized to find receptors for angiogenic factors that may potentially
be targeted by some of the miRNAs identified miR-221 and miR-222 to target c-kit18. c-kit is
a tyrosine kinase receptor for stem-cell factor (SCF), and has been shown to promote survival,
migration and capillary tube formation in HUVECs80. Interestingly, transfection of HUVECs
with miR-221/222 inhibits tube formation, migration and wound healing in response to
SCF18. miR221/222 were shown to control the growth of erythropeitic and erythroleukemic
cells, through the regulation of c-kit expression at translational level81. Accumulating evidence
suggests that bone marrow–derived circulating precursors contribute to vascular repair,
remodeling, and lesion formation under physiological and pathological conditions82.
Interestingly, the interaction between miR-221/222 and the c-kit 3′UTR was also demonstrated
in ECs and thus the antiangiogenic activity of these miRNAs18. miR221/222 overexpression
in Dicer knockdown ECs restored the elevated eNOS protein levels eNOS induced by after
Dicer silencing19. NO synthesized by eNOS is necessary for EC survival migration and
angiogenesis83. However, prediction sites for these miRNA were not found in eNOS 3′ UTR,
suggesting that the regulation of eNOS protein levels by miR-221/222 is likely to be indirect.
Collectively, these reports suggest an antiagiogenic action for these miRNAs and then might
be a potential tool to block angiogenesis. However, it is important to note that miR221/222
can also promote cancer cell proliferation through the regulation of p27(Kip1) tumor
suppressor84, indicating that the regulation of proliferation by these miRNAs appears cell type
specific. Therefore, cell specific targeting with miRNAs is an important area of investigation
to be developed.
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Other miRNAs expressed in EC, let-7f and miR-27b, have been shown to exert pro-angiogenic
effects, as revealed by the blokade of in vitro angiogenesis with 2′-O-methyl oligonucleotides
inhibitors16, although their targets in ECs have not been already characterized.

The best characterized EC-specific miRNA is miR-12617,22,85. miR-126 is a highly conserved
miRNA (http://microrna.sanger.ac.uk/sequences/index.shtml). In both mouse and zebrafish
miR-126 is enriched in tissues with a high vascular component such as the lung and the
heart86,87. In mammals, it is encoded by intron 7 of the EGF-like domain 7 (Egfl7) gene also
known as VE-statin, which encodes an EC-specific secreted peptide that acts as a
chemoattractant and inhibitor of smooth muscle cell migration88,89. Location of miRNAs
within non-coding regions of specific genes represents a common mechanism of co-regulation.
Although the intronic miRNAs and their host genes could be regulated independently, it is
possible that the signals that activate the transcription of the host gene lead to the transcription
of the intronic miRNA. These miRNAs can in turn mediate the regulation of its host protein-
coding gene or the regulation of other proteins whose expression is inappropriate for the
stimulated process. In this regard, miR-208, is a cardiac specific miRNA encoded by an intron
in the gene that encodes α-myosin heavy chain and function within a regulatory network to
control cardiac stress response79. Thus, the expression pattern of miR-126 in tissues and cells
lines22 parallels to of Egfl790,91. Additionally, miR-126 has been shown to be enriched in
embryonic bodies-derived Flk1 positive cells. Indeed, the expression of Egfl7 and miR-126
largely matched that of EC markers during embryoid body formation, being highly enriched
in Flk1-positive vascular progenitors at d4 as well as in mature CD31- expressing ECs at
d717. Although enriched in vascular progenitors, it is not sufficient to promote the
differentiation of pluripotent cells towards an EC lineage17. In vitro, miR-126 regulates many
aspects of EC biology, including cell migration, organization of the cytoskeleton, capillary
network stability and cell survival17. In vivo, the knockdown of miR-126 in zebrafish resulted
in the loss of vascular integrity and hemorrhage during embryonic development17. Futhermore,
targeted deletion of miR-126 in mice causes partial embryonic or perinatal lethality (40% of
miR-126−/− mice). The embryonic lethality was due to a severe systemic edema, multifocal
hemorrhages and rupture of blood vessels. Of the miR-126−/− mice that survived to birth, 12%
died by P1 and contained excessive protein rich fluid in the pleural space of the thoracic cavity,
indicating a severe edema. The surviving miR-126−/− mice appeared normal to adulthood and
displayed no obvious abnormalities22, indicating that miR-126 plays an important role in the
maintenance of vascular integrity during embryogenesis but not for vascular homeostasis after
birth. Interestingly, ECs from adult miR-126−/− mice showed diminished angiogenic
responses, suggesting a role for miR-126 in neoangiogenesis of adult tissues in response to
injury. Indeed, when miR-126−/− where subjected to myocardial infarction, 50% died after 1
week and nearly all of them die by 3 weeks, in contrast, 70% of wild type (wt) mice survive
at least for 3 weeks22. In fact, PECAM staining revealed extensive vascularization in the injured
myocardium of wt mice, whereas there it was reduced in miR-126−/− mice22. Vascular cell
adhesion molecule-1 (VCAM-1) was the first target identified for repression by miR-126 in
vitro85, however additional targets have been identified17,22. Gene expression profiles by
microarray analysis of EC isolated from adult kidneys of wt and miR-126−/− mice22 or from
miR-126 zebrafish morphants or from HUVECs in which miR-126 was knockdown17 were
performed to identify genes regulated by miR-126. Genes implicated in endothelial cell
biology, angiogenesis, cell cycle, inflammation, cytoskeleton and growth factors were
dysregulated in the absence of miR-12617,22. Bioinformatic analysis, predicted integrin α-6,
VCAM-1 and Sprouty-related protein-1 (Spred-1)17,22 as well as phosphoinositide-3-kinase,
regulatory subunit 2 (PIK3R2) also known as p85-β, regulator of G protein signaling 3 (RGS3)
and CRK17. miR-126 directly targets the 3′ UTR of Spred-117,22, VCAM-117,85 and
PIK3R217 for repression. Spred-1 and PIK3R2 have been shown to function as negative
regulators of VEGF / FGF signaling via MAP-kinase and PI3 kinase pathways, respectively.
Thus, miR-126 promotes growth factor (VEGF/FGF) signaling, angiogenesis and vascular

Suárez and Sessa Page 7

Circ Res. Author manuscript; available in PMC 2010 February 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://microrna.sanger.ac.uk/sequences/index.shtml


integrity by inhibiting endogenous repressors of growth factors within ECs17,22. This findings
illustrate that a single miRNA can regulate vascular integrity and angiogenesis, providing a
new target for either pro- or antiangiogenic therapies.

As mentioned before, numerous factors are implicated in vessel growth. Among these factors,
angiotensin II (Ang II), the main effector peptide of the renin-angiotensin system, appears to
be implicated in the regulation of the angiogenic process92. ANG II has been shown to work
through both type 1 (AT1R) and type 2 (AT2R) receptors, which display opposing vasomotor
and angiogenic actions93. AT1R receptor activation is known to stimulate vascular growth and
microvascular angiogenesis in nonneural tissues such as skeletal and cardiac muscle, whereas
AT2R activation was recently shown to antagonize these actions94. miR-155 is expressed in
ECs and VSMC20,95 and has been shown to specifically interacts with the 3′UTR of the human
AT1R mRNA, thereby reducing the endogenous expression of the hAT1R and consequently
Ang II signaling95. Translational repression by miR-155 provides yet another mechanism by
which AT1R expression can be modulated. In this regard, it has been reported that Ang II
induces in a dose dependent manner the expression VEGFR2 and significantly enhances
VEGF-induced cell proliferation and tube formation, mediated by AT1 receptor96 and
suggesting that AT1 receptor may contribute to the development of diabetic retinopathy by
enhancing VEGF-induced angiogenic activity. Then, the downregulation of AT1R by miR-155
suggest an antiangiogenic function for this miRNA in ECs. However, its role in EC
angiogenesis has not been specifically addressed. Stimulation of human fibroblast with
transforming growth factor β-1 (TGF-β1) decreased the expression of miR-155 and increased
the expression of hAT1R. Furthermore, miR-155 is induced in macrophages by cytokines such
as tumor necrosis factor α (TNF α) and interferon β (IFNβ)97. Interestingly, angiogenic
stimulation of EC with VEGF increases the expression of miR-15520 suggesting VEGF may
control the levels of ATR1 via miR-155. Nevertheless, the oncogenic potential of miR-155 has
been confirmed in mice, where its overproduction leads to spontaneous B-cell malignancy,
showing the complexity of miRNA-mediated regulation, given that the same miRNA may have
opposite effects in different biological contexts.

Regulation of miRNA expression in angiogenesis
It is well accepted that miRNAs post-transcriptionally govern the levels of gene expression.
However an important burgeoning area of investigation is to elucidate how the levels of
miRNAs, per se, are regulated. The information about specific regulation of miRNAs has
comparatively lagged behind, in contrast to the wealth of publications about their biological
effects. Indeed, extracellular factors can modify the activity of a miRNA by affecting its
expression, stability (by controlling synthesis or degradation or cellular localization98-102. In
this regard, promoter elements that could contribute to the expression of the muscle-specific
miR-1/miR-133 cluster have been identified103 as well as the implicated in miR-223 during
granulopoiesis98. The oncogenic transcription factor c-Myc activates the miR-17-92 cluster,
and this mechanism plays an important role in tumor formation101. Furthermore, LPS treatment
of human monocytes induced the expression of miR-146, -142 and -155 as determined by
miRNA microarrays and that miR-146 was induced in an NFkB-dependent manner97,104.
These exciting studies raise the possibility that extracellular signals via Toll like receptors
(TLR) modulate the expression of key miRNAs which then regulated the levels of genes
necessary for TLR dependent functions. This concept of miRNA regulation has been extended
to the cytokine IFNβ, which induces key miRNAs that aid in combating viral infections105.
More recently, miRNA profiling of TGF-β or bone morphogenic protein (BMP) treated human
vascular smooth muscle cells revealed that TGF-β/BMP induces the expression of miR-21
leading to an upregulation of genes necessary for the contractile phenotype. The mechanism
of miR-21 induction is quite novel, where TGF-β enhances the processing of pri-miR-21 into
pre-miR-21 by regulating the miRNA processing enzyme Drosha106. Accordingly,
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extracellular signals can modify the levels of a miRNA and thereby its activity providing a
mechanism to regulate the robustness of an integrated functional response such as an
angiogenic response (Figure 2).

Recent studies investigated the regulation of miRNAs in EC in response to serum, hypoxia,
VEGF and tumor-derived growth factors20,107-109.

miR-130a is expressed at low levels in quiescent HUVECs and is upregulated in response to
fetal bovine serum107. miR-130a is a regulator of the angiogenic phenotype of EC through to
is ability to modulate the expression of the antiangiogenic homeobox proteins GAX (growth
arrest homeobox) and HoxA5. miR-130a antagonizes the inhibitory effect of GAX on EC
proliferation, migration and tube formation and the inhibitory effects of HoxA5 on tube
formation107. The regulation of angiogenesis by hypoxia is an important component of
homeostatic mechanisms that link vascular oxygen supply to metabolic demand5.

Hypoxia occurs during several pathophysiological circumstances (e.g. tumor development,
chronic ischemia). In cancer cells a set of hypoxia-regulated miRNAs have been
identified110-112, supporting a key role of hypoxia inducible factor (HIF) as a transcription
factor for miRNA expression during hypoxia100, however only few miRNAs promoters have
been identified experimentally113,114. Hypoxia induces the expression of different growth
factors including VEGF, an important angiogenic factor. For this gene, a group of candidate
regulatory miRNAs has been identified recently and the miRNA-regulation of VEGF under
hypoxia was investigated in cancer cells111. Interestingly, most of the miRNAs that were
predicted to target VEGF were found to respond to hypoxia, which could lead to an extra layer
of complexity in the angiogenic response. miR-15 and -16 regulate VEGF expression but are
downregulated by hypoxia111. Interestingly, these miRNAs have been shown to induce
apoptosis in leukemic cells by targeting the anti-apoptotic protein Bcl-2115, block cell cycle
progression116 and are frequently down-regulated in chronic lymphocytic leukemia117.
Regarding to EC, miR-210 is induced by hypoxia108. Overexpression of miR-210 in normoxic
EC stimulates the formation of capillary-like structures and VEGF-driven migration, whereas
its blockade inhibits the formation of the capillary-like structures and decreases the migration
in response to VEGF. The relevant target for miR-210 in hypoxia was Ephrin-A3 (Eph-A3).
Ephrin ligands and their receptors have been shown to play a crucial role in the development
of the cardiovascular system. Although the importance of EphA2 in the regulation of
angiogenesis and VEGF signaling has been reported, little is known yet about the specific role
of Eph-A3. However, this data suggests that down-regulation of Eph-A3 is necessary for the
miR-210-mediated stimulation of capillary-like formation and EC chemotaxis in response to
VEGF and may contribute to modulate the angiogenic response to ischemia.

The modulation of the expression of EC-miRNAs by VEGF has been recently
investigated20. VEGF treatment of HUVECs regulated the levels of several miRNAs, among
them hsa-miR-191, -155, -31, -17, -18a, -20a, whose expression was increased, however little
change was observed in the expression of hsa-miR-126 and -22220. The first set of miRNAs
are commonly overexpressed in human tumors and have been implicated in the control of tumor
growth, survival and angiogenesis118-122. Transcription factors c-myc and E2F control the
expression of the miR-17-92 cluster including miR-17, -18a, -20 and miR-19a, -19b and
-92a101,123,124. Interestingly, VEGF has been shown promote proliferation of cortical neurons
precursors by regulating E2F expression125. E2F1, E2F2 and E2F3 are involved in the
regulation of apoptosis and cell proliferation126. Components of this cluster target the
expression of E2F1 and target the expression of E2F1 promoting proliferation by shifting the
E2F transcriptional balance away from the pro-apoptotic E2F1 and toward the proliferative
E2F3 transcription network101,124. Since the levels of miR-17, -18a and 20a in quiescent EC
were very low, VEGF induction of these miRNAs suggest that they may regulate the
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proliferative actions of VEGF. In fact, overexpression of these miRNAs in Dicer knockdown
EC rescues the defect in cell proliferation and cord formation20 suggesting that VEGF-induced
proliferation and morphogenesis are mediated in part by miR-17-92 activation. When
components of this cluster are overexpressed in tumors cells (Kras-transformed mouse
colonocytes) they specifically target anti-angiogenic proteins containing thrombospondin type
1 repeats such as Tsp1, connective tissue growth factor (CTGF) and SPARC120. In particular,
miR-18 preferentially suppresses CTGF expression, whereas miR-19 targets Tsp1. By using
MiRanda algorithm both miR-18 and -19 are predicted to target Tsp1 (depending on species).
In human EC, miR-18a preferentially targets Tsp120. When EC were transfected with the
components of miR-17-92 cluster upregulated by VEGF, miR-18a reduces basal levels of Tsp1
expression. Moreover, increased Tsp1 levels by Dicer silencing16,20 were restored to control
levels by expression of miR-18a20. Collectively, this data indicate that VEGF modulation of
miRNAs, specifically components of the miR-17-92 cluster, may participate in the control of
angiogenic phenotypes in EC. Furthermore, miR-17-92 miRNAs suppress the expression of
the tumor suppressor PTEN and the proapoptotic protein Bim, contributing to the
lymphoproliferative disease of miR-17-92-transgenic mice and contributing to lymphoma
development in patients with amplifications of the miR-17-92 region127. Moreover, deletion
of this locus in mice resulted in smaller embryos and immediate postnatal death128.

Finally, a recent report show that glioma- or growth factor-mediated the induction of miR-296
in primary human brain microvascular EC as well as in primary tumor EC isolated from brain
tumors compared to normal brain EC109. Furthermore, growth factor-induced miR-296
contribution to angiogenesis is mediated by targeting hepatocyte growth factor-regulated
tyrosine kinase substrate (HGS) and thereby reducing HGS-mediated degradation of VEGFR2
and PDGFRβ109.

The identification of miRNAs as regulators of both EC-mediated angiogenesis, tumor-induced
angiogenesis and survival is relevant for the therapy of cancer suggesting that antagonism of
these key miRNAs may be an attractive strategy.

miRNAs as potential therapeutics targets for angiogenesis
miRNAs are important players and regulators of both angiogenic processes and responses, thus
making them promising targets for potential therapeutics. The fact that miRNAs bind to their
target mRNAs by Watson-Crick base pairing, indicates that the usage of an oligonucleotide
complementary to the miRNA that effectively competes with the mRNA target, i.e. “antimiRs”,
represents an obvious and potential effective way of inactivating pathological miRNAs and
thus avoiding down regulation of important targets that promote the stimulation of gene
expression129-131. Alternatively, miRNA mimics - double stranded oligonucleotides designed
to simulate the function of endogenous mature miRNAs- may induce target down regulation
and thereby diminish gene expression, however this approach has not been tested in vivo132,
133.

The use of antimiRs in cultured cells have been successful, however, the key development was
chemical modification of miRNA inhibitors for in vivo utility. The large body of research
discovered during the development of antisense therapeutics have led to effective strategies
for the pharmacological delivery of nucleic acids, facilitating the development of small
interfering (si)RNA therapeutics134, and now, also miRNA therapeutics135. Three different
chemical modifications have been carried out to fulfill the inhibition of miRNA function in
vivo. One class of antimiRs is conjugated to cholesterol (antagomiR) to facilitate cellular
uptake. Other classes use oligonucleotides with with locked nucleotides acid (LNA-antimiRs)
or the 2′-O-methoxyethyl phosphorothioate (2′-MOE) modification. Antagonism of miR-122
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in mouse liver using these three classes of antimiRs in three independent studies found that
miR-122 antagonism led to reduced plasma cholesterol levels129-131.

An important caveat to these new therapeutics approaches is the cell-tissue specificity.
Furthermore, the regulatory actions mediated by miRNAs are complex since they can act both
as positive or negative modulators, bind to hundreds of different targets, while each target may
be regulated by several miRNAs. Indeed, the same miRNA can cause the opposite biological
effect depending on the context, as exemplified by miR-221/221, (i.e. targeting important
regulators of proangiogenic endothelial cell function (c-kit, eNOS) but also the tumor
suppressor p27(Kip1) in cancer cells84. Conversely, miR-17-92 cluster components have been
shown to participate in EC-mediated angiogenic functions20 and oncogenic functions as
indicated by their upregulation solid tumors such as colorectal cancer, non-small cell lung
cancers (NSCLC)70. Taken together, antimiRs targeting components of this cluster is a feasible
strategy for both antitumor and anti-angiogenic therapy. The relative specificity of miR-126
expression in EC and its requirement for vascular integrity and angiogenesis17,22, also suggests
it may be a potential target for efficient antimiR therapy in situations of pathological
vascularization, such as retinopathy and cancer. However, overexpression of miR-126 must
be carefully considered as there is no direct evidence regarding introduction of miR-126 in
non-endothelial cells. This underscores the critical importance of cell/tissue-specific miRNA
targeting. Therefore, both the inhibition and the mimicry of a miRNA in tissues other than
diseased tissue must be considered. In regards miRNA therapeutics, there are many efforts to
develop a more practical and specific strategy suitable for human therapy. A promising
approach for siRNA, is to use targeting antibodies that undergo internalization after binding
to cell specific surface receptors. To carry siRNA, antibodies can be decorated on liposomes
pre-packaged with siRNA or fused to positively charged proteins or peptides that bind nucleic
acids via electrostatic interactions136-139. Since miRNA mimics constructs are analogous to
siRNA molecules, similar strategies could apply for miRNA mimic cell targeting.

Concluding remarks
miRNAs are a relatively recent discovery that emerged as important regulators of gene
expression, and it appears that miRNAs are implicated in most, if not all, cellular processes
and many human diseases. In the present review we have summarized the role of miRNAs in
the regulation of angiogenesis and examined their potential applicability for the treatment of
diseases associated with aberrant pathological angiogenesis (cancer or macular degeneration)
or defective angiogenesis (myocardial ischemia or peripheral vascular disease). miRNAs
constitute a fundamental regulatory network for fine-tune regulation of gene expression and
therefore the maintenance of cellular functions necessary for an adequate angiogenic response.
The extensive number of miRNAs and the unprecedented complexity guarantee the discovery
of new and unanticipated roles of miRNAs in the control of angiogenesis. Genomics efforts,
such as massive parallel miRNA and mRNA expression profiling in angiogenic-associated
diseases in combination with loss- or gain-of-functions screens in EC, in combination with
adequate target validation and large-scale proteomics are feasible approaches to help
understand the complex miRNA-mediated gene regulatory networks in angiogenesis.
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Figure 1. miRNA biogenesis and function
miRNAs are originate in the nucleus as RNA polymerase II primary transcripts (pri-miRNAs),
which are transcribed from independent miRNA genes, from polycistronic transcripts or from
introns of protein-coding genes. Pri-miRNAs are then processed in two steps, catalyzed by the
RNase III type endonuclease Drosha and Dicer. These enzymes function in complexes with
dsRNA-binding domains proteins, DGCR8 and TRBP for Drosha and Dicer, respectively.
Drosha-DGCR8 processes pri-miRNAs to ≈ 70 nucleotides hairpins known as pre-miRNAs.
A subset of miRNAs, called miRtrons, also derived from introns, is processed into pre-miRNAs
by the spliceosome and the debranching enzyme. Both canonical miRNAs and miRtrons are
exported to the cytoplasm via Exportin 5, where they are further processed by Dicer-TRBP to
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yield ≈ 20-bp miRNA duplexes. One strand is selected to function as mature miRNA and loaded
into the RISC, while the partner miRNA* strand is preferentially degraded. The mature miRNA
leads to translational repression or mRNA degradation. The key components of the RISC are
components of the Argonaute family (Ago 1-4). A fraction of miRNA* species can also access
Ago complex and regulate targets. Perfect complementarity between miRNA and mRNA leads
to an endonucleolytic cleavage, catalyzed by the human Ago2 in the RISC. This mechanism
applies to siRNAs and many plant miRNAs. Animal miRNAs usually show only partial
complementarity to the target mRNA promoting translational repression (initiation and post
initiation steps) or deadenilation coupled to exonucleolytic degradation of target mRNA.
mRNAs repressed by deadenylation or at the translation-initiation step are moved to P-bodies
for either degradation or storage.
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Figure 2. Function and regulation of miRNAs in angiogenesis
The schematic illustrate how stimuli such as FGF, VEGF, hypoxia or mitogens promote
angiogenic phenotypes (black lines) and the potential role of how miRNAs may participate in
this process (red lines). Extracellular signals activate signal transduction pathways that lead to
an angiogenic response by direct activation of the specific effectors (MAPK, Akt, etc) or by
induction of gene expression. In turn, the activation of the signal transduction pathways can
modify the activity of a miRNA by affecting its expression, biogenesis and degradation (red
dashed lines). miRNA-mediated regulation of angiogenic effectors promotes fine-tuning
modulation of angiogenic responses via modulation of key effectors that promote angiogenic
phenotypes such as proliferation, migration and/or morphogenesis.
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Table 1
Compilation of miRNAs associated with angiogenesis

miRNA Cell type
miRNA target(s) (direct or
indirect*)

Function (by miRNA
overexpression or
inhibition) and
putative role in
angiogenesis References

miR-221
miR-222

EC (HUVECs,
EAhy 296)
Prostate cancer cell
lines

c-kit, eNOS*

p27/Kip1
Overexpression
reduces tube
formation, migration
and wound healing
(scratch assay) in
response to SCF. ↓EC-
mediated angiogenesis
Induce proliferation
and cell cycle
progression. Inhibition
reduces proliferation,
increase p27 and
reduces clonogenity of
cells. ↑Tumor induced
angiogenesis

18, 19
84

let-7f
miR-27b

EC (HUVECs) ND Inhibition reduces in
vitro sprout formation
↑EC-mediated
angiogenesis

16

miR-126

EC (HUVECs,
HAEC, mouse
ECs)

Spred-1, PIK3R2/p85-β, VCAM-1 Inhibition increases
TNF-induced
expressionof VCAM-1
and leukocyte
adhesion to ECs
Regulates vascular
integrity and
angiogenesis in
miR-126 knockdow
zebrafish and
miR-126-/- mice.
Inhibition reduces tube
formation, sprout
formation, wound
healing (scratch assay)
and proliferation in
response to VEGF and
FGF.
↑EC-mediated
angiogenesis

17, 22, 85

miR-130a

EC (HUVECs) GAX, HOXA5 Overexpression
antagonized the
inhibitory effect of
GAX on EC
proliferation,
migration and tube
formation and the
inhibitory effects of
HoxA5 on tube
formation
↑EC-mediated
angiogenesis

107

miR-210

EC (HUVECs)
Breast and colon
cancer cell lines,
nasopharyngeal
carcinoma cell line,

EphrinA3
ND

Stimulated by hypoxia.
Overexpression
stimulates tube
formation and
migration. ↑EC-
mediated angiogenesis

108
110, 111
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miRNA Cell type
miRNA target(s) (direct or
indirect*)

Function (by miRNA
overexpression or
inhibition) and
putative role in
angiogenesis References

head and squamous
cell carcinoma

Stimulated by hypoxia.
decrease proapoptotic
signaling in a hypoxic
environment. ↑Tumor
induced angiogenesis

miR-15
miR-16

Nasopharyngeal
carcinoma cell line
Chronic
lymphocytic
leukemia (CLL)
Colon cancer cells

VEGF, Bcl2 Downregulated by
hypoxia.
Overexpression
induces apoptosis in
leukemic cell line
model. Cell cycle
regulation. Inhibition
reduces number of
cells G0/G1 promoting
cell cycle progression.
↓Tumor induced
angiogenesis

111, 115, 116

miR-378

Glioblastoma cells Sufu, Fus-1 Overexpression
promotes cell survival
tumur growth and
angiogenesis in vivo.
↑Tumor induced
angiogenesis

140

miR-17-92 cluster

EC (HUVECs)
Malignant
lymphoma cells,
Colorectal cancer
cells, NSCLC
Lymphocytes

Tsp-1 (miR-18a)
E2F1 (miR-17-5p / miR-20a)
CTGF (miR-18a, Tsp-1 (miR-19)
PTEN, Bim

Stimulated by VEGF.
Overexpression
promotes cell
proliferation and cord
formation converse
effects by inhibition.
↑EC-mediated
angiogenesis
Expression control by
c-Myc and E2F.
Promote cell
proliferation and
survival.
Overexpression in
colonocytes form
larger and better-
perfused tumors in
vivo. ↑Tumor induced
angiogenesis
Overexpression
contributes
lymphoproliferative
disease.

20
101, 120, 122,
123
127

miR-296 EC (human brain
microvascular
ECs)

HGS Stimulated by glioma
cells and angiogenic
factors (EGF, VEGF).
Inhibition reduces tube
formation and
migration (scratch
assay) in vitro and
angiogenesis in tumor
xenografts in vivo.
↑EC-mediated and
tumor induced
angiogenesis

109
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miRNA Cell type
miRNA target(s) (direct or
indirect*)

Function (by miRNA
overexpression or
inhibition) and
putative role in
angiogenesis References

miR-155

EC, VSMC,
Fibroblast
Breast cancer cells,
malignant
lymphoma cells,
NSCLC
Lymphocytes,
macrophages

AT1R
ND
ND

Inhibtion increases
AT1R expression and
Ang II-induced
ERK1/2 activation. ?
EC-mediated
angiogenesis
Required for normal
immune and
imflammatory
responses

95, 141
97, 121, 122,

142, 143

ND= not determined
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