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Abstract
A protein structure should provide the information needed to understand its observed properties.
Significant progress has been made in developing accurate calculations of acid/base and oxidation/
reduction reactions in proteins. Current methods and their strengths and weaknesses are discussed.
The distribution and calculated ionization states in a survey of proteins is described, showing that a
significant minority of acidic and basic residues are buried in the protein and that most of these remain
ionized. The electrochemistry of heme and quinones are considered. Proton transfers in
bacteriorhodopsin and coupled electron and proton transfers in photosynthetic reaction centers, 5-
coordinate heme binding proteins and cytochrome c oxidase are highlighted as systems where
calculations have provided insight into the reaction mechanism.
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Redox and protonation reactions represent the simplest chemistry, involving only transfer of
electrons and/or protons. Acid/base and oxidation/reduction reactions play important roles in
biology. The source of the pH dependence of protein stability is the changing ionization state
of protein residues [1]. Protonation changes are essential for protein function. For example,
ATP is synthesized by the F0/F1 ATPase, which uses changes in protonation of a buried residue
to generate mechanical work [2–4]. The proton gradient that drives the ATPase is derived from
proton-coupled electron transfers through proteins embedded in membranes [5,6]. Charged
groups within proteins modify electrostatic fields at protein active sites [7], and provide proton
conduction pathways [8,9]; while charges on protein surfaces are essential for protein–protein
[10,11] and protein–lipid [12] recognition.

Significant effort has been made to understand the free energy of ionization of residues,
cofactors, and substrates within proteins. Computational methods try to match, then explain,
and predict measured results. There have been a number of recent reviews describing various
simulation methods, along with their strengths and weaknesses [1,13–19]. The structure is a
rich data-set that is too often used only for a qualitative analysis of the active site geometry.
In contrast, calculations can provide a detailed, quantitative analysis of the protein structure.
By extracting from the structure values that are measured experimentally simulations improve
our understanding of how the protein works. Tested predictions then provide a more stringent
test of these ideas. In the end, trusted calculations can explore possibilities in silico which are
difficult to test experimentally.
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The same computational tools are used to determine how proteins tune pKas and Ems. The
electrostatic energy terms are the most important, because both reactions represent a change
in the net charge. The in situ free energy is determined by interactions with solvent water, local
hydrogen bonds, longer-range charge–charge or charge–dipole interactions, and
conformational changes triggered by the reaction. In addition, calculations of Ems and pKas
are often inseparable. Redox reactions are usually coupled to some redistribution of protons
within the protein, as the charge change at the redox center modifies the pKas of the surrounding
residues. In the same way, modifications of protonation states with pH influence redox site
Ems [20–22].

1. Thermodynamic analysis of pKas and Ems in proteins
The thermodynamics of pKas and Ems in proteins can be broken down into a series of transfer
steps (Fig. 1). The thermodynamic box starts with characterization of the reaction in isolation
from the protein. The Gas Phase (line 1) and Aqueous Solution (line 2) reactions consider
ionization of a single isolated group. Transfer into Protein (line 3) introduces interactions with
other dipoles and charges and the possibility of conformational changes (line 4), proton
transfers between residues and coupled electron and proton transfer reactions (not shown).

1.1. Reaction free energy in a vacuum
Electrostatic calculations generally treat the neutral form in an acid/base reaction as the
reference or reactant state. For an acid releasing a proton (AHm→A−+mH+), the reaction free
energy in vacuum (ΔGvac) is the difference in energy of the product , including the
released proton  and the reactant  (First line Fig. 1):

(1a)

m is the number of protons released on the reaction, positive for acids and negative for bases.
An analogous equation can be written for reduction of an oxidized reactant in a redox reaction

:

(1b)

n is the number of electrons gained, so is positive for reduction. The reaction free energy in
vacuum can be calculated using a quantum mechanical analysis (Section 2.1.2) [23–26].

1.2. Reaction free energy in the solution
The solvation (reaction field or Born) (ΔGrxn) is the energy of favorable electrostatic
interactions of a solute with a polar solvent such as water (see 2.2) [27]. The product, reactant,
and proton gain solvation energies, , , and  when they are
transferred from vacuum to solvent (Second line Fig. 2). The standard state free energy in
solution  differs from ΔGvac because the transfer energies are not the same for all species
in the reaction:
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(2a)

R is the gas constant, and T is the temperature. At 25 °C  kcal/mol. For
a redox reaction:

(2b)

F is the Faraday constant. At 25 °C  meV. The transfer or solvation energy
arises from (a) changes in the electronic polarization and conformational preferences of the
reactant and product, (b) the energy to reorganize the solvent around them, and (c) pair-wise
interactions between solute and equilibrated solvent.

The free energy for an acid to lose a proton is dependent on the pH and the concentration of
reactant and product:

(3a)

For a redox reaction ΔGsol depends on Eh, the solution redox potential:

(3b)

For a reaction where both electrons and protons are transferred, ΔGsol depends on both pH and
Eh. With equal concentration of reactant and product:

(3c)

The pKa,sol and Em,sol obtained from Eq. (3) can be compared with measured values.

1.3. Reaction free energy in a protein
The reaction free energy in the protein (ΔGprot), differs from ΔGsol because the energy to
transfer reactant and product into the protein will be different (Third line Fig. 1). The
differences in electrostatic interactions are the primary source of the pKa and Em shifts. The
process of transfer can be divided into 3 steps.

1.3.1. Removing the solvent—Some or all waters are stripped away from the reactant or
product when it moves into the protein, which causes it to loose solvation energy (ΔGrxn). The
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ΔΔGrxn is the difference between the transfer energy of the product  and reactant

:

(4)

Any charged or dipolar group loses favorable interactions moving out of water; consequently

both  and  are positive [16]. However, this term is larger for charged
species; therefore transfer always favors the neutral form in a protonation or redox reaction
(Section 2.2). All groups retain some interaction with the solvent and ΔΔGrxn remains position
dependent, even when residues appear to be deeply buried in the protein [28].

1.3.2. Carrying out the reaction in “frozen” protein—While the reactant and product
loose interactions with the solvent, they gain new interactions within the protein. In contrast
to the solvation energy, which as a “self-” energy term only depends on the ionization state of
one group, the ‘pair-wise’ interactions within the proteins depend on the position and ionization
state of other residues. These terms are considered first with the ionization and conformation

of the protein held fixed. For the protein equilibrated around the reactant, (prot(R))  is

the difference in the interactions of the product  and reactant  with the protein
(see Section 2.3):

(5)

Since only a proton or electron separates the reactant and product in the reactions considered

here, there are generally only small differences in the van der Waals energy.  is thus
mostly contributed by changes in electrostatic interactions.

1.3.3. Equilibrating the protein around the product—The protein is then relaxes into

the form equilibrated around the product (prot(P)), with a change in energy of  (line
4 in Fig. 1):

(6)

where  is the energy of the protein equilibrated around the reactant, with the active group

already in the product state and  the energy of the protein equilibrated around the
product.

There are two paths for this conformational change (Fig. 1). In the first, as just described, the
reaction occurs in the protein equilibrated around the reactant and then the system relaxes,
Alternately, the protein first moves to the conformation equilibrated around the product, with

the reactant bound , followed by the chemical reaction. Both paths yield the same
total energy (ΔGprot), which will be the measured value [29].

Gunner et al. Page 4

Biochim Biophys Acta. Author manuscript; available in PMC 2009 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(7)

It takes energy to rearrange the protein and solvent equilibrated around the reactant (prot(R))
to be equilibrated around the product (prot(P)) in the presence of reactant. Once the product
has been formed the energy is paid back by favorable interactions with the product, making
the prot(P) the lowest energy state of the system as a whole. Thus, successful calculation of
the pKas and Ems must be able to determine the direct interaction of the reactant with prot(R),
and the product with prot(P) (Eqs. (5) and (6)) as well as the cost of transformation between
prot(R) and prot(P).

1.4. pKa and Em shifts moving from solution into the protein
Overall, the free energy of the reaction in the protein, starting from a reference state in solution,
is:

(8)

where ΔΔGprotein is the shift in the reaction free energy due to differences between product
and reactant loss of solvation energy and interactions with the protein as well as the energy
needed to move the solvent and protein from the conformation equilibrated around the reactant
to that equilibrated around the product. Thus,:

(9)

For an acid–base reaction the in situ pKa is:

(10a)

The pKa within the protein depends on (a) the intrinsic chemistry of the titrating site in water
encapsulated in the pKa,sol and the shift in the energy of ionization by the protein given by
ΔΔGprotein. ΔΔGprotein is also a function of the pH and Eh, because the electrostatic
environment for each residue depends on the ionization state of all of the others (Section 3.3).
An analogous expression can be written for a redox reaction where the in situ Em is:

(10b)

The free energy of a coupled electron and proton transfer reaction is:

(10c)
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For pure proton transfers n=0 and the pKa shift moving into the protein (ΔpKa,protein) is
−ΔΔGprotein/1.36m kcal/mol. For proton independent half reactions m=0, so the shift in the
Em in the protein (ΔEm,protein) is −ΔΔGprotein/n meV [29]. For proton coupled electron
transfers, ΔΔGprotein yields changes in both pKa,protein and Em,protein [30].

1.5. Free energy of protonation or redox changes at an arbitrary pH or Eh
The pKa is the pH at which the free energy of ionized and neutral states are the same. In solution,
the energy difference between the two forms changes as 2.303 RTm(pKa,sol−pH) (Eq. (3a)).
In the protein ΔΔGprotein is added to the energy gap (Eq. (9)) and this term is pH and/or Eh
dependent since it depends on the ionization state of all residues in the protein. There are many
reasons why it is useful to know the energy gap between the two ionization states at an arbitrary
pH and Eh as well as the in situ pKa or Em. This can provide the energy of transient protonation
changes along a proton transfer pathway [9], of an active site transition state [31], of electron
transfer reactions carried out in a frozen media [7] or measured on a fast time scale [32]. The
free energy of ionization at a given pH (ΔGpH) is:

(11a)

and it is related to the solution pKa,sol by:

(11b)

here  represents the Boltzmann distribution of the ionization and conformation states
of all other residues in the protein relaxed around the reactant at the pH of interest. Eq. (11) is
a mean field approximation of Eq. (9) that lacks the energy due to changes in the protein coupled

to the ionization of the site of interest . Thus, this is the energy of changing
protonation before protein relaxation. An analogous expression can be written for the free
energy of changing the redox state of a cofactor in a frozen protein (Eq. (10b)).

2. Challenges in the calculation of the Ems and pKas
Fig. 1 provides the standard framework for calculating pKas and Ems in proteins. However,
there remain challenges in calculating each needed energy term.

2.1. The reaction chemistry needs to be characterized in a well-defined solvent
The analysis of how reactions are modified by the protein starts with understanding the basic
reaction chemistry in isolation (Fig. 1). Only then can the perturbation of the thermodynamics
of transferring a reaction into protein (ΔGprotein) be determined to obtain the in situ pKas and
Ems.

2.1.1. Quantum mechanical calculations of Em,sol and pKa,sol—The reaction free
energy in vacuum (Eq. (1)) can be calculated using ab initio or more frequently, density
functional theory (DFT) [33,34] methods. The Ems and pKas for metal clusters can also be
determined by the same methods, although, these require the consideration of more complex
transition metal chemistry [35,36]. Despite the fact that there are attempts to do simulations
on larger systems [37,38], calculations are still largely limited to <100 atoms, representing a
very small region of a protein.
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To test the calculation of reaction free energy in vacuum, the system must be transferred into
a solvent in which the pKa,sol or Em,sol can be measured (Eq. (4)). Experimental [39] and
computational [40] studies help establish the effects of different solvents on Ems and pKas.
The transfer energy may be as difficult to calculate accurately as the vacuum ionization free
energy change. Water is the preferred reference solvent [41,42]. An implicit continuum model
is usually used, rather than an atomistic explicit solvent (see Section 2.2). It is always more
reliable to calculate relative values of pKa,sol and Em,sol for a series of compounds rather than
absolute values. Here the absolute transfer free energy for the proton or electron is not needed
(Eq. (2)). Values have been calculated for many small molecules where the calculated 
can differ from experimental pKa,sol and Em,sol by less than 1 ΔpK unit, or 60 meV [23,24,
43–47].

2.1.2. Measuring the Em,sol and pKa,sol—There are a number of good experimental
model systems to study pKa,sol and Em,sol of biologically interesting molecules in water. As
long as the protonated and deprotonated forms are stable in water, a pKa,sol can be measured
[48–50]. The pKas of amino acids are obtained for isolated groups [51] or for sidechains in
short capped peptides [52–54]. Measured pKas for a given type of functional group can vary
by 0.1–0.9 pH [51]. The pKas in short polypeptides or in unfolded proteins are lower then found
for the isolated functional group [55]. This may be a result of the propensity of sidechains to
orient into the positive end of the adjacent amide group [56].

Obtaining Em,sol for redox reactions can be more problematic. For example, the redox
cofactors, such as flavins and quinones, bind 2 electrons going from fully oxidized to fully
reduced species (Fig. 2) [20–22,57]. To get a complete picture of the thermodynamics
connecting all 9 possible species, the Em must be measured from a pH below the pKa,sol of the
most oxidized species to a pH above the pKa,sol of the most reduced species. In addition,
proteins often favor single electron reactions, while the resultant free radical species have
limited stability in solution. This can make it difficult to measure the Em,sol for the biologically
important redox couples.

2.1.3. Examples of measured Em,sol and pKa,sol: Hemes and quinones are well-studied redox
cofactors used by many proteins. Hemes in cytochromes (Section 5.1) transfer a single electron
and no protons while quinones in different binding sites (Section 5.2) can transfer 1 or 2
electrons, with or without coupled proton transfers.

2.1.3.1. Measured Em,sol and associated pKa,sol for hemes: Six-coordinate hemes with 2 axial
ligands generally change oxidation states between a neutral, ferrous FeII and a cationic, ferric
FeIII, species [58]. The macrocycle itself retains a −2 charge. The heme is not a protonatable
group, although it does have two attached propionic acids, which are not conjugated into the
ring system so can be considered independently (Section 5.2). Proteins, such as cytochromes
use hemes to shuttle electrons between sites within the protein or between different proteins
[22,59]. The microperoxidases, fragments of cytochrome c that retain 8–12 amino acids,
provide a well-studied heme model system [60–66]. The heme remains attached, via the two
Cys ligands, and keeps its axial His ligand and two propionic acids as peripheral ligands. The
Em,sol of bis-His MPs is ≈−220 mV (vs. S.H.E.) [63,64]. His-Met MPs have Em,sol of −70 mV
[62–64], 150 mV more positive than that of a bis-His MP. The microperoxidase Ems are pH
dependent due to the titration of the liganding His, the propionic acids, and a water/hydroxide
that can be the second axial ligand making them a less then ideal model system [67].

Many proteins bind hemes with only a single amino acid as an axial ligand [58]. The open 6th
ligand position can be used for transporting ligands such as the oxygen in hemoglobin. Other
proteins with 5-coordinate hemes, such as peroxidases, oxidases, and P-450s, carry out
chemistry at the open position. All these hemes can also bind water as the 6th ligand. The
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Em,sol for the microperoxidase-8 (MP8) His-water is −140 mV [68,69], and is −205 mV for
the His-hydroxyl measured at high pH [68]. The hydroxyl in the ferric His-aquo-heme MP8
has a measured pKa,sol of 9.6 [65] while it is 10.9 in the oxidized MP8 [70]. Thus, the formal
charge on the metal shifts the water pKa,sol by only 1.3 pH units. The protonation of the water
bound heme is functionally important for Heme A3 in the Heme-Cu oxidase, where it helps
determine the number of protons coupled to the anaerobic reduction of these proton-pumping
proteins [31,71].

Modifications of the heme porphyrin ring and its connection to the protein can also change the
heme redox chemistry [72]. The b and c type hemes differ by the latter having a covalent
attachment to the protein via two Cys. This linkage may lower the Em by 50 mV or less [73].
The c-type hemes have His–Met ligands, which have a 150 mV more positive Em,sol than the
Bis–His hemes. This Em,sol shift indicates that compared with the Bis–His hemes the oxidized
His–Met heme is bound ≈300 times less tightly than the reduced species [30]. Thus, the c-type
covalent linkage may help keep the oxidized His–Met heme from dissociating from its axial
ligands and then the protein [72].

Heme o and a are found in heme-Cu terminal oxidases such as bo3 and aa3 [74]. An o-heme
differs from a b-heme by the substitution of a hydroxy-ethyl farnesyl side chain for a vinyl
group. In model systems this increases the affinity of the heme for the protein without changing
the midpoint [75]. An a-heme differs from an o-heme by the oxidation of a methyl to a more
electron withdrawing formyl group. The a-type heme has an Em,sol 100 [72] to 160 [76,77] mV
more positive than the c-type MPs with the same axial ligands. The oxidized a-type heme binds
its ligands ≈2500 less tightly then the b-type heme, with little difference in the reduced heme
affinity [75]. Thus, proteins that use an a-type heme raise the Em by adding a formyl group
reducing the affinity of the oxidized heme. The added farnesyl group then increases the affinity
without changing the Em by favoring binding of both redox species [75,78].

2.1.3.2. Measured Em,sol and pKa,sol for quinones: Flavins [57,79] and quinones [21,22,80]
have 9 different redox states with 0, 1 or 2 electrons and protons [30]. The doubly reduced,
doubly protonated, or the fully oxidized, deprotonated species tend to be the most stable forms
in water at pH 7. For ubiquinone (UQ) the Em,sol for reduction to the semiquinone is lower
than for the formation of the fully protonated dihydroquinone (QH2). Thus, in water at the
physiological pH, UQ is reduced in an n=2 reaction to QH2 [21,81]. However, the physiological
reactions with quinones generally involve single electron transfer steps [30,82,83]. Estimates
of the Em,sol for one electron reduction and pKa,sol for the semiquinone have been made for a
small number of quinones in water [30,84–88].

In the absence of protons, the semiquinone is stable in solution. The Em,sol for Q/Q− has been
determined in the aprotic solvent dimethylformamide (DMF) for a large number of quinones
[89–92]. For UQ it was measured to be −360 mV [91], which is significantly lower than the
best estimates of −150 mV in water [30]. This large decrease of Em,sol in DMF has been found
for other quinones [87]. A pure continuum electrostatics analysis of the change in the reaction
field energy moving the Q to Q− reaction from DMF (ε=37) to water (ε=80), only predicts a
shift stabilizing the anionic semiquinone by ≈40 mV, shifting the Em,sol to −320 mV [93] (see
Section 2.2). This discrepancy shows that more specific interactions need to be considered to
determine the changes in ΔGsol in different solvents [39,40].

There are several different quinones with different Em,sol used in biology. Rhodoquinone (RQ)
and menaquinone (MQ) have Em,sol 150 mV lower then UQ, making them better electron
donors and biology makes use of this. For example, some eukaryotes use the UQ containing
succinate dehydrogenase to reduce quinones under aerobic conditions. Under oxygen stress
they switch to quinonol furmarate reductase, which oxidize MQ or RQ [94,95]. The electron
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transfer from reduced MQ or RQ to fumarate is more favorable then for UQ, while UQ is more
easily reduced by succinate. Some organisms make do with a single quinone. Thus, mammals
use only UQ in all their membrane electron transfer proteins. Each protein modulates its
quinone Em as needed by changing the local environment. Sometimes homologous proteins in
related organisms use different quinones. For example, B. viridis photosynthetic reaction
centers (RCs) use MQ in the QA site while Rb. sphaeroides RCs use UQ [96,97]. Both use UQ
in the QB site. Despite the lower Em,sol for MQ their Ems in the QA site differ by only 20 mV
[98]. Thus, while substitution of quinones with different Em,sol can be used to change the in
situ energetics, biology can also modify the bound quinone Ems to obtain the needed in situ
electrochemistry.

2.1.4. Building simple protein model systems—Often interesting bio-inorganic
reactions in proteins have no ready analogues in solution. There is a considerable interest in
designing small complexes to serve as models for these biological reactions. For example, Mn-
clusters have been assembled [99–101] to model the oxygen-evolving complex of PSII [102–
104]. Heme–Cu complexes are designed to reduce oxygen to water [105,106] as in the terminal
oxidases [8,107]. Other examples include metal clusters designed to model blue-copper
proteins [108] and iron–sulfur proteins [109].

Another approach is to build unique cofactors into small model proteins. This method is
exemplified by the construction of a double Cu binding site in azurin to model CuA in
cytochrome c oxidase [110], or a Cu being added to myoglobin to model the CuB–Heme
binuclear center [111,112].

2.2. The interaction of reactant and product with water
The interaction of the reactant and product with water is important for a number of reasons.
The solvation energy loss, ΔΔGrxn (Eq. (9)) is a key determinant of the in situ reaction
thermodynamics, always stabilizing the state with the smallest charge [113–118]. Also,
proteins are of finite size so even deeply buried reactants retain significant interactions with
the surrounding water. Accurate calculations can be made with explicit water added [119–
121]. However these calculations need many extra atoms to correctly model long range
interactions [122], require correction for long-range electrostatic effects given the modest
numbers of waters that can be included [123], require a good model for water [124], and must
be run for a long time to sample many water positions so that the system energies with reactant
and product are accurate [125]. Most calculations make use of an implicit solvent. Here the
single parameter of the dielectric constant is used to average all the effects of the distribution
of solvent conformations around the reaction site [16,42,121,126–128].

Dielectric continuum theory approximates the electrostatic interactions of charged and polar
solutes with a solvent whose ability to respond to a charge is summarized in its dielectric
constant [24,27,113,114,129]. The Poisson or Poisson–Boltzmann (PB) equation is considered
the most accurate way to calculate these energies [130,131]. The Poisson–Boltzmann equations
allow the solvent ionic strength to be included in the analysis [132]. The energy of transferring
a spherical charge (q) with a radius r from a solvent with dielectric constant ε1 to one with ε2
is [27,129]:

(12)

Here, C is 331.5 kcal/mol or 14.4 eV, r is in Ångstroms, and q is in multiples of the charge on
a proton. It is always favorable to transfer a charge into a medium with a higher dielectric
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constant. The transfer energy increases steeply with the net charge, and becomes smaller as
the size of the sphere increases. The protein has a lower dielectric constant than water, but there
is considerable variation in the value used for protein in simulations (Section 2.4).

When the reactants are not spheres or other simple shapes the PB equation must be solved
numerically [130,131,133]. To calculate the transfer energy for molecules, the atomic
coordinates, partial charges and radii must be assigned to all atoms. The radii define the solvent
accessible surface, which may be different than the van der Waals terms used in molecular
mechanics force fields. PARSE [134], CHARMM [135], AMBER [136], OPLS [137] charges
and radii are often used to calculate the solvation energy [130]. The Generalized–Born (GB)
method provides a faster way to obtain the transfer energy [130,138,139]. This technique
parameterizes radii at each position in the protein, allowing the Born equation (Eq. (12)) to be
extended to the calculation of arbitrarily assemblies of spheres [125,139–141]. However,
results calculated with the PB equation still provide the benchmark for GB studies, [130,141,
142].

2.3. The interactions with the large number of charges and dipoles in the protein
Interactions of charges and dipoles in the protein with the reactant and product are an important
contributor to the Em and pKa shifts in proteins (Eq. (5)). In a classical, electrostatic model the
interaction between the reactant and the protein equilibrated around the reactant (prot(R)) is
[16]

(13)

where Ψij is the electrostatic potential at atom i of the reactant due to an atomic partial charge
on atom j of the protein, qi is the atomic partial charge on each reactant atom, the sum r runs
over all of the atoms in the reactant, and the sum prot(R) runs over all non-reacting atoms in

the protein. C is 331.5 kcal/mol or 14.4 eV.  and  differ because the charges,
qi, on the reactant and product atoms will certainly be different. In addition, the charges on the
protein atoms and the distance to the reactant (rij) can change, modifying Ψij if other residues
in the protein change ionization state or conformation when the reaction occurs.

When the response of the medium to charges is uniform so the system can be treated with a
single dielectric constant, Ψij can be calculated analytically with Coulomb's Law:

(14)

where ε is the dielectric constant and rij the distance between each pair of atoms. Eq. (13), with
ε=1, is generally used when solvent is modeled by explicit, moving water molecules. Here
interactions with each atom of the solvent needs to be enumerated and averaged over a long
trajectory [119,121]. Implicit solvent methods retain the benefits described in Section 2.2.
Solutions of the PB equation [133] provides Ψij for an arbitrary distribution of dielectric
constants [16]. GB [125,130] and other implicit solvent methods [142–144] are also used to
calculate Ψij. The PB equation treats the solvent as a medium with a high dielectric constant,
and it allows the pair-wise interactions to be appropriately screened by the high dielectric
solvent surrounding the protein. The electrostatic pair-wise interactions are now highly
position-dependent. Groups on the surface have very little impact on reactions occurring more
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than a few Ångstroms away due to the screening by water with its high dielectric constant. In
contrast, electrostatic interactions can be important at distances of 10–15 Å for groups buried
in large proteins, especially when they are embedded in the membrane [145,146]. The main
problem with this approach is an appropriate protein dielectric constant must be assigned
(Section 3.2).

2.4. Intra-protein interactions need to take into account regions of the protein with different
flexibility and polarity

To determine the free energy of a reaction in the protein it is necessary to calculate the energy
of protein re-equilibration around reactant and product (Eq. (7)). Electronic polarization,
backbone or sidechain motions, changes in ionization of nearby groups, and ion binding all
contribute to the response to changes in charge. Each of the techniques to be described in
Section 3 deals with these changes differently.

Continuum electrostatics based methods use a dielectric response for the protein (εp) to average
changes in the protein so they need not be included explicitly [16,128,147]. The Boltzmann
term in the PB equation adds the screening due to ions in the solution, equivalent to the Debye–
Huckel effects in a medium with a uniform dielectric constant. A dielectric constant of ≈2
accounts for the electronic polarization of any condensed medium. The dielectric response of
dried proteins is ≈4 [148]. Calculations show this is arises from small-scale microdipole
motions [149]. The motion calculated with Molecular Dynamics around introduced charges in
the protein core are equivalent to a medium with a small effective dielectric constant [150]. In
contrast, a large effective dielectric constant of ≈30 is found near the protein surface and near
mobile charged groups [151–156].

2.5. Ionization states of residues are interdependent
Ionizable residues make up 25% of an average protein [28]. Since electrostatic interactions can
be felt at long-range within the protein, protonation states of distant residues influence and are
influenced by a reaction at the active site. Thus, the ΔΔGprotein is sensitive to the ionization
state of all the surrounding residues (Eq. (13)). A complete analysis of the acid/base
thermodynamics of a protein needs to consider 2N different ionization states, where N is the
number of residues with 2 ionization states. For small proteins it can be possible to enumerate
combinations of ionization states for the subset of residues that titrate in the protein in the same
pH or Eh range [157–159]. However, Monte Carlo sampling is generally used to recover the
Boltzmann distribution of all ionization states at each pH [160]. The pH at which a group has
an equal probability of being ionized and neutral provides the calculated pKa.

The pKas of groups in clusters are the most difficult to calculate [161–163]. Residues are in a
cluster if they are closely with strong interactions and have similar pKas so they titrate near the
same pH. Coupled group ionization is common in protein active sites (Section 5.2) [146,
164]. Clusters play important roles in proton-coupled electron transfers [30,165]. One example
is the two acidic residues, GluL212 and AspL213, in the QB site of photosynthetic reaction
centers. These play an important role in delivering protons when the secondary quinone, QB,
is reduced [96,97]. If the Glu is ionized first (near pH 4), then the negative charge raises the
Asp pKa to above 9. If the Asp is ionized at the lower pH, then the Glu pKa becomes high. The
calculated pKa for these individual group vary by more than 5 pH units in simulations that
analyze either different structures with the same method, or the same structure with different
techniques [30,93,165–168]. Since, the net charge on the two acids remains the same, with
only one being ionized between pH 4 and 9, the precise distribution of cluster protonation has
only modest effects on the equilibrium pKas and Ems for the important surrounding groups
[30]. However, the two acids have different accessibility to the protein surface so which is
ionized may influence the kinetics of proton uptake coupled to electron transfer [169].
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Experimental results strongly favor GluL212 being the residue that binds a proton when QB is
reduced [170,171].

2.6. Good benchmarks are needed to test and refine calculation methods
Calculations need to be tested against measured values. Residue pKas are measured by NMR
[172,173], by the difference in the pH dependence of denaturation energies with and without
specific ionizable residues [174,175], by potentiometric titration [176], and by FTIR [170,
177–179]. Each method has limitations. NMR measurements cannot routinely be carried out
on proteins larger than 50 kDa, while FTIR requires assignment of bands to a particular residue.
A change in the pH dependence of a protein, following site-directed mutation, is often used to
assign the reaction pKa to a particular residue. However, other residues can change ionization
in response to mutation, creating ambiguity in the interpretation of the data [180].

Benchmark analyses are best done when there are several pKas known in a protein, or the
electrochemistry of a given cofactor can be compared in a number of proteins. Heme
electrochemistry can be studied in many cytochromes with a wide range of measured Ems
[29,72,181] some with more than one heme in the protein [182–185]. Quinone electrochemistry
can be compared at different binding sites in the same protein and in different proteins [30,
93,186]; as can iron–sulfur cluster [187], and blue-copper center [188,189] reactions.

There are ≈20 proteins with ≈200 measured values commonly used as benchmarks for
calculation [161,173]. Most pKa calculation methods are optimized to fit this small dataset. In
the end, most methods report a similar match between calculated and experimental data [24,
161,190–199]. This may be because these sites are poorly chosen. For example, many such
sites are of surface residues, which are not very perturbed by the protein [128]. Additionally,
each technique has partially hidden variables that can be adjusted. There are few studies that
directly compare different programs in unbiased tests [200]. It may be necessary to develop an
analogue to the CASP challenge for protein structure prediction [201], or CAPRI challenge
for docking [202] for calculations of reaction thermodynamics in proteins to be truly tested.

3. Calculating Ems and pKas in proteins
As described above calculation of a pKa or Em in a protein relies on an accurate assessment of
the total free energy of the reactant and product in the equilibrated, solvated protein. Analysis
of the intrinsic electron or proton affinity, ΔGvac or ΔGo

sol, requires a fundamental quantum
mechanical analysis (Section 3.5). Classical methods (Sections 3.1 3.2 3.3 3.4) can only
calculate the shift in the reaction free energy moving into the protein (Eqs. (8) (9) (10)). An in
situ pKa or Em differs from the solution value because the loss of solvation energy always
favors the neutral form of a residue; the surrounding charges and dipoles then favor the charged
or dipolar state. Each method of calculation uses different approximations to obtain the needed
energies. In addition, the methods differ in whether they consider all possible ionization
microstates in the protein or only the properties of a few sites of interest.

3.1. Empirical techniques
As with other knowledge-based techniques, empirical methods are the fastest but provide the
least physical insight into how the protein modulates an in situ pKa or Em. Empirical methods
use purely geometric measurements, such as surface exposure [125], to provide a value for the
desolvation energy (Eq. (4)). Then, the pair-wise interactions with the protein charges and
dipoles are added (e.g. Eq. (13)). A screening function, or distance dependent dielectric
constant must be included to account for the solvent around the protein. These methods do not
account for any specific atomic motion coupled to electron or proton transfers. Any protein
reorganization must be included implicitly by a larger screening function. These methods allow
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calculation of the ionization states of all residues in the protein at one time, so coupling between
them can be correctly included (Section 2.5).

A wide variety of empirical techniques have been developed. (a) Mehler's Screened Coulomb
Potential shifts pKas with a factor derived from the hydrophobicity of surrounding residues
[203]. The method provides a simple way to use the information that hydrophilic groups which
partition into water [204] have dipoles or charges that tend to favor ionization of nearby groups.
(b) A generic algorithm has been used to develop parameters describing the importance of
specific atom types near a titrating group [205]. (c) Jensen [198] has developed a purely
geometric search to find residues that account for local hydrogen bonding and buried charge–
charge interactions; it uses the number of atoms surrounding a group to assess its burial. (d)
Another method divides the protein into different regions with different effective dielectric
constants. Here analytic functions provide the desolvation penalty and a dielectric constant that
is region and distance dependent is used to obtain pair-wise interactions [206]. With a good
training set that includes both buried and surface ionizable residues and enough parameters,
these empirical approaches can often match the experimental pKas better than methods based
on a more detailed physical picture of the reaction.

3.2. Methods using energies from classical continuum electrostatics with Monte Carlo
sampling of states

Techniques based on continuum electrostatics use a physics based, classical analysis method
[1,15,147,157,207–212]. They start with a reference pKa,sol or Em,sol, preferably in water, and
then calculate the energy of transferring the reactant and product into the protein (Eq. (9)).
They assume that the reaction free energy is shifted from that found in the water by changes
in solvation energy and the electrostatic pair-wise interactions with charges and dipoles in the
protein. The Poisson–Boltzmann (PB) equation [133] is generally used to calculate these
energy terms [15,16,18]. The whole protein can be included without cutoffs, so the free energy
of residue ionization changes with the ionization state of all of the other groups in the proteins.
Monte Carlo sampling allows determination of the Boltzmann distribution of all 2N ionization
states as a function of pH and Eh even for a protein with many ionizable sites [157,160,211].
The process samples microstates, which define the ionization state of all residues. The energy
of microstate x (ΔGx) is:

(15)

where RT is 0.59 kcal/mol (25.8 meV), N is the number of ionizable residues,  is 1 for residues
that are ionized in the state and 0 for all others. Each ΔG term represents the difference between
the energy of the ionized and neutral form of the residue. ΔΔGrxn represents the double
difference (Grxn,ionized−Grxn,neutral)protein−(Grxn,ionized−Grxn,neutral)solution (Eq. (4)). ΔGpol
represents the pair-wise interactions with the groups in the protein that do not change ionization
such as non-titrating sidechains and the backbone dipoles and ΔGij is the difference in
interaction of ionized and neutral forms of residue i with all other residues that are ionized in
microstate x. Changes in Lennard–Jones energy are usually ignored since states only differ in
the number of electrons and protons. The limits on the summation of the inter-residue terms
ensure that each interaction is counted once. Monte Carlo sampling establishes the Boltzmann
distribution of the different ionization states of each residue at a given solution redox potential
(Eh) and pH. Usually, a pair-wise interaction matrix that includes every ionization state of all
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of the residues is precalculated [213]. Only self-energy terms such as the desolvation penalty
and pair-wise interactions are included. Higher order terms that would arise from the
interactions between residues being dependent on the ionization state of another site are not
considered [199,213].

The PB equation allows the dielectric response to vary over space. This approach accounts for
the impact of the surrounding water using just the dielectric constant, encapsulating a very
complex set of interactions in a single parameter. However, the method needs to assign a
dielectric constant to the protein (εp). This factor accounts for the different energies of prot(R)
and prot (P), in the same way that the use of ε=80 treats the rearrangement of water around the
reactant and product [16,128,147]. The use of a single dielectric response for protein, has
limited the accuracy of continuum electrostatics. A single εp cannot account for the large
difference in the rigidity of a protein, the distribution of polar sidechains, or of cavities that
can bind water throughout a protein. Values as low as 4, especially inside membrane proteins
[30,93,146,165,186,214–216], to 8 [161] to 20 for smaller proteins [208,212], to as high as 80
[192] have been used.

For many sites, a change in εp affects the calculated pKa or Em by a relatively small amount
[199]. An increase in εp diminishes the loss in solvation energy (Eq. (12)), making it easier to
ionize buried groups, and at the same time it makes the pairwise interactions smaller (Eq. (13)).
As long as most pairwise interactions in proteins are favorable, these two changes can roughly
cancel. Generally, a large εp weakens the influence of the protein, and so can hide errors. Thus,
methods with larger values of εp can look impressive in benchmark calculations [212].
However, more complete analysis of the role of the dielectric constant in calculating electron
transfer reorganization energies, as well as the site pKas or Ems suggest that a lower value of
εp is more physical [217].

Calculations with a large protein dielectric constant, such as 20, can be less successful in
calculating the pKas of active sites, because they underestimate strong local pair-wise
interactions, such as hydrogen bonds [198]. However, a low dielectric constant, such as 4,
underestimates the effect of conformational flexibility. For example, crystal structures often
show surface charges making salt bridges. The calculations with a rigid structure with a low
dielectric constant yield lower pKas for the acidic partner and higher pKas for the basic group
than found experimentally [161–163]. A high protein dielectric constant [190], or the use of
artificial screening terms [161], are needed to obtain good matches to experimental results.
However, methods where the sidechains can adopt a range of conformations yield good results
with a low εp without using additional terms [199]. Likewise, hydrogen bonds will reorient to
remain in equilibrium with the ionization states throughout the protein [163,165]. Freezing
their orientation around ionizable residues over-stabilizes the initial state, leading to significant
errors [213].

3.2.1. Conformational flexibility in continuum electrostatics—PB methods for
calculating electrostatic energies in proteins have been modified to incorporate non-uniform
dielectric constants [218–222], averaged results in multiple protein structures [162,223–226],
and added explicit conformational degrees of freedom to optimize hydrogen bond networks
[194,209,227].

Multi-Conformational Continuum Electrostatics (MCCE) is a software package, which
calculates the equilibrium conformation and ionization states of protein side chains, buried
waters, ions, and ligands as a function of pH and Eh; while maintaining a rigid backbone
[161,199,213]. This represents a hybrid approach combining Poisson–Boltzmann calculations
of electrostatic interactions with a complete molecular mechanics force field. The current
program (MCCE2) [199] (available online at http://www.sci.ccny.cuny.edu/∼mcce), does full
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rotamer sampling of all sidechains and samples ligand occupancy, and orientation in binding
sites. This differs from methods that average the results from different structures [162,223–
226], in that conformational and ionization changes are treated consistently being sampled in
the same calculation. Furthermore, the complete rotamer search allows for larger
conformational changes than methods that simply optimize hydrogen bond networks. MCCE2
provides good matches to the benchmark pKas using a protein dielectric constant as low as 4
[199]. Thus, the conformational changes added to the analysis provide accurate pKas or Ems
with a small εp, while explicitly showing changes in the protein structure on site ionization. In
addition, continuum electrostatics calculations assume a linear response of the medium to
changes in charge, which is not a good description of proteins. In contrast, explicit
conformational changes show how the response can saturate. For example, in the
photosynthetic reaction centers a quinone in the QB site is reduced first to the semiquinone
then to the fully reduced quinone. The first reduction reorganizes a hydrogen bond network in
the binding site stabilizing the semiquinone [30,216]. However, once this has occurred the
system has no groups that can rearrange to stabilize the Q−2 and the quinone binds a proton
before the second reduction [30,228].

3.3. PDLD based techniques
The Protein Dipoles Langevin dipoles method (PDLD) provides a semi-microscopic view of
the protein and solvent response [128,191,229–231]. It does not use a dielectric constant to
account for the response of water and protein. Rather, the protein atoms are associated with
explicit polarizable dipoles; while a lattice of Langevin dipoles is used for the solvent. The
PDLD technique is able to incorporate changes in the protein structure in Molecular Dynamic
simulations, thereby treating the heterogeneous protein response to charges more easily than
standard, single conformation continuum electrostatics techniques [191].

3.4. MD based techniques
Molecular dynamics (MD) is the technique most often used to explore the trajectories of
proteins under different conditions [232]. MD based methods allow the protein to move freely
so the heterogeneous response of the protein can be fully incorporated into the analysis [154].
However, the Newtonian mechanics used to define the rules for motion do not allow the method
to directly explore chemical reactions. MD simulations must assign specific charges to each
residue so cannot easily account for the system behavior at a pH near a residue pKa, where
different molecules in the ensemble have different protonation states. In standard methods the
forces on the protein must be recalculated every fraction of a femtosecond so MD methods
have difficulty reaching equilibrium for reactions that take microseconds or milliseconds. The
use of implicit solvent removes the many atoms for the solvent waters from the analysis
allowing the system to reach equilibrium more rapidly. The Generalized Born (GB) [125,
130] or other formulations [143,193,203,233] provide fast and reasonably accurate estimates
of the effect of the solvent water on the free energy of a given distribution of charged groups
in a protein. Most methods to solve the PB equation are too slow to be solved at each time step.
Methods are being developed that can incorporate energies obtained by solution of the more
accurate PB equation into MD [234–236].

MD methods have begun to be adapted for calculation of pKas within proteins [19]. A relatively
simple approach runs a continuum electrostatics based Monte Carlo pKa analysis on ensembles
of MD simulated conformations [223,237]. Here MD simulations are not run with equilibrium
charges assigned to each residue. This simplification introduces systematic errors, since
simulations with a particular charge set will cause the trajectory to equilibrate around that
charge distribution, resulting in it being over stabilized [238,239]. Approaches where partial
ionization is accounted for by scaling the residue charges have been developed [240]. In these,
a residue which is 50% ionized in the ensemble interacts with its environment, as if it only has
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a 0.5 charge. This analysis is comparable to the classical mean field Tanford–Roxby approach
used in MC analysis [241]. These methods can work if the titrating groups are isolated, but
will fail if the groups are in a cluster with interdependent ionization states [157].

Another group of methods run MC protonation sampling at intervals within an MD trajectory,
allowing residues to change between neutral and ionized [242]. The simulations can calculate
the electrostatic energies using an implicit solvent with PB [243,244] or GB [196,245]
techniques, or with explicit water [195,246]. The latter is very expensive, but it uses a consistent
set of variables for the MD and MC phases of simulation. The protonation changes can sample
the whole protein, or single sites of interest [246]. Alternately, the decision to switch
protonation states in the MC steps can be determined by thermodynamic integration that
evaluates the relative energy of protonated and unprotonated forms [247,248]. Other methods
use short periods of a simulation where the trajectory has fractional ionization states, with an
imposed potential along the titration coordinate. MD free energy simulations have also been
used to calculate the pKas in proteins [119]. All of these methods report reasonable matches
to data, but the more detailed methods have problems converging; even with nanosecond
trajectories for small molecules [19].

3.5. QM and QM/MM based methods
Advances have been made in incorporating quantum mechanical analyses of pKas and Ems
into a protein environment using quantum mechanical–molecular mechanics (QM/MM)
methods [24,25,44,249–251]. Here perhaps 100 active site atoms are treated quantum
mechanically while the rest of the protein moves using Newtonian Physics in an MD
simulation. This method alleviates many of the key limitations of classical MD or CE methods
(Sections 3.1–3.4), which assume that the intrinsic ionization chemistry of a residue remains
the same in solution and protein, and that the partial charges and polarizability of individual
residues are independent of their context. The change in ionization equilibrium with reactant
conformation can also accounted for by QM/MM methods [252]. Molecular charge densities
are used for the atoms in the QM region. They maintain hydrogen bond directionality [253]
and quadrupole moments that are lost in the atom centered partial charges used in most classical
methods. For example, aromatic hydrogen bonds [254,255] will influence the pKas in a QM/
MM calculation, but would not be seen with atom centered charges where there are no off-
atom charges representing the π electrons. QM/MM allows the dynamics of the surrounding
residues to be treated in detail. However, the long-range electrostatic energies must now be
calculated using a classical analysis [256]. It can be challenging to connect the electrostatic
interactions between the QM and MM portions of the simulation [257,258]. In addition, the
treatment of the molecular mechanics region has the same weaknesses as the MD methods
described above. Thus, while these MM regions can be assigned different positions, they cannot
undergo protonation or redox chemistry. Thus, these methods cannot model any ionization
reactions that couple QM and MM regions of the simulation.

Pure QM methods can be used to calculate the pKas and Ems considering only a small region
of the protein with a higher level analysis than used in QM/MM [33–36]. The simulation region
for QM analysis must be chosen carefully to maintain the correct long-range electrostatic
potentials from the rest of the protein, as well as the nearby hydrogen bonds [259–261]. Recent
studies suggest that a simple PB based calculation can help choose a simulation region where
the potential at the reactants is equivalent to that contributed by the protein as a whole [31].
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4. Continuum electrostatics analysis of the distribution of buried charged
groups in proteins

The Born reaction field (solvation) energy stabilizes charges in water. This favorable
interaction is diminished when they are moved into the protein interior (Eq. (12)). For example,
a continuum electrostatic analysis estimates an ionized Asp will loose ≈17 kcal/mol when it is
moved into a medium with a dielectric constant of 4 (Table 1). Destabilizing terms of this
magnitude are larger than the total stability of most proteins, meaning that uncompensated
charge burial would lead to protein unfolding. This has led to the expectation that there will
be very few buried changes in proteins. However, proteins are not a simple low dielectric
medium. Each residue is linked by an amide bond, which has a dipole moment larger than that
of water. In addition, 23% of the residues are polar (Asn, Gln, Ser, Thr, and Tyr), while 27%
are ionizable (Asp, Glu, Arg, Lys, His). The concentration of polar moieties inside proteins
has been estimated as being on the order of 25M [262]. Therefore, a protein is different from
a high dielectric solvent, such as water, not by being much less polar, but by being less
polarizable [16,263,264].

Proteins can stabilize charges in particular locations by interactions with specific charged or
polar groups; so there is often little cost for burying native charges within a protein interior.
However, the lack of flexibility can produce large penalties for changing charge, either through
removing native charges or introducing new ones. Experimental and computational studies
have shown that specific charged residues can either stabilize [265–268] or destabilize [269–
273] proteins, depending on their context [270,274,275]. Proteins involved in redox chemistry
or proton-pumping are designed to accommodate charge changes during their reaction cycle
(Section 5). The finding that many proteins unfold only at extreme pHs indicates that it is not
easy to change the ionization state of buried residues [1]. Finally is should be noted that proteins
are not designed to maximize stability. Thus, even if charged residues are moderately
destabilizing, they still may be accommodated. Thus, stability can be increased in other ways
such as by burying more hydrophobic surface.

One way to estimate how destabilizing are buried charges is to look at how often they are found
in native proteins. Surveys of active site ionizable residues show that 70% are <5% solvent
exposed when the substrate is bound [276]. However, these active site residues could be
exceptional, being buried at significant cost to the protein. Early surveys suggested that buried
ionizable residues are rare [277,278]. Then again, only a few small proteins with little internal
volume were analyzed. More recent surveys of the solvent exposure of ionizable groups
[268,279], or their desolvation energy [28,56], show that as many as 30% are buried and most
of them are ionized.

MCCE was used to calculate the degree of burial, and predict the ionization state of all acidic
and basic residues, in 490 proteins selected to include a wide range of protein folds and sizes
(Table 1). There are several criteria for the degree of side-chain burial. The solvent exposure
of the terminal atoms that have most of the accumulated charge in ionized residues [280–
282] gives a qualitative measure. The loss of solvation energy, ΔΔGrxn, calculated with the
Poisson–Boltzmann equation provides a quantitative measure of the energy change on burial.
The desolvation penalty, which is the (solvation energy in water) − (solvation energy in the
protein), roughly correlates with the solvent exposure of a group [28]. However, residues with
little solvent exposure can maintain some residual solvation energy. Thirty five percent of the
Asp, Glu, Arg and Lys residues have lost 4.08 kcal/mol ΔΔGrxn, sufficient to shift a pKa by 3
pH units in the absence of other interactions, and 17% have lost 6.8 kcal/mol solvation energy
(5 ΔpK units) (Table 1). Using a threshold of 6.8 kcal/mol for a residue to be buried, there are
on average 3.95 buried ionizable residues per 100 amino acids. Smaller proteins have less
internal space, so on average there are 1.9±2.3 buried charges per 100 residues (proteins <100
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amino acids) and 4.5±2.0 per 100 residues (proteins >300 residues). Thus, a significant
minority of the ionizable residues are deeply buried in the proteins. The key question is whether
these buried residues are ionized. With a ΔΔGrxn of 6.8 kcal/mol (5 ΔpK units) the acids would
be 1% ionized, Lys is 6% ionized, and Arg is 97% ionized at pH 7 if there were no other
interactions with the protein (Table 1). Overall the protonatable residues in these proteins are
calculated to be 93.5% ionized, while 85.6% of the buried residues remain more than 90%
ionized at pH 7. His, which are important residues for protein function, are found to be 23%
buried. Since they have a pKa,sol of 6.5 they will only be 24% ionized in solution at pH 7. Thus,
the protein would need to stabilize their charge to see them predominantly ionized and only
6% of all His are calculated to be >90% ionized at pH 7.

The prediction that most buried Asp, Glu, Arg or Lys are ionized implies that favorable
interactions stabilizing the charged state are of the same magnitude as the loss of solvation
energy. The factors that keep the residues ionized were compared for the acids and bases
[28]. Most of the buried, ionized residues have at least 1 significant interaction with a oppositely
charged group (Table 1). As shown previously, the backbone is much more likely to stabilize
acids than bases [56]. The larger size of the oxygen relative to the hydrogen in an amide bond
is the primary reason that the potential from the backbone dipoles is predominantly positive
inside proteins. This size difference means that in the allowable regions in Ramachadran space,
side-chains come off their backbones towards the positive end of each amide dipole. The two
neighboring amides to the N- and C-terminal always raise the potential of a side-chain with
shorter side-chains, such as Asp, feeling a larger affect. In addition, the side-chains shield the
positive end of the dipole from the solvent. A negative C=O end of the amide pointing outward
is more likely to be solvent exposed than an outward directed H–N amide dipole. This raises
the potential throughout the protein interior. Thus, in the group of buried residues with an
average ΔΔGrxn of 7.1 kcal/mol, ionization of the acids is stabilized by the backbone, on
average, by more then 4 kcal/mol, while Arg and Lys are, on average, stabilized by less then
2 kcal/mol (Table 1). Surprisingly, the polar interactions are also different for acids and bases.
While Asn and Gln stabilize all charges, Ser and Thr stabilize only acids, and Tyr rarely
stabilizes Lys. Thus, hydroxyls are found to be better hydrogen bond donors than acceptors.
Pairwise interactions with other ionized residues provide stabilization of many buried, ionized
residues, but are especially important for keeping bases ionized within a protein.

5. Examples of how proteins modulate in situ pKas and Ems
5.1. Heme Ems

Extensive studies have explored how ligand type [29,72,283,284], orientation [285–287],
electrostatic interactions [29,118,288], and the protein scaffold [289] affect in situ heme
properties [72]. For example, six-coordinate bis-His-hemes have Ems ranging from −410 to
+360 mV. Since these have the same ligand, the redox differences are predominately due to
the intra-protein electrostatic environment [29,72,181,182]. For each heme the loss of solvation
energy [114,115,118], interactions with the protein backbone and other residues [28,29,118,
181,182], and protein conformation changes on heme ionization [29,290] affect the Ems.
Proteins can also modulate heme electrochemistry by changing the heme axial ligands (Section
2.1.3). When the Met ligand is replaced by a His the Em is lowered by 200 mV in cytochrome
c [291] or 150 mV in microperoxidases [72].

The large range of cytochrome Ems has been subject to theoretical analysis by PDLD [292,
293], continuum electrostatics [16,29,182,294], and other techniques [185,240,295–299]. The
pKas and Ems of the aquo-Heme a3 and CuB in cytochrome c oxidase have been analyzed by
continuum electrostatics [71,300,301], and density functional theory (DFT) [302]. In
cytochrome P450, DFT and QM/MM calculations have been used to explain the unusual low-
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spin state of ferric aquo-heme [303–305], and to study the hydroxylation mechanism [306–
309].

5.2. Hemes and their propionic acids
Each heme has two covalently attached propionic acid groups with a pKa,sol of 4.9 [50,310].
An ionized propionic acid will always lower the heme Em. The coupling between the acids and
hemes is largely through-space rather than through-bond, as the protonatable groups are not
conjugated to the redox active heme. This view is supported by comparison of the perturbation
of the propionic acid pKa by heme reduction in DFT and in PB calculations [311]. DFT treats
the heme and its acids as a single molecule; while the continuum electrostatic analysis views
them as separable, in the same way that different amino acid side-chains on a single polypeptide
are viewed as distinct units. The changes in the propionic acid pKa upon heme reduction, are
quite similar in these two methods of calculation [31].

While the acids cannot be changed by mutation, esterifying the acids in b5 increases the Em by
60 mV and significantly decreases the cytochrome stability as hydrogen bonds to the acid are
lost [312]. Calculations indicate that propionic acids can lower the heme Em by as little as 20
mV to more than 150 mV in different proteins [29,182]. In general, most propionic acids have
their CG carbon ≈8 Å from the heme with iron so their interactions with the heme are not
modified by changes in distance. There are two important factors that determine the impact of
the acid: the degree of solvent exposure, and the in situ pKa of the acid. In different proteins
the acids range from being fully buried to being largely exposed. For an ionized propionic acid,
the electrostatic interaction with the buried heme is inversely proportional to the desolvation
energy of the acid [264]. In addition, the acids in different cytochromes range from being
partially to fully ionized at pH 7, even if they are deeply buried [29]. The more ionized the acid
is, the larger its affect on the Em. In rare cases, such as c556 in Rb. viridis reaction centers, the
two propionic acids are within hydrogen bonding distance of each other [182]. In this case,
one acid is the proton donor while the other acts as the proton acceptor, and the total charge is
maintained at −1. The high Em of 310 mV for this heme can be primarily attributed to the loss
of one negative charge near the heme.

As the propionic acids shift the heme Em, heme oxidation shifts the pKa of the acids. Thus, the
same ΔΔGprotein that shifts the Em by 60 mV will shift the pKa by 1 pH unit (Fig. 2). The heme
propionic acid pKas and their influence on the pH-dependence of cytochrome Ems, have also
been studied by continuum electrostatics analysis [29,313,314]. If the acids are fully ionized
in the reduced state, as found in many proteins, they cannot have their ionization shifted on
heme oxidation. In this case, the acid serves to lower the Em without making it pH dependent.
However, if the propionic acids are not fully ionized when the cytochrome is reduced, they
become an important contributor to the proton release coupled to heme oxidation. The extent
of coupling depends on the interaction with the heme. For example, the heme redox reaction
shifts the pKa of the largely exposed propionic acid on the porphyrin A ring in cytochrome
b5 by less than 0.5 unit [315], but shifts the pKa of the buried propionic acid on the D ring in
c551 by 2.5 pH units [316]. Calculation of these pKa shifts yield values in good agreement with
those found experimentally [29].

It has been proposed that the surface exposure of the heme group is a major determinant of the
heme Em, with exposure favoring oxidation, lowering the Em [317–319]. Electrostatic analysis
of heme electrochemistry shows that there is only a small variation in the surface exposure, or
of the ΔΔGrxn, for different cytochromes with vastly dissimilar Ems. No correlation between
the heme Ems and the exposure of the heme ring and axial ligands has been found [29].
However, if the propionic acids are considered as part of the heme, there is some correlation
between the exposure of the acids and the Em [29]. The hemes with deeply buried propionic
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acids tend to have higher Ems. This is because buried propionic acids are either neutral, or kept
ionized by forming a salt bridge with a positively charged basic residue.

5.3. Quinones in bacterial photosynthetic reaction centers (RCs)
RCs have provided an important system for study of how proteins modify quinone
electrochemistry. RCs from Blastochloris viridis (previously identified as Rhodopseudomonas
viridis) were the first membrane protein known to atomic resolution [320]. The reactions in
RCs from Rhodobacter sphaeroides have been very well studied [96,97]. There are well
worked out methods to measure the Ems of QA [98] and QB [321,322] in situ, even down to
cryogenic temperature [323,324]. Knowledge of the in situ ΔGo for electron transfer allowed
much of the data underlying the ‘Dutton Ruler’, which connects electron tunneling rates to the
distance between redox centers, to be measured in RCs [325–327].

The overall reaction in RCs uses the energy of a photon to take electrons off of 2 cytochromes
c, reducing ubiquinone (UQ) to the dihydroquinone UQH2. There are two Q binding sites:
QA and QB. The protein modifies the UQ behavior to differentiate them. Only the oxidized
QA and anionic semiquinone  are found. QA does not dissociate from the protein. QB serves
as the two-electron gate [328], found in three relatively stable redox states: unreduced quinone
(Q), anionic semiquinone (Q•−) and fully reduced and protonated dihydroquinone (QH2). The
anionic semiquinone is tightly bound to the protein, while the Q and QH2 freely exchange with
the quinone pool in the membrane [329–331]. The pathway for the second reduction indicates
that of the two possible intermediates, the high energy  is easier to form than , so proton
binding occurs prior to electron transfer [30,228]. Thus, of the nine possible redox states for
QB five are found on the reaction pathway (Fig. 2). There are two binding sites for QB, distal
and proximal, as seen in the crystal structures [332,333]. Kinetic measurements find no
evidence for quinone reduction in the outer, distal site [334–338] and simulation suggests the
Em of the quinone in this site is very low so it cannot be reduced [30].

With the wealth of experimental information about the redox chemistry in wild-type and mutant
proteins, RCs provide an excellent system to test simulation techniques. MD has been used to
study QB movements [339], conformational gating [340] and changes in protonation states of
amino acids GluL212 and AspL213 on the first electron transfer [341]. The electron transfers
from QA to QB have been studied by various PB methods using both Bl. viridis and Rb.
sphaeroides RC structures [93,165-168,180,342]. Multi-conformation continuum
electrostatics (MCCE) has been used to study the energy of 7 of the 9 different quinone redox
states in the QA, and active and inactive QB sites [30].

5.4. Proton transfer in bacteriorhodopsin
Bacteriorhodopsin is a transmembrane proton pump that transfers protons from the cell interior
to the low pH extracellular space, generating a proton gradient (Figs. 3 and 4) [343–346]. The
study of bacteriorhodopsin has benefited from a wealth of crystal structures. By late 2005 there
were 33 models of the ground state in the protein databank [345]. In addition there are structures
trapped in the K, L, M1, M2, N′ and O states available [345,347,348]. These structures reveal
specific changes as the protein goes around the reaction cycle. The structures show changes in
the Schiff base orientation [348], which drives the repositioning of the G and F helices [347,
349], changes in water and polar side chain positions in the active site central cluster, [347],
reorientation of an Arg that bridges the central and exit clusters [350,351], and changes in
orientation of the residues in the exit cluster [351]. In addition, FTIR has been used to assign
ionization changes during the photocycle of the Schiff base [352], Asp 85 [352–354], Asp 212
[354,355], central cluster water [354,356–358], and Arg 82 [359–361].
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Three clusters of residues have been identified, which change their protonation during the
reaction cycle (Fig. 3). The isolated Asp96 is the proton input site [362–366] near the
intracellular side of the protein [367–369]. The central cluster includes the Schiff base, which
covalently attaches retinal to Lys216 [370,371], Asp85 [362,372], and Asp212 [373–377]. It
is surrounded by a number of important polar resides including: Thr 89 [378,379], Tyr 57
[380,381], and 185 [374,382–390], and buried waters [367]. Lastly, there is an exit cluster
composed of Glu194 and Glu204, as well as a number of buried waters [214,351,391–396].
Arg82 lies between the central and exit cluster [367–369,397].

Given this wealth of structural and biochemical information, bacteriorhodopsin has proved
very amenable to analysis by calculation. Comparing the structures trapped in different states
provides deeper understanding of how the observed proton shifts are driven by the structural
changes. The calculated in situ pKas in crystal structures of trapped intermediates, the proton
transfer pathways and the mechanism used to maintain directional proton transfer have all been
studied. PB calculations [146,214,215,398] have been used to quantitatively explain the
importance of residues identified experimentally.

5.4.1. Ground state—The bacteriorhodopsin ground state has a neutral Asp 96, protonated
Schiff base (SBH+), an anionic Asp85 and 212, and a Glu194 and 204 cluster with one proton
bound (Figs. 3 and 4) [343]. Continuum electrostatics was used to analyze the earliest cryo-
electron microscope structures of bacteriorhodopsin [210,399,400]. More recent PB and
MCCE calculations using high-resolution structures have shown good agreement with the
experimentally observed proton distribution for the key groups [146,215]. The analysis shows
how these three deeply buried residues remain charged. Both Asps in the cluster need to be
ionized to stabilize the SB charge. Asp ionization is stabilized by the positive SB, as well as
the neighboring Arg82, Thr 89, the backbone dipoles, and nearby waters. The calculations also
find a single proton bound to the exit cluster. The exit cluster may adopt a mixture of ionization
states. Some calculations find that one of the two glutamic acids can be protonated [146], or
exist in a mixture of microstates with some having 194 protonated, and others having 204
protonated [401]. Calculations which include  show both glutamic acids to be
deprotonated with the extra proton in the water cluster [214] as suggested by FTIR spectroscopy
[396]. Overall, in the ground state the net charge on the input residue is 0, with −.1 on both
central and exit clusters.

5.4.2. Ground state→K→L state—The bacteriorhodopsin reaction cycle is initiated by
absorption of a photon by the retinal, causing it to change from all-trans to 13-cis. Through
the K and L states the SB nitrogen moves into the extracellular side of the retinal, away from
Asp 85 and 212. This stage of the reaction does not involve changes in residue protonation.
QM [402–405], QM/MM [406–412], and MD [413–415] methods have addressed the
questions of whether the kinetics of retinal photo-isomerization are governed by two electronic
states or three, of what structural changes occur, and of the contributions made by the protein
to shifts in the spectrum. Calculations conclude that there are three electronic states contributing
to the kinetics of retinal isomerization [403,406], although the second excited state may not be
important in the presence of a counter ion [405]. Buried waters are shown to stabilize cluster
ionization [404] and to complete the hydrogen bond network favoring proton transfer [412,
413]. The photoisomerization into the 13-cis configuration has been shown to be a result of
the constraints from the retinal binding pocket, which forces the retinal to twist around these
double bonds [411,415]. Calculations have also shown that the spectral shift during
isomerization arises from changes of interactions with the nearby residues [408,409]. A PB
analysis of the SB ionization in K and L states indicates the SB pKa decreases by 4∼5 pH units
when it is isomerized, which in turn prepares the it to lose its proton in the next stages of the
reaction cycle [398].
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5.4.3. L state→early M→late M state—As the M state is formed the proton is left behind
as the retinal twists, protonating Asp85. The ionization state of the central cluster moves from
SB+85−212− to SB0850212−. A variety of studies have simulated the proton transfer pathway
from the SB to Asp85, tracing the important hydrogen bond network [404,410,412,416]. PB
calculations of structures in the ground and M states show the pH for half ionization of the SB
has shifted down from >14 in the ground state to 5.5 in the M state, while that for Asp85 shifts
up from 3 to >14 [146]. However, the net charge of the cluster remains −1, so no protons are
lost to or gained from solution. Rather than assigning pKas to each residue, a pKa can be
assigned to the cluster as a whole [146]. There are 8 microstates for the ionization of SB, Asp85,
and Asp 212: one with a charge of +1, three with 0 charge, three with −1 charge, and one with
a −2 charge. In the ground and M states, the microstates with −1 charge have the lowest energy
and are the most occupied. The pKa for the cluster moving from 0 to −1 changes from 3 in the
ground state to 5.5 in the M state. However, on isomerization of the SB, the energy of the
SB+85−212− state has been calculated to move up ≈2 kcal/mole, while the SB0850212− moves
down ≈2 kcal/mole. This shifts the order of the two states transferring the proton,
stoichiometrically, from the SB to Asp85. The proton transfer requires only modest changes
in the structure of the protein. In contrast, to change an isolated pKa by >8.5 pH units with the
bulk solution as proton acceptor would require a change of >11.6 kcal/mol in the energy of
ionization. This could not be accomplished without significant structural rearrangements,
which are not found.

As the M state evolves, changes occur in the exit cluster ionization, which have been followed
by MCCE calculations [146]. In the ground and early M states, this cluster has one excess
proton bound. Arg 82 lies between the two clusters. By the late M state, the two Glutamic acids
have moved apart and now the proton is released from the cluster, changing the net charge
from −1 in the ground state to −2. In the ground state structure the pair-wise interactions
between the two Glutamic acids keep the proton bound. By the late M state the protein has
carried out half of the physiologically important reaction by releasing a proton into the
extracellular space.

The importance of the motion of the acids can be seen in a trapped M state analogue with Glu
204 replaced by a Gln [417]. This crystal structure cannot have a charge of −2 since there is
only one acid and the Glu–Gln hydrogen bond is never broken. After restoring the Glu to the
structure in silico the calculated proton distribution shows the exit cluster still retains one proton
because the two acids remain too close together, even though the proton transfer in the central
cluster has occurred and the Arg has shifted downward [146].

5.4.4. M state→N state—In the next stage, the proton is transferred from Asp96, which is
protonated in the ground and M states, to reprotonate the Schiff base 12 Å away [418]. This
forms an ionized Asp96, a protonated SB and Asp85, with Asp212 remaining ionized. Asp96
is in a very hydrophobic region of the protein with few polar residues nearby that can stabilize
its ionization, so it has been calculated to have a very high pKa in the ground state [146]. PB
calculations suggest that ionization is only slightly uphill in the N state, due to an increase in
solvent accessibility and the reorientation of Thr46 [215]. The deprotonated Asp96 need only
be accessible as a transient intermediate for it to function in proton transfer. For example,
Glu286 plays an important role in proton transfer in cytochrome c oxidase [419–421], despite
having a pKa over 10 [31,421]. The deprotonated Asp 96 has never been trapped
experimentally, consistent with its high calculated pKa. In the ground state there are no cavities
in the cytoplasmic region to connect Asp 96 and the SB; thus the SB is not accessible to the
cytoplasm [422]. QM/MM calculations suggest that a water chain can be formed in the
hydrophobic region between the Asp 96 and the Schiff base in the M state, [423].
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5.4.5. N→O state→ground state—Following the transient formation of the N state, the
formation of O involves reprotonation of Asp96 from the intracellular space. Removing a
proton from the high pH cell interior completes the second half of the pumping reaction for
the protein. Finally, the protein returns to the ground state, ready to restart the reaction cycle.
This requires the transfer of the proton from the Asp85 in the central cluster to the exit cluster.
It has been proposed that Arg82 acts as a proton shuttle, leaving its proton on the exit cluster
and moving towards the central cluster to be reprotonated by the Asp [424].

5.4.6. Ensuring the pump does not short-circuit—For bacteriorhodopsin to function
as a proton pump, the early M→O and O→ground state transitions must adopt different proton
transfer pathways. The early to late M transition is key to proton pumping (Fig. 4). Proton
transfer from the exit to central clusters, formally the reverse of the O→ground state transfer
would take the protein directly from early M to O. This would bypass the proton transfer from
Asp96 to the SB, proton uptake from the intracellular space and release into the extracellular
space. The key question is why the proton is released from the exit cluster in the M state to the
solvent not to the central cluster.

The late M state is destabilized by the charges on the central and exit clusters. Even though
they are 12 Å apart a negative charge on one cluster raises the other cluster pKa by 2.5 pH units
[146]. The effective dielectric constant for this interaction is only ≈8 despite each cluster being
surrounded by charged and polar residues. The long-range interaction favors a total charge of
−2 on the two clusters. In the ground and early M states, both central and proton release clusters
have a net charge of −1. In the N and O states, the central cluster is neutral, with a charge of
−2 on the proton release cluster. However the late M state has a total charge of −3 with a central
cluster charge of −1 (SB0850212−) and an exit cluster charge of −2. Calculations using late M
structures show the equilibrium protonation state is a mixture of O and late M, with both states
accessible in Monte Carlo sampling [146,215]. Thus, once bacteriorhodopsin reaches late M,
structural changes stabilize the proton loss on the exit cluster and the proton gain on the central
cluster. However, despite the larger net charge in the late M state this state is similar in energy
to the O state, permitting its formation.

Because late M and O have similar energies, the kinetics of proton transfer must ensure that
proton release is faster than transfer from the exit cluster to the central cluster for late M to be
formed in high yield. The charged and polar residues including Asp 212, Tyr 83 and 185, and
Arg 82 appear to form a hydrogen bond network, which would allow easier proton transfer
between the central and exit clusters. In contrast, protonation of the SB by Asp96 requires
structural changes in the cytoplasmic region to open a cavity and form a hydrogen bond network
between the two groups [349]. However, the position of the SB on the cytoplasmic side of the
retinal closer to Asp 96 does favor the correct proton transfer. In addition, the short-circuiting
transfer from the exit cluster, would need to go through the protonated Asp85 or 212 to the SB
which is still facing Asp 96. Thus, the short-circuiting pathway in the M state with the cis-SB
is longer than the O→ground state transition with the trans-SB where the proton can be
transferred directly from Asp 85 to the exit cluster.

Both PB calculations [215] and experiments [424] suggest that Arg82 can help to gate the
proton transfer, closing the exit-to-central-cluster path in the M state. In the O→ground state
transition Arg 82 appears to release its proton to the exit cluster, and subsequently moves to
be reprotonated by the central cluster. While a neutral Arg will be a high energy intermediate
[215], this proton transfer mechanism avoids the proton passing near the positively charged
Arg. Proteorhodopsin, a homologous proton pump, which conserves the Arg but not the exit
cluster, can carry out rapid proton release [425]. In the M state the Arg motion towards the
extra-cellular space is triggered by the redistribution of the central cluster charge, and not the
−2 charge on the exit cluster (see discussion of Glu204 to Gln mutant above). After the Arg
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82 motion occurs, the hydrogen bond between Arg 82 and central cluster Asp 212 breaks and
waters in central cluster cavity rearrange [351]. Thus, in the M state it is not as easy for Arg
82 to release a proton to the central cluster to facilitate the proton transfer as it is in the
O→ground state transition. Lastly, in the M state the positive charge on the outward pointing
Arg helps to expel the proton to the outside.
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Fig. 1.
Thermodynamic cycle for calculating the in situ free energy of an acid–base reaction in protein.
The reactant (R) is AH and A− and H+ the products (P). Line 1: The cycle starts with the reaction
in gas phase with  the energy for proton dissociation in vacuum (Section 1.1). Line 2:
ΔGsol: the free energy of losing a proton, is shifted from  by the energy for transferring
reactant  product  and proton  into solvent (Section 1.2). The
proton transfer from vacuum gives the reaction a pH dependence of −2.303RTpH. Line 3: The
reaction is moved into the protein shifting the free energy of deprotonation from ΔGsol to
ΔGprot (Section 1.3). There are changes in reaction field energy of reactant and product
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 and . These are assumed to be the same in the protein equilibrated

around the reactants (prot(R)) or products (prot(P)) (Section 1.3.1).  and  give
the protein and solute–protein interactions in the protein equilibrated around the reactant and
product (Section 1.3.2). There are 2 paths from reactant to product in the protein (Section 1.3.2).

In one the protein moves into the product conformation  while still binding the
reactant; in the other the product is formed with the protein still equilibrated around the reactant

 after which the protein relaxes . The measured reaction ΔGprot is the energy
difference between reactant and product, each in the equilibrated protein. The two acids in the
protein are in the position of Glu 194 and 204 in bacteriorhodopsin with Glu204 as the reacting
species while Glu194 remains ionized (see Figs. 2 and 3). Top left (reactant in reactant
equilibrated protein): the protonated Glu204 makes a hydrogen bond to the ionized Glu194.
This is the lowest energy state with one acid protonated; Top right (product in the reactant
equilibrated protein) Glu204 is ionized but Glu194 is still in a position to make a hydrogen
bond. This state is at high energy because of the repulsion between the two anions; bottom left
(reactant in product equilibrated protein) the neutral Glu204 and ionized Glu 194 have already
moved into the conformation they will take when 204 is ionized breaking the favorable
hydrogen bond; bottom right (product in product equilibrated protein) is the lowest energy
conformation with both acids ionized.
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Fig. 2.
Ubiquinone redox and protonation states. Em,sol and pKa,sol values for reactions in water [30].
The ΔGsol for proton transfer (vertical lines) can be obtained from Eq. (3a), for electron transfer
(horizontal lines) from Eq. (3b) and the coupled electron and proton transfers (diagonal lines)
from Eq. (3c).
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Fig. 3.
The functionally important residues in bacteriorhodopsin (PDB:1C3W [367]). Protons are
transferred from intra-cellular side of the membrane to extracellular. Essential buried ionizable
residues contributing to proton pumping are represented in sticks and spheres.

Gunner et al. Page 48

Biochim Biophys Acta. Author manuscript; available in PMC 2009 October 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Reaction cycle of bacteriorhodopsin. Only those intermediates contributing to proton transfer
are shown. The mobile protons are shown by blue spheres. The cycle
BR→M1→M2→N→O→BR (solid line) transfers one proton, loosing a proton to the
periplasm in M1 and gaining a proton from the cytoplasm in N. In state M1 (early M), if the
proton moves from exit to central cluster rather than to the periplasm so the protein moves to
O instead of M2 (late M) (dashed line), proton pumping would be short-circuited. The residues
shown are Asp 96 (top); central cluster: SB (top), Asp 85 (left), Asp 212 (right); exit cluster:
Glu 204 (left), Glu 194 (right) (see Fig. 2). The blue arrows show the proton motions moving
to the next state. Ionized acids are red and bases are blue. Neutral acids or bases are pink or
light blue.
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