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Abstract
In many everyday settings, the relationship between our choices and their potentially rewarding
outcomes is probabilistic and dynamic. In addition, the difficulty of the choices can vary widely.
Although a large body of theoretical and empirical evidence suggests that dopamine mediates
rewarded learning, the influence of dopamine in probabilistic and dynamic rewarded learning remains
unclear. We adapted a probabilistic rewarded learning task originally used to study firing rates of
dopamine cells in primate substantia nigra pars compacta (Morris et al. 2006) for use as a reversal
learning task with humans. We sought to investigate how the dopamine depletion in Parkinson's
disease (PD) affects probabilistic reward learning and adaptation to a reversal in reward
contingencies. Over the course of 256 trials subjects learned to choose the more favorable from
among pairs of images with small or large differences in reward probabilities. During a subsequent
otherwise identical reversal phase, the reward probability contingencies for the stimuli were reversed.
Seventeen Parkinson's disease (PD) patients of mild to moderate severity were studied off of their
dopaminergic medications and compared to 15 age-matched controls. Compared to controls, PD
patients had distinct pre- and post-reversal deficiencies depending upon the difficulty of the choices
they had to learn. The patients also exhibited compromised adaptability to the reversal. A
computational model of the subjects’ trial-by-trial choices demonstrated that the adaptability was
sensitive to the gain with which patients weighted pre-reversal feedback. Collectively, the results
implicate the nigral dopaminergic system in learning to make choices in environments with
probabilistic and dynamic reward contingencies.
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Introduction
It has become clear in recent years that Parkinson's disease (PD) affects not only the initiation
and control of movements, but also motivational drive and reward-seeking behavior (Borek et
al., 2006), which themselves are fundamental to the learning of new responses. A classic
neuropathology of Parkinson's disease is the degeneration of dopamine cells in the substantia
nigra pars compacta (Dauer and Przedborski, 2003). This not only produces a substantially
reduced tonic level of dopaminergic activity in efferent targets, but also likely impairs phasic
dopaminergic activity (Grace, 1991; Frank et al., 2004; Schultz, 2007). A broad body of
theoretical and empirical evidence has accumulated suggesting that phasic activity of the
midbrain dopamine system is critical to trial by trial feedback-based learning (Abler et al.,
2006). The predominant concept is that the phasic dopamine activity signals actual versus
expected reward values, or a reward “prediction error” (Montague et al., 1996; Schultz et al.,
1997; Fiorillo et al., 2003). This prediction error, in turn, is thought to play a key role in
rewarded learning and has gained widespread use in temporal difference models of learning
that is driven by reinforcing rewards (Sutton and Barto, 1998).

Two key aspects of rewarded learning can make it particularly challenging. First, the
relationship between choices and rewards can change over time. A common paradigm for
investigating dynamic reward contingencies are reversal learning tasks. In such tasks, after
learning associations between stimuli, choice, and reward, subjects have to adapt their internal
representations to reflect a reversal in some aspect of the associations. Another source of
challenge in rewarded learning is that the relationship between choices and rewards can be
probabilistic. The relative merit of various options has to be inferred indirectly through
protracted trial-and-error learning. If one option rarely rewards and an alternative frequently
rewards, the choice is relatively easy. However, if the probabilities with which two alternatives
reward are relatively similar, learning to make the favorable choice becomes more difficult. In
an important extension of previous investigations of reversal learning in PD patients off
medications, Robbins et al. have incorporated probabilistic reward contingencies (Swainson
et al., 2000; Cools et al., 2007). In these studies, however, subjects have been told ahead of
time that the better of two choices would change and that they should modify their choice
accordingly. Yet learning how or even whether the choice-reward contingencies will change
is particularly challenging when one is not aware of these possibilities in advance. Thus how
PD patients off dopaminergic medications respond to unexpected reversals in probabilistic
reward structure remains unclear. In light of dopamine's role in effortful learning and decision
making (Assadi et al., 2009), one would expect that choice difficulty may differentially affect
probabilistic reversal learning in PD patients compared with healthy controls.

The present study seeks to determine whether and how rewarded learning in the face of
changing and variably difficult reward contingencies is impaired in Parkinson's disease. To
investigate this issue, we combined a temporal difference reinforcement learning model and a
rewarded learning task originally developed for use in midbrain single-unit recording in
primates (Morris et al., 2006). As in Morris et al.'s original experiment, we varied difficulty
by having subjects choose between two visual stimuli the reward probabilities of which differed
by either a small (e.g. 25%) or large (e.g. >=50%) amount. However we added a test of reversal
learning: midway through the task session and without forewarning the subjects, we reversed
the reward probabilities of the visual stimuli. We hypothesized that, relative to healthy age
matched counterparts, PD subjects off dopaminergic therapy would show the greatest
deficiency in learning to make favorable choices in the difficult case when stimuli differed by
small reward probabilities. We further hypothesized that PD patients would be deficient in
optimizing strategy and would show specific impairment in learning when reward probabilities
are reversed. Because, to our knowledge, there are no prior reports on human behavior in this
rewarded learning task, we analyzed each subject group's learning and reversal adaptation
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separately prior to directly comparing the two groups. We also applied the temporal differences
reinforcement learning model to their trial-by-trial choices to identify mechanistic distinctions
between how PD patients and controls adapt to the reward contingency reversal. Our results
indicate that PD patients off dopaminergic medications exhibit learning and reversal adaptation
deficiencies that are particularly sensitive to choice difficulty. Examination of differences in
model parameters between normals and PD patients pointed to specific means through which
dopamine deficiency may alter probabilistic reversal learning.

Materials and Methods
Subjects

Seventeen patients with mild to moderate idiopathic Parkinson's disease at Hoehn and Yahr
Stage II and III of the disease (Hoehn and Yahr, 1967) participated. Patients were referred
(D.D.S.) from the UCSD Movement Disorders Clinics, and from local PD support groups. We
excluded any patients exhibiting additional deficits in other neural systems (“Parkinson plus”
patients), dementia, major depression, psychosis or any neurological or psychiatric disease in
addition to PD. After detailed explanation of the procedures, all subjects signed a consent form
approved by the Institutional Review Board of the University of California San Diego. Disease
duration was calculated on the basis of patients’ subjective estimate of the onset of first motor
symptoms. Patients were evaluated OFF-medications in the morning at least 12 hours (Defer
et al., 1999) after discontinuing all anti-Parkinsonian medications. They were administered
(D.A.P.) the Mini-mental State Exam (MMSE, (Folstein et al., 1975)) and Beck Depression
Inventory (BDI, Psychological Corporation, Boston, MA) to exclude subjects with dementia
or major depression. In order to get a uniform measure of the clinical state of PD patients at
the time of the experimental session, all PD patients were also rated (H.P.) on the motor scale
of the United Parkinson's Disease Rating Scale (UPDRS, (Goetz et al., 1995)) and staged on
the Hoehn and Yahr scale (Hoehn and Yahr, 1967). Fifteen healthy controls were recruited
through patient caregivers and the local community. All subjects had vision correctable to
20/40 with corrective lenses. All subjects were tested for hand dominance based on the
Edinburgh handedness inventory (Oldfield, 1971). Eleven of the controls and thirteen of the
patients were right handed. Nine of the controls and five of the patients were female, reflecting
the typical gender distribution of idiopathic PD. The groups were well matched by age, with
similar ranges and mean ages differing by less than one year (patients: mean 66.1 (8.2), range
50−81; controls: mean 65.2 (7.2), range 52−77). Subject information and, for the PD patients,
a basic clinical profile are given in Table 1.

Experimental task
We adapted a task originally used to study firing rates of dopamine cells in primate substantia
nigra pars compacta (Morris et al., 2006) for use as an instrumental reward-based learning task
with humans. The task is a variant of the classic two-armed bandit (Robbins, 1952). Briefly,
subjects were presented with a series of trials on which they chose abstract visual images with
a possibility of accruing a small reward on each trial. Given the evidence that rewarded striatal-
based learning is particularly sensitive to the use of real versus symbolic monetary rewards
(Kunig et al., 2000; Martin-Soelch et al., 2001), we gave subjects actual cash for rewards. The
images were chosen from among four possible images, each with a fixed probability of
producing an identical reward value. In order to maximize their earnings, subjects had to learn
through trial-and-error which images were more likely to payoff. Half way through the
experiment and without any cues from the experimenter, the reward probabilities of the four
images were reversed, thereby testing subjects’ ability to adapt to the reward contingency
reversal.
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Throughout the task, subjects were seated in front of a 19” touchmonitor (Elo Touchsystems,
model number et1925L-7uwa-1) in sufficiently close proximity to allow comfortable reaches
to both upper corners. The touchmonitor was placed on a table with the top approximately 45
degrees back from vertical. As depicted in Fig. 1A, subjects initiated each trial by pressing the
green “go button” square in the lower middle of the touchmonitor. After 800−900 ms, a square
visual image appeared in each of the two upper corners of the touchmonitor. Subjects chose
an image by pressing it. A short 50−100 ms after selecting an image, subjects were given
simultaneous visual and auditory feedback signals. If they won money on that trial, their
cumulative winnings were displayed above the chosen image for the remainder of the time that
the images are displayed and they were presented with a 200 ms “high” tone (600 Hz). If they
did not win money on that trial, “$0.00” was displayed and they were presented with a “low”
tone (200 Hz). The two tones were provided free field by standard PC speakers. The tones were
identical in amplitude and linear ramp up/down (40 ms each). Prior to starting the experiment,
subjects confirmed by verbal report that they could hear and distinguish the two tones.
Approximately 600−800 ms after the feedback signal, the images disappeared and the go button
reappeared in the lower center of the monitor, prompting the subject to begin the next trial.
Subjects were required to wait until the two images appeared before releasing the go button.
There were no other temporal constraints on their choice or the return to the go button. They
were simply instructed to “move to touch the image as soon as you have decided which one to
choose”. Actual durations of each time interval specified above were chosen randomly from a
uniform distribution on each trial. Total trial duration averaged about 4 seconds.

The task consisted of two phases of 256 trials each. Interleaved throughout the task were two
trial types: reference and decision trials comprising 62.5% and 37.5% of the trials, respectively.
On the reference trials, subjects were given an “instructed” choice. They were presented with
a solid blue square and one of four abstract images. They were instructed to always choose the
abstract image. On the decision trials, subjects faced a two-alternative forced choice. They
were presented with two of the abstract images and were told to “choose the image that is more
likely to pay off”. If rewarded, they received $0.02 on reference trials and $0.15 on decision
trials. The abstract images and the probability with which choosing them produced a reward
[0.25, 0.50, 0.75 and 1.00] are shown in Fig. 1B. These reward contingencies were flipped in
the otherwise identical post-reversal phase of the experiment. There were no decision trials on
which the two images were identical. We fully counterbalanced the number of presentations
of each image, the side on which they were presented, and the side on which rewards were
available. Maximum run lengths were three decision trials, five reference trials, five trials with
reward on the same side, three reference trials with the image on the same side, and five trials
containing the same image on either side. Both 256-trial phases were divided into 8 blocks of
32 trials each. At the end of each block, subjects were shown their cumulative winnings and
the actual monetary amount placed on the table beside them was updated accordingly, rounded
up to the nearest $.25.

Subjects were first given a brief practice session, with eight reference and four decision trials.
The practice stimuli were four simple geometric shapes that were different from any of the
stimuli used in the actual experiment. There were no feedback signals or rewards in this practice
session in order to avoid teaching any associations prior to the actual experiment. Subjects
were simply familiarized with the mechanics of the trials, and particularly the explicit
instruction to not choose the solid blue square on reference trials. Prior to starting the primary
experiment, subjects were given an explanation of the feedback signals and rewards. They were
told that some images were more likely to payoff than others, and it didn't matter which side
they appeared on. They were also instructed that, on trials with two images, they should try to
choose the image that is more likely to pay off. Finally, they were told that to maximize their
winnings, they should try to figure out which images are more likely to pay off than others.
During the post-experiment debriefing, subjects were asked to provide 1−2 word descriptions
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of the four images, which ones they thought were most likely to pay off, and whether they
noticed a change in the relative payoffs of the images. Subjects were paid their winnings from
the game plus $20 per hr for the non-experimental portion of the session, including intake, BDI
and MMSE, and UPDRS testing. The average duration of the overall session was
approximately 2.0 hrs.

Reinforcement learning model
We implemented a computational reinforcement learning model to fit subjects’ trial-by-trial
behavior. Images j ∈ {1,2,3,4} were assigned values Qt(j) at each trial t of the experiment.
When image k is chosen, its value was incremented as a function of the reward rt ∈ {0,1}
received upon choosing it:

The term [rt − Qt(j)] was referred to as the prediction error. The amount by which the prediction
error was used to increment the image's value was weighted by the learning rate, or “gain”,
∝. On decision trials where subjects had to choose between two images m and n, we modeled
their choice probabilistically with the softmax function:

where the parameter β quantified the bias between exploration (low β) and exploitation (high
β). We investigated the role of gain and exploration/exploitation bias in the two phases
separately, giving four parameters: ∝initial, ∝reversal, βinitial, βreversal evaluated over the ranges
[0 0.70], [0 0.72], [0 10], and [0 11], at uniform intervals of 0.07, 0.08, 1, and 1, respectively.
We used a simple grid search of the parameter space to evaluate the model's fit with each
subject's actual behavior. The same grid of values for alpha and beta was explored for all
subjects in each phase separately in order to determine which parameter value combination
best fit each subject's decisions. The fit at each point in the parameter space was computed as
the log likelihood that the model makes the same choices at that the subject makes on the
decision trials:

Subjects for whom the “best” model did not fit better than chance were discarded from
subsequent analyses. For all other subjects, the four parameter values that optimized their
model fit defined their learning “profile”.

Data analysis and statistics
Performance was measured as the percentage of decision trials on which subjects chose the
favorable image (i.e. more likely to payoff) in each block of 12 decision trials. Learning
magnitude in each phase was defined by the mean performance in the “late” (last two) blocks
minus the mean performance in the “early” (first two) blocks. The decision trials were divided
into two equal-sized mutually exclusive classes: the “large difference” trials and the “small
difference” trials. On the relatively easy “large difference” trials, the payoff probabilities of
the two presented images differed by 50% or more. Conversely, on the relatively difficult
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“small difference” trials, the payoff probabilities differed by only 25%. The mean reward
probability of the two images presented, 62.5%, was identical for the easy and difficult choices.
Performance was evaluated using a mixed-design four-factor ANOVA, with GROUP (control,
PD) as a between subjects factor and DIFFICULTY (easy, difficult), PHASE (pre-reversal,
post-reversal), and BLOCK (early, late) as within subjects factors, and Geisser-Greenhouse
corrections for non-spherical covariances.

Subjects’ ability to adapt to the reversal in reward contingencies, which we refer to as their
“adaptability”, was measured as the increase in their learning from the pre-reversal phase to
the post-reversal phase. These adaptability metrics were evaluated with two-tailed t-tests or
non-parametric counterparts where the distributions were found to differ from normality based
on Lilliefors’ composite goodness-of-fit test (Lilliefors, 1967). We also investigated the extent
to which learning in the pre-reversal phase predicted learning in the post-reversal phase by
evaluating the correlation between performance in the two phases on a block-by-block basis.
The proportion of subjects in each group reporting a change in image reward probability
contingencies was compared using a chi-square test. For those subjects whose data could be
fit by the model better than chance, their “best fit” model parameters were used to investigate
the correlations, if any, between learning profiles and adaptability. Throughout the analysis,
p-values less than 0.05 were considered significant.

Results
Learning

Table 2 summarizes the results of the mixed-design four-factor ANOVA, with GROUP
(control, PD) as a between subjects factor and DIFFICULTY (easy, difficult), PHASE (pre-
reversal, post-reversal), and BLOCK (early, late) as within subjects factors. For the purpose
of brevity, only those main and interaction effects that were statistically significant are reported.
As shown with the main effect of BLOCK and depicted in Figure 2, subjects demonstrated a
learning effect, correctly choosing the more favorable image on average 67% of the time late
in each learning phase, compared with 50% (chance level) early in each phase.

As expected, more difficult decisions, on which two images differed in payoff probability by
only 25%, were harder to learn than the relatively easier decisions, as seen in the significant
BLOCK × DIFFICULTY interaction and when comparing Figs 2A and 2B. Disregarding the
factor of PHASE, there was a mean 22% improvement on easy decisions over trials compared
with a 9% improvement on the difficult decisions. There was a significant GROUP × BLOCK
× DIFFICULTY interaction indicating that controls and PD patients differed in how they
learned to make the relatively easy versus more difficult decisions. On easy decisions controls
chose the favorable image 55% of the time early in learning compared with 45% for patients,
yet both groups performed almost equivalently by late in learning (73% and 71% favorable
choices, respectively). The stronger performance early in learning is most evident in the pre-
reversal phase (e.g. Fig. 2A, early blocks). In a post-hoc analysis of only the pre-reversal phase,
we found that controls chose the favorable image on easy trials an average of 71% of the time
in the early blocks, whereas patients chose the favorable image only 55%, a statistically
significant difference in a two-tailed t-test (t(30) = 2.434, p = 0.02). The majority of control
subjects chose the more favorable image on all of the first block's easy decision trials, whereas
the majority of the patients chose the more favorable image on only two of the first block's
easy decision trials. The discrepancy was present even for the first easy decision trial, which
came after four reference trials and on which 73% of the controls chose favorably, but only
35% of the patients did (chi-square = 4.63, p < 0.05).

In post-hoc analyses of the post-reversal phase, although the two groups were statistically
indistinguishable on the easy trials in terms of learning magnitudes, they had distinctly different
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learning magnitudes on the difficult trials. Specifically, the post-reversal phase “difficult
choice” learning magnitude was 23% for controls but only 9% for patients, a statistically
significant difference (p = 0.018 in a rank-sum test). Although patients showed higher early
post-reversal phase performance and lower late post-reversal phase performance than the
controls, neither of these effects alone were significant (t(30) = 1.35 and 1.55, respectively,
n.s.) and neither could account for the between-group difference in post-reversal phase learning
magnitudes. Despite this result, it should be noted that both groups had a hard time learning
the “difficult” distinctions, on which two images differed in payoff probability by only 25%
(see Fig 2C). Over both phases of the experiment, there were only 6 out of the 16 blocks in
which both groups performed at more than one standard error above chance on the difficult
trials. In summary, because there was no statistically significant GROUP × BLOCK
interaction, the significant GROUP × BLOCK × DIFFICULTY interaction suggests that the
patients exhibited a difficulty-dependent learning deficit in which they had a compromised
ability to learn which of the more ambiguous “small difference” stimuli was more likely to
payoff.

Adaptability
We analyzed the effect of the reward contingency reversal, which occurred after the completion
of block 8, in several ways. As shown with the main effect of PHASE, subjects demonstrated
a reversal effect, (see Figure 2) where the reversal resulted in the immediately subsequent drop
to below-chance performance in block 9. Within-phase learning depended on the phase, as
evidenced by the significant PHASE × BLOCK interaction. Specifically, average performance
during the pre-reversal phase increased from 59% favorable choices in early blocks to 70% in
later blocks, compared to 42% and 64%, respectively, in the post-reversal phase. There was
also a GROUP × PHASE × BLOCK interaction, in which patients exhibited weaker learning
in the post-reversal phase (only increasing from 42% to 61% favorable choices) than controls
(41% to 68%) despite stronger learning in the pre-reversal phase (54% to 71%) than controls
(64% to 68%),

We also evaluated subjects’ adaptations to the reversal in terms of the inter-phase dynamics
of their learning. Figs. 3A and 3B depict the relationship between pre- and post-reversal phase
learning on a block-by-block basis for the easy and difficult cases, respectively. Group-average
performance on each block is shown by the block numbers, the centers of which have x- and
y-coordinates corresponding to post-reversal and pre-reversal performance, respectively. The
dashed line on the diagonal divides each plot into two halves: points in the left half are
associated with lower performance on post-reversal relative to a corresponding block in the
pre-reversal phase. Conversely, points in the right half are associated with higher performance
on reversal relative to a corresponding block in the pre-reversal phase. Note that, for both
groups, most of the data lies to the left of the diagonal. Thus, in most cases, post-reversal
performance was lower than performance in the corresponding pre-reversal block.

In the case of the “easy” trials (Fig. 3A), the controls’ adaptability could not be accounted for
in a linear fashion (R = 0.57, n.s.), but the patients’ adaptability could (R = 0.93, p<0.001),
with a slope of 0.72 (95% CI 0.43 − 1.00). In other words, controls parlay a given amount of
pre-reversal learning into more post-reversal learning than do patients. On the “difficult” trials
(Fig. 3B), again the controls did not show a statistically significant linear relationship (R =
0.43, n.s.) but the patients did (R = 0.72, p<0.05).

Insets for Figs. 3 depict a related but alternative metric of adaptability: the increase in learning
from pre- to post-reversal phase. Lilliefors’ test showed that the distribution of this metric was
normal in both groups for each class of trial. In the easy case, patients had lower adaptability
than controls, exhibiting a mean 9.0% (SE 28.9) improvement in learning compared to 23.1%
(SE 25.6) for controls, a non-significant difference (t(30) = 1.45, p = 0.157). In the difficult
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case, the difference is more marked, with controls exhibiting a 20% (SE 17.2) improvement
in learning, compared to zero improvement for patients (SE 17.7), a statistically significant
difference (t(30) = 3.23, p < 0.005).

We also analyzed subjects’ responses to the reward contingency reversal through debriefing.
When asked if they noticed a change in the images’ relative payoffs, 11 out of 14 control
subjects and 7 out of 17 patients said they did (the response data were missing for 1 of the
controls). The proportion was significantly higher for controls than patients (chi-square(1) =
4.41, p < 0.05).

Learning profiles and adaptability
For the purposes of evaluating adaptation in the present study, the difficult trials were removed
from analysis with the reinforcement learning models for two reasons. First, they exhibited a
weaker effect at the reversal, with both groups showing weak and non-significant effects of
phase in the difficult trials. Second, the behavioral choices on the difficult trials were deemed
too noisy for fitting with the computational model. We expected that modeling such behavior
would be more susceptible to overfitting even by models with very few free parameters. When
only decisions on the easy trials were modeled, the model was able to fit 11 of the 15 (73%)
of controls and 8 of the 17 (47%) of patients’ behavior better than chance. For both groups,
the model fit was positively correlated with the endpoint performance in the pre-reversal
learning phase (R = 0.80, p < 0.001). Thus, as a general rule, the subjects not fit by the model
exhibited weak or nonexistent learning. As a result, all subsequent analyses investigating the
relationship between learning profiles, as quantified by best-fit model parameters, are based
solely on these 11 controls and 8 patients.

Figs. 4A and 4C show the learning profiles for each subject in each group, characterized by
best-fit model parameters for the pre- and post-reversal phases of the experiment, respectively.
The majority of subjects in both groups exhibited gain factors under 0.3. Both groups also
exhibited a trend toward more exploration (lower beta) in the post- compared to the pre-reversal
phase. Subjects’ exploration/exploitation bias, as quantified for each phase by betainitial and
betareversal, did not have a systematic influence on their inter-phase adaptability. However, in
the case of the Parkinson's patients, their gain factor during the pre-reversal phase, quantified
by alphainitial, did have a systematic influence on their adaptability. Specifically, as shown in
Fig. 4B, the patients with higher gain during the pre-reversal phase exhibited better adaptation
than did patients with lower gain (R=0.81, p<0.05). In contrast, the pre-reversal phase gain
didn't seem to influence the control group's adaptation (R=0.10, n.s.). There was a trend for the
opposite effect in the case of the post-reversal phase gain (Fig. 4D), although the correlation
was not significant (R=0.58, p=0.13).

Discussion
Basic Findings

Parkinson's patients off medications initially exhibited weaker learning than their age matched
control subjects when facing relatively easy choices involving large differences in payoff
probabilities. However, by the end of the pre-reversal learning phase, patients caught up and
their performance matched that of controls. In contrast, when faced with more difficult choices
involving small differences in payoff probabilities, patients performed as well as controls
initially, but faltered after the reward contingencies were reversed. The net result of these
effects produced a compromised ability of patients to adapt to the reward contingency reversal,
and this deficiency was associated with lower pre-reversal phase prediction error gains in a
computational model of their behavior.
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Learning
At a gross level when decision difficulty is disregarded, patients exhibited a learning profile
similar to age-matched controls, indicating that mild to moderate PD patients off medications
can still learn this type of task. However interesting differences emerge when decision difficulty
is taken into account. First, patients were slower at learning the relative reward contingencies
for image pairs that had a large difference in reward probabilities. This cannot be accounted
for by overall learning ability on these trial types, because the patients’ performance caught
up to that of the controls by the end of the pre-reversal learning phase. There are at least three
possible not mutually exclusive explanations for this. First, controls may give more weight to
the reference trials, better leveraging that information during decision trials. This explanation
is supported by the controls’ much better performance than patients on even the first easy
decision trial (which had been preceded by reference trials). Second, and relatedly, it may be
that controls are better able to employ a declarative strategy that gives them an advantage early
in learning. Third, it may be that early learning is particularly dependent upon the dopaminergic
system (Horvitz et al., 2007). In contrast to the easy “large difference” trials, patients exhibit
deficient post-reversal learning relative to controls on more difficult “small difference” trials.
This result suggests that patients may be specifically impaired on more difficult reversal
learning. Thus, reversal learning may be sensitive to a compromised dopamine system in a
difficulty-dependent fashion, whereby more difficult dissociations are harder to re-learn than
their otherwise equivalent easier counterparts.

Adaptability
We sought to examine how subjects would translate pre-reversal learning to learning capability
in the post-reversal regime. For both groups, block-wise performance in the pre-reversal phase
predicted block-wise performance in the post-reversal phase. However, the groups differed in
terms of how they parlayed pre-reversal phase learning into post-reversal phase learning.
Patients’ post-reversal learning was associated with substantial pre-reversal learning. Controls’
post-reversal learning, however, was associated with minimal pre-reversal learning. As a result,
controls exhibited stronger adaptability, with a net increase in learning magnitude of 20% in
response to the reward contingency reversal. In contrast, the patients showed no significant
improvement in learning. Thus, relative to controls, PD patients were markedly deficient in
their ability to adapt to the reward contingency reversal. This difference was not solely
explained by the patients’ deficient early learning in the pre-reversal phase for easy trials,
because the effect was strongest when the difficult trials involving decisions between stimuli
with small differences in reward probabilities were included. Thus patients exhibited reduced
adaptability in the face of subtle changes in reward contingencies. Post-experiment debriefing
corroborated this interpretation because a significantly lower percentage of the patients
reported noticing the change in reward contingencies than did controls, consistent with earlier
reports of reduced explicit knowledge of implicit learning in PD (Wilkinson and Jahanshahi,
2007; Wilkinson et al., 2008). A host of general factors that can influence performance in
learning tasks are unlikely to account for the compromised learning and adaptation exhibited
by the Parkinson's patients in this study. For example, it is unlikely that any group differences
in understanding instructions, motivation, speed of choice execution, or fatigue played a
differential role in reversal learning in this task, because both groups were able to learn the
overall task, even after the reward contingency reversal.

Although PD patients off medications tend to exhibit reversal learning deficits in sensorimotor
tasks (Krebs et al., 2001; Messier et al., 2007) they generally do not in cognitive reversal
learning tasks (Swainson et al., 2000; Cools et al., 2006). Since cognitive forms of reversal
learning have been linked to ventral striatum (Cools et al., 2002), and the dopamine depletion
in mild PD is greater in dorsal than in ventral striatum (Kish et al., 1988), ventral striatal-
mediated reversal learning would be relatively spared in mild PD off medications. Another not
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mutually exclusive possibility is that reversal learning's dependence upon tonic function of
midbrain dopamine systems is sensitive to difficulty of the specific task (Shohamy et al.,
2008). In the present study, relative pre- and post-reversal learning was sensitive to the
difficulty of the probabilistically-rewarded choices.

Mechanisms for the compromised adaptability
We sought to determine whether aspects of the subjects’ learning styles could account for their
adaptability in this task. Individual subjects’ learning styles were quantitatively characterized
with learning “profiles”, consisting of two model parameters inferred from their decisions on
choice trials during each of the task's two phases. Reinforcement learning algorithms provide
a powerful and increasingly prevalent means by which to estimate these internal variables that
are otherwise not directly available from measurements of stimuli, rewards, and choices (Daw
and Doya, 2006). One parameter, alpha, specified the gain that linearly weighted the prediction
error on each trial in order to modify relative value for the chosen image. The other parameter,
beta, was used to bias the tradeoff between exploration and exploitation in the course of
translating image values into image choice probabilities. Thus, in the context of the framework
recently put forth by Montague and colleagues (Rangel et al., 2008), alpha influences the
learning, and beta influences the action selection.

We evaluated whether these characteristics of subjects’ learning profiles could account for
their relative adaptability. There was no clear pattern of association between adaptability and
either the pre- or post-reversal beta. However, alpha during the pre-reversal phase was
positively correlated with adaptability among PD patients. Higher gain factors during their pre-
reversal phase led to positive adaptability, whereas lower gains led to lower (or in some cases
negative) adaptability. This result is consistent with Berns and Sejnowski's (1998) proposition
that set shifting deficits may be a natural consequence of slow learning. In the case of controls,
however, the gain had no discernible effect on adaptability. This result raises two interesting
points regarding adaptability in PD patients off medications. First, the learning profile prior
to the reward contingency reversal can predict how the subject will subsequently adapt to it.
Second, to the extent that a learning profile can be associated with a learning strategy, the result
suggests that patients can compensate for deficient adaptability by modulating their learning
strategy to use higher gains in early learning.

Whether an individual subject's behavior could be fit with the model corresponded to whether
or not the subject successfully learned relative reward contingencies. That a much higher
percentage of the patients had behavior that the model could not fit suggests a more general
deficiency in learning in the patients. Although consistent with the patients’ deficient learning
from behavioral measures, making the same inference based on model fits needs to be treated
with caution, because it is inherently reliant upon the specific computational model we chose.
The model is relatively simple, with only two parameters for each of the two phases in the
experiment. This should minimize the risk of overfitting one group more than the other.
Nevertheless, the possibility remains that the patients’ trial-by-trial choices reflect learning
strategies unique to their group and that are less veridically captured by the specific model we
employed. This raises the possibility that a further exploration of the space of potential models
and associated parameters may help generate novel hypotheses about subjects’ learning
strategies.

Our results highlight the importance of considering individual differences in evaluating
computational models of subjects’ behavior in implicit learning tasks. This has also been
demonstrated in relating information from models to activity levels in striatal and frontal
cortical areas (Cohen, 2007; Brown and Braver, 2008). Learning rates in particular may be one
of the key subject-specific model parameters, as they were a key predictor of adaptability in
the present study and also predicted activity levels in anterior cingulate (Behrens et al., 2007)
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and broader frontal-striatal circuits (Cohen and Ranganath, 2005) in neuroimaging studies.
Thus we expect that the growing use of computational models in conjunction with behavioral,
neuroimaging, and electrophysiological approaches will lead to new insights and new
hypothesis generation regarding the neural mechanisms supporting probabilistic reversal
learning in humans.

Conclusions
In a reversal learning task not previously evaluated with humans, PD patients off medications
achieved the same level of overall learning as their age-matched counterparts, but had distinct
pre- and post-reversal deficiencies depending upon the difficulty of the choices they had to
learn. The patients also exhibited compromised adaptability to the reversal. A computational
model of the subjects’ trial-by-trial choices demonstrated that the adaptability is sensitive to
the gain with which patients weighted pre-reversal feedback. Collectively, the results suggest
that the nigral dopaminergic system is involved in a difficulty-dependent fashion with multiple
aspects of probabilistic reversal learning.
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Fig. 1.
Task design. (A) Per-trial timeline. Time intervals in square brackets represent durations drawn
randomly from a uniform distribution over the specified range. The “<var>” denotes a variable
length, subject-driven interval. (B) Visual images and their phase-contingent payoff
probabilities.
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Fig. 2.
Learning curves, group averages. Mean and +/− standard error at each block of 12 decision
trials. Chance performance is 50%. Dotted vertical line after block 8 denotes reward
contingency reversal. (A) easy (“large-difference”) trial pairs only, on which the two images
differed in their probability of payoff by 50% or greater and (B) difficult (“small-difference”)
trial pairs only, on which the images’ payoff probabilities differed by 25%.
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Fig. 3.
Adaptability. Relationship between pre- and post-reversal phase block-by-block learning.
Numbers denote block within each 8-block phase. Lines are best linear fits. Dashed line on the
diagonal indicates where pre- and post-reversal phase learning are equivalent. (A) easy (“large-
difference”) trial pairs only and (B) difficult (“small-difference”) trials pairs only. Insets: mean
change in learning from pre- to post-reversal phase. Bars denote standard error, * p < 0.05.
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Fig. 4.
Learning profile and adaptability. (A and C) Scatter plot of individual subjects’ learning
profiles on easy (“large-difference”) decision trials (A, pre-reversal phase, C, post-reversal
phase). Alpha is the learning rate, beta is the exploration/exploitation bias. (Although there are
eight patients used in the analysis, only six unique points appear in (A) because the alpha =
0.07, beta = 3 point is a triplicate. Likewise in (C), the alpha = 0.08, beta = 1 point is a duplicate
for both groups.) (B) Adaptability as a function of pre-reversal phase learning rate. Lines are
best linear fits for the two groups. (D) As in (B), but for post-reversal phase learning rate. (The
alpha = 0.08 and adaptability = 46.7 point is a duplicate.)
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Table 1
Subjects

Controls Patients

N 15 17

Age 65.2 (±7.2) 66.1 (±8.2)

Age range [52−77] [50−81]

Gender (M/F) 6/9 12/5

Handedness (L/R) 4/11 4/13

Disease duration (yrs) n.a. 10.4 (±4.4)

UPDRS III n.a. 37.6 (±9.2)

H & Y stage n.a. 2.4 (±0.5)

BDI n.a. 9.0 (±5.0)

MMSE n.a. 28.4 (±1.8)
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Table 2
4-way ANOVA summary

Factor(s) F(1,30) p

BLOCK 38.27 < 0.0001

PHASE 15.84 < 0.001

PHASE × DIFFICULTY 15.73 < 0.001

BLOCK × DIFFICULTY 12.40 0.001

PHASE × BLOCK 9.96 0.004

GROUP × PHASE × BLOCK 5.90 0.021

GROUP × BLOCK × DIFFICULTY 4.33 0.046
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