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Abstract
Phenomics is an emerging transdiscipline dedicated to the systematic study of phenotypes on a
genome-wide scale. New methods for high-throughput genotyping have changed the priority for
biomedical research to phenotyping, but the human phenome is vast and its dimensionality remains
unknown. Phenomics research strategies capable of linking genetic variation to public health
concerns need to prioritize development of mechanistic frameworks that relate neural systems
functioning to human behavior. New approaches to phenotype definition will benefit from crossing
neuropsychiatric syndromal boundaries, and defining phenotypic features across multiple levels of
expression from proteome to syndrome. The demand for high throughput phenotyping may stimulate
a migration from conventional laboratory to web-based assessment of behavior, and this offers the
promise of dynamic phenotyping –the iterative refinement of phenotype assays based on prior
genotype-phenotype associations. Phenotypes that can be studied across species may provide greatest
traction, particularly given rapid development in transgenic modeling. Phenomics research demands
vertically integrated research teams, novel analytic strategies and informatics infrastructure to help
manage complexity. The Consortium for Neuropsychiatric Phenomics at UCLA has been supported
by the NIH Roadmap Initiative to illustrate these principles, and is developing applications that may
help investigators assemble, visualize, and ultimately test multi-level phenomics hypotheses. As the
transdiscipline of phenomics matures, and work is extended to large-scale international
collaborations, there is promise that systematic new knowledgebases will help fulfill the promise of
personalized medicine and the rational diagnosis and treatment of neuropsychiatric syndromes.
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Introduction: Phenomics as an Emergent Transdiscipline
The nominal completion of the human genome project has fostered enormous enthusiasm and
carried with it the promise of biomedical breakthroughs and a new era of personalized medicine
in which genetic profiles serve as bases for rational diagnosis and treatment. Almost a decade
into the post-genomic era, there is an emerging consensus that some of the problems are even
harder than originally hoped, and nowhere is this sense of sobriety clearer than in
neuropsychiatric research. David Goldstein recently remarked: “There is absolutely no
question that for the whole hope of personalized medicine, the news has been just about as
bleak as it could be” (Wade, 2008). Others have expressed more optimism (Maher et al.,
2008) based on recent reports of positive findings from genome-wide association studies
(GWAS) of schizophrenia and bipolar disorder (Ferreira et al., 2008, O’Donovan et al.,
2008). But there remain obvious challenges both in identifying relevant genetic variants, and
once these variants are identified, determining what roles these variants may play in
neuropsychiatric illness.

Freimer and Sabatti (2003) suggested that “The Human Phenome Project” is now an imperative
to follow-on and fulfill the promise of the human genome project. Given the continued
decreases in cost and increasing availability of high-throughput genotyping platforms, it is
today even clearer that phenotyping comprises the key rate- and cost-limiting factor in human
genetics. Beyond the time and cost needed for phenotyping, the field faces an even grander
challenge: What phenotypes should we be studying? The human “phenome”, which Freimer
and Sabatti referred to as the “…manifold human phenotypes from molecule to mind…”, is a
big place. The human genome, with only three billion bases, selected from a pool of only four
nucleic acids, organized in a neat one-dimensional sequence, pales in comparison to the human
phenome, which contains an unknown number of elements, many of which are characterized
by enormous inter-individual variation that is at best only partially understood, and for which
the dimensionality remains unknown. Phenomics – operationally defined as the systematic
study of phenotypes on a genome-wide scale – is critically important to provide traction for
biomedical advances in the post-genomic era (Bilder, 2008).

“Systematic study” implies not only the assessment of phenotypes in a well operationalized
fashion, but further that the strategy for studying phenotypes is defined in relevant biological
contexts, with appreciation that any given study’s capacity to sample the human phenome is
limited to a minute fraction of the phenomic state-space (all the possible kinds of phenotypes
and their individual variants). “On a genome-wide scale” implies that examination of any
specific phenotype involves considering the likely complex genetic contributions to that
manifestation from the entire genome, and acknowledges that many of the putative “candidate
genes” suggested by prior research may turn out to be false-positive signals.

In practical terms, phenomics demands broad scientific expertise, including genetics,
molecular biology, cell biology, systems biology, and higher levels of phenotypic expression,
and these experts must be capable of communicating effectively and collaboratively designing
and executing translational research projects on a large scale. For neuropsychiatric phenomics,
the systems-level experts must include experts with knowledge about neural systems, cognitive
systems, and neuropsychiatric symptoms and syndromes. Further expertise in mathematical
modeling, statistics, and information sciences is needed to confront the many novel data
analytic challenges, and enable the definition, visualization, and testing of complex multi-level
hypotheses. Phenomics is therefore best defined as a “transdiscipline”, as it engages
contributing disciplines interactively and synthetically to generate a new, emergent discipline.
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Neuropsychiatric Phenomics: Reframing Models of Structure-Function
Relations

Discerning the genetic contributions to any complex human illness is fraught with challenges
and demands broad phenomics scope, but neuropsychiatric genetics confronts unique
obstacles. Among the most intriguing of the distinctions involves the mind-brain problem itself.
While we might consider the emergent properties of any organ to involve qualitatively similar
unknowns, the emergence of complex human behavior from brain function remains the epitome
of scientific challenges. For example, while cardiovascular function involves myriad
unresolved mysteries, already multi-scale bioengineering models have been developed for the
heart at molecular genetic, cellular, tissue, and whole organ levels, enabling prediction of whole
organ consequences of genetic variation (Crampin et al., 2004). Similar efforts have helped
model pulmonary function, kidney function and more (see for example, the International Union
of Physiological Sciences Physiome Project). In contrast, there remain major gaps in
explanations of how psychological processes relate to brain function, and this comprises a non-
trivial limitation to modeling the biological bases of neuropsychiatric syndromes.
Contemporary theorists have written extensively about the likely form of this relation, and
increasingly call attention to the emergent properties of mental states that are not simply
reducible to the interactions of more elementary component processes (Tononi and Edelman,
1998, Edelman, 2003, Seth et al., 2006). Kendler has written eloquently about the need for
iterative evolution of our concepts about structure-function relations, and highlights that our
desideratum is more likely an implementation rather than a reductionist replacement solution
(Kendler, 2008). While these theoretical models are appealing, mechanistic models ultimately
will require more detail about exactly what emerges from what, and will likely require some
unexpected reframing of current concepts about psychological functions, to effectively
advance phenomics research.

It is further critical to recognize that previous methods for carving brain function “at its joints”
are likely to have generated divisions that align poorly with those that can be genetically
determined. Much of what we have learned about brain-behavior relations comes from models
that are of questionable value to understanding the genetic roots of brain function and
dysfunction. To take an extreme example, the discipline of clinical neuropsychology has
learned much from the study of individuals with brain injury, stroke, or neoplasm, but it is
obvious that genetic variation is extremely unlikely to have similar effects on brain function.
Thus the conventional catalogs of neuropsychological “domains” (i.e., language, memory,
executive functions and so on) should not be expected to align well with the cognitive functions
affected by genetic variation.

A more subtle point is that there is not a compelling reason to expect that decomposition of
behavior, based on analyses within the behavioral level alone, will provide a useful target for
genetic analysis. It might be hoped, for example, that the “normal” factorial structure of
cognitive abilities revealed through decades of cognitive testing might be reflected in genetic
variants. We can certainly seek genetic correlates of such constructs as “intelligence” or
“memory” (see Sabb et al., this issue), and since most of the constructs have reasonably high
heritability, it is clear that these are related to genetic variation (or epigenetic variation). It
remains unclear to what degree any of the relations identified will be specific. The “generalist
gene hypothesis” is based on findings that a single set of genes affects most cognitive abilities.
Indeed the genetic correlations (i.e., the extent to which genetic effects on one trait are
correlated with genetic effects on another trait) are approximately .80 among diverse verbal,
spatial, memory, mathematical and reading abilities (Butcher et al., 2006, Kovas and Plomin,
2006). But how many genes must be involved to explain the heritability of these traits, which
is generally estimated to be approximately 40%. Initial work using multi-stage genome-wide
scanning revealed four candidate single nucleotide polymorphisms (SNPs), each of which
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explained only ~0.2% of phenotypic variance, and together these four SNPs accounted for only
~0.8% of variance in the cognitive phenotypes (Butcher et al., 2005). Given that these specific
analyses compared extreme groups (those high and low in mental ability, thus perhaps not
reflecting fully the quantitative trait distribution), and used what are now outmoded genotyping
methods (they used DNA pooling and only examined 10,000 SNP’s), these estimates of shared
variance might be considered pessimistic. But so far there is little evidence from more recent
GWAS of substantially more robust genetic associations with similar phenotypes. This might
suggest that at least several hundred genes will ultimately be associated with cognitive ability
in general, and that the majority of these will account for less than 1% of phenotypic variance.

Similar high genetic correlations may be found for a range of other neuropsychiatric syndromes
(Kendler et al., 2003), and help to explain the high “co-morbidity” of these syndromes. The
challenge this poses for gene discovery at the syndromal level may be further exacerbated by
the application of a taxonomic classification system that has reified invalid distinctions. It is
already recognized that few of the diagnostic categories in the DSM-IV represent valid classes
even when examined in terms of the symptoms used to define the syndromes (Haslam and
Kim, 2002, Haslam, 2003), and it is hoped that the DSM-V may include indices of the
continuous trait dimensions that will better reflect symptomatic variation (Kraemer, 2007).
Even if some syndromal classes are verified to represent true “taxa” or “latent classes” based
on the covariance structure of the symptoms used to define the syndromes, this is no guarantee
that these syndromes will have a clearer genetic basis. For example, there is evidence that a
“melancholic” subtype of depression may represent a valid taxon distinct from other forms of
depression and from healthy groups (Haslam and Beck, 1994, Ambrosini et al., 2002), yet more
detailed epidemiological data offer less support for the distinctiveness of this subgroup
(Kessing, 2007), and assessment of familial risk reveals a pattern more consistent with a
quantitative trait than genetically distinctive subgroup (Kendler, 1997). Thus empirical
evidence suggesting discrete syndromal classes may be helpful, but is not sufficient to assert
a clearer genetic basis.

The high genetic correlations for behavioral phenotypes may be an expected consequence of
attempting to identify relations across biological scales that involve emergent functional
consequences. Given that the level of gene effects must be translated through gene expression
of proteins, to the functional roles played by those proteins in cellular systems and signaling
pathways, to the functioning of those cells and signaling pathways in integrated neural circuits,
and then ultimately make the brain-to-behavior traversal, there is no shortage of opportunities
for specific effects to be obscured. Fisher has commented eloquently that “…the ability to
undertake genetic analyses while employing only the most basic abstract concept of ‘the gene’,
and without any understanding of molecular pathways, has become both a blessing and a curse,
particularly in studies of the brain” (Fisher, 2006). The phenomics strategy explicitly calls for
efforts to redefine phenotypes as multi-level combinations of measures that may offer more
realistic constraints on the mechanistic paths leading from genome to syndrome.

Phenotype Prioritization for Phenomics Research
The phenomics strategy can be seen as an extension of the endophenotype approach that
embraces multi-level modeling. This strategy acknowledges that many of the putative
endophenotypes or intermediate phenotypes being investigated in biological psychiatry today
may not possess much simpler genetic architecture than do the highest level syndromal
phenotypes (Flint and Munafo, 2007). While this strategy does not replace many elements of
previously suggested qualities important for phenotype prioritization (Gottesman and Gould,
2003, Bearden and Freimer, 2006), it shifts the emphases (see Table 1).
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For example, heritability remains important, but the suggestion that a valuable endophenotype
should associate with illness and show familial cosegregation with illness may be less critical,
depending on how “illness” is defined. The critical point is that the most valuable phenotypes
for phenomics research may well be those that cross boundaries of the current diagnostic
taxonomy. Indeed, if it is true that substantial genetic correlations exist for neuropsychiatric
syndromes, it may be most fruitful to study phenotypes that are shared across multiple
diagnostic syndromes, and that by limiting research to more narrowly defined diagnostic
groups, the genetic signals from the strongest genetic contributions may be lost amidst other
less important diagnosis-specific “noise.” It is further unclear how helpful conventional
heritability statistics are to prioritizing phenotypes, given that many well defined behavioral
traits possess heritabilities exceeding 40% (Sabb et al., 2008), and higher heritability does not
seem to assure a simpler genetic architecture. Since the principal value of identifying high
heritability is to assure that the phenotypic trait is likely to be meaningfully related to genetic
variation (i.e., that it possesses some evidence of genetic validity), it may also be valuable in
phenotype selection to have evidence that the phenotype is significantly associated with known
genetic variants. Further, to leverage the power of GWAS using quantitative trait loci, it is
helpful if the genetic variant is common in human populations (although it should be recognized
that with the advent of ever-increased capacity for genotyping, it may soon be possible for
phenotypes associated with rare variants to be detected). It is also helpful if the genetic variant
is associated with known functional effects at translational or transcriptional levels, in order
to foster greater traction in molecular biology research.

Among the desiderata for phenotype selection, it is difficult to overemphasize the importance
of fundamental measurement properties. Given that the upper limit on validity will be
imposed by reliability, it is critical for research to focus on those measures that show adequate
internal consistency (helping assure that a meaningfully coherent construct is being measured
in the first place). If that is true, it is further important to identify those that are relatively stable
over time and organismic states, or if there is some fluctuation that this fluctuation itself is a
part of the phenotypic assay. The importance of phenotypic stability has been emphasized by
others; in brief it is logical to propose that our fixed genetic inheritance will be most easily
associated with features that are stable. But there also may be important phenotypic features
that have instability as their signature, in which case it is precisely this variability that needs
to be assessed. Finally, it is valuable to assure that the sensitivity of phenotype measurement
is strong across widely varying levels of phenotype expression. For example, a cognitive
phenotype is likely best measured by a test that shows strong measurement properties at both
higher and lower levels of that ability, and if the measurement is biased towards either higher
or lower levels of ability, then meaningful genetic effects may never be detected not because
these do not exist but rather because the test is too insensitive.

A critical aspect of understanding the measurement properties of specific phenotypes is
determining how amenable these are to high throughput phenotyping. Given the changing
finances of genomics research, it has become clear that the rate-limiting step in advancing
knowledge about human disease has shifted dramatically from genetics to phenomics.
Phenotyping now far exceeds the time and financial costs of genotyping. Until “high throughput
phenotyping” methods are developed, accrual of knowledge in phenomics will be thwarted.
Development of detailed costing models is advocated to identify the most cost effective
methods for addressing key phenomic targets. High throughput collection of behavioral data
is virtually impossible using traditional laboratory based methods. For example, a
“comprehensive” examination of cognitive abilities may require ten to twenty hours, and
briefer assessments routinely fail to provide broad phenotypic coverage, or fail to specify
adequately the phenotypes of interest, or both.
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There are two major hopes in advancing high throughput phenotyping. One hope is based on
leveraging advances in modern psychometric theory. Using item response theory and
computerized adaptive testing algorithms, it is now routinely possible to increase efficiency in
psychological assessment by a factor of two. Thus one can either specify the construct with
double the precision, or decrease testing time for the same measurement precision in half the
time of the original test. There are multiple challenges in using these methods, including: (a)
the construct itself needs to be well operationalized in advance; and (b) relatively large samples
(i.e., 500 or more with complete response sets) are suggested to apply these methods. A second
hope is based on the incredible growth in use of the internet, with more than 100 million people
in the United States using the web daily. If we can provide well structured phenotyping tools,
enabling widespread access for individuals to provide meaningful data about themselves, the
results could rapidly revolutionize behavioral genomics. A paradigm shift that could accelerate
discovery would involve dynamic phenotyping, by which we mean the iterative refinement of
phenotype assays based on prior genotype-phenotype associations. There remains considerable
skepticism among scientists about both sampling biases and validity of data collected using
web-based rather than conventional laboratory-based methods, despite demonstrations to the
contrary (Krantz et al., 1997, Buchanan and Smith, 1999, Krantz and Dalal, 2000, Andersson
et al., 2006, Chiasson et al., 2006, Cunningham et al., 2006, Graham et al., 2006). While much
work remains to address these concerns in a compelling manner, the potential increases in
throughput may dramatically outweigh, and even provide solutions to the sampling and quality
control issues. Given that conventional laboratory studies running for 5 years often have
difficulty ascertaining and examining a few thousand individuals, the opportunities for sub-
sampling and data cleaning with several hundred thousand individuals may appear increasingly
attractive, particularly as we increasingly recognize the value of samples with tens of thousands
of individuals.

There are some features of phenotypes that may be less important to advance genetics research,
but may be prioritized because of their  relevance to other human applications. Biomedical
research ultimately seeks to alleviate human suffering, and thus those phenotypes that can be
meaningfully related to clinical morbidity, or the clinical effectiveness and outcomes of
treatments, may be important targets for study. Those phenotypes that are suitable for
application in clinical trials may be particularly valuable given the possible opportunity to link
phenotypic variation to putative effects at the levels of cellular systems or signaling pathways.
Consistent with and extending the points made earlier about the value of cross-disorder
phenotypes, those phenotypes that are relevant across multiple categories of neuropsychiatric
illness may have even broader public health significance than those that do not. For example,
finding the genetic bases of “normal” variation in memory or attentional control may be of
greater value than identifying genetic associations with Alzheimer’s disease or ADHD.

The phenomics strategy also prioritizes phenotypes that are  relevant for translational
investigation, and thus those phenotypes that cross species boundaries. This is not intended
to discount the importance of uniquely human phenotypes, and focusing on these is an alternate
approach with great potential but different goals. For example, it may be possible to gain
traction on the genetic bases of language by examining differences in gene expression between
human and chimpanzee (Oldham and Geschwind, 2006). But the phenomics approach suggests
that the “low hanging fruit” in neuropsychiatric genetics may be picked most readily by
focusing on phenotypes that are generally well conserved phylogenetically. The primary
rationale for this is that by examining phylogenetically conserved phenotypes, we increase the
opportunity to gain traction on intervening biology using basic science models.

Of particular value today are transgenic models that can help illuminate the cellular systems
and signaling pathways affected by genetic variants, and therefore a priority may be given to
phenotypes that can be studied in both mouse and human. For phenotypes that have reasonable
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homologies from mouse to man, there is a high likelihood that there will be even more robust
homologies in larger rodents and non-human primates, enabling more detailed analysis of
higher level neuropsychopharmacological effects and neural systems level phenotypes.

Linked to prioritization of cross-species phenotypes is the idea that phenotypes selected for
study may be most useful if embedded in plausible mechanistic hypotheses. The better fleshed
out the biological mechanisms, the higher the likelihood that meaningful connections will be
established with other biological knowledge. Thus, other factors being equal, a phenotype for
which there exists already a set of mechanistic models may be preferable to one that does not
possess similar evidence. While all such mechanistic models are so far incomplete, working
within a framework that includes relevant empirical science may help link findings to existing
evidence and either further develop more effective models, or help prune these and better
specify superior models for the future.

A critical point to consider in any phenotype prioritization effort is that examining “criteria”
does not enable generation of some figure-of-merit for phenotype selection. In the CNP, we
had started with the aim of generating a phenotype selection algorithm, and on more careful
consideration recognized that at best it might be possible to generate a phenotype “profiling
tool” capable of characterizing the strengths and weaknesses of a given phenotype. Some of
the features noted above are likely to conflict directly with others (for example, validation with
respect to molecular targets may run counter to validation with respect to outcomes).

There is further a substantial risk of phenotype reification that can actively interfere with
discovery. For example, a phenotype prioritized because it is influenced reliably by a known
molecular entity (a drug) might be seen as valuable by virtue of links to signaling pathways in
a mechanistic model, but this might be misleading if the mechanistic model is not well
understood. A case in point is the phenotype involving induction of catalepsy in rodents, used
for decades as a screening test for antipsychotic drug development. This may have canalized
drug discovery towards agents more likely to produce extrapyramidal symptoms than
antipsychotic efficacy.

Finally, the phenomics strategy emphasizes that phenotype selection should weigh cautiously
evidence from candidate gene strategies. There may be value in research that uses a ‘bottom-
up’ approach, starting with functional genetic variation, through identification of proteins
affected, through identification of signaling and other cellular processes affected, through
neural systems function to behavior. But there should also be appropriate concern that this
approach can undermine discovery of novel gene-phene correlations. It may be an impediment
to discovery to be tied to known genomic ‘hot spots’, many of which were identified using
phenotypes that are acknowledged to be suboptimal, and also may be subject to various other
methodological problems (including population stratification and linkage disequilibrium) that
may have led to false positive identification of regions that are distant from the driving
functional genomic regions of greater interest.

Managing Complexity in the Human Phenome
To facilitate this work, we have adopted a simplified seven-layer schema to reflect some of the
key traversals across levels of inquiry and biological scales that are important in the complete
representation of a phenomics hypothesis from genome to syndrome (Figure 1). While experts
representing a specific disciplinary perspective may argue coherently about the validity of these
“levels”, we have found this helpful to foster transdisciplinary communication. The bottom
few layers reflect basic biological “dogma” that is generic to all phenomics sub-disciplines
(i.e., that genes “code” for proteins, that proteins exert their biological effects via incorporation
in cellular systems and signaling pathways). Above this level, the schema is customized for
neuropsychiatric research, by focusing on the assembly of cellular systems and signaling
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systems into neural systems, suggesting that activity within neural systems leads to the
emergence of cognitive functions (which we define broadly to encompass a complete range of
mental faculties and operations, including mood, affective, mnestic, linguistic, and thinking
abilities), and that these cognitive phenotypes form the basis of clinically observable
symptoms, which in turn are used to define neuropsychiatric syndromes.

Given this simple framework, some crude calculations may offer perspective on the volume
of the phenomics search space. Acknowledging that this schema is oversimplified reinforces
the assertion that resulting computations are probably underestimates. But assuming only seven
transformations across levels are needed to generate a plausible genome-to-syndrome
hypothesis, we can estimate the impact of both pleiotropy and polygenicity on phenomics
research programs. Consider the case of a modest five-fold expansion across levels (i.e., a given
gene influences 5 proteins, a given protein influences 5 cellular systems and signaling
pathways, and so on). Ascending through seven levels would generate 15,625 effects at the
“syndromal” level. A ten-fold expansion at each level would generate more than a million
effects after promulgation across seven levels. Similarly, if we imagine the spectrum of
plausible polygenic contributions to high level phenotypic traits (i.e., that a syndrome is
identified by multiple symptoms, that each symptom reflects variation in multiple cognitive
phenotypes, which are in turn the product of action across multiple neural systems, and so on),
it is easy to imagine that hundreds if not thousands of genetic variations contribute to complex
neuropsychiatric syndromal phenotypes.

Comparable complexity is revealed by posing the question slightly differently. Imagine our
goal is to determine how much variance is shared between observations at each level of
analysis. Assume further that the amount of variance shared is constant across levels. For a
single gene to account for 25% of variance in a complex syndrome would require that a feature
on each level must share at least 80% variance with a feature on the next level. This scenario
is likely unrealistic, given existing data showing that this exceeds the reliability of virtually all
of the higher phenotypic features, and that genotype may explain only ~20% of variance at the
level of the transcript (Flint and Munafo, 2007). Still optimistic but possibly realistic is
identifying between-level associations equivalent to 50% shared variance. Through seven
levels, this would result in 1.6% shared variance between a specific genotype and syndromal
phenotype (i.e., among the strongest results so far obtained in GWAS research). Best supported
by data are relations across levels that show shared variance of approximately 20% (consistent
both with the Flint and Munafo review, and further with typical correlations among various
phenotypes in neuropsychiatric research in the range of .4 to .5). In this scenario, a genetic
variant would share only .01% with a phenotypic variant, or in other words, some 5000 genetic
variants would be needed to explain the overall heritability of approximately 50% that have
been identified through family-based studies of high level personality traits and
neuropsychiatric diagnostic phenotypes.

There are so far insufficient empirical data to draw firm conclusions on the actual complexity
we face in neuropsychiatric genetics, but if the results of recent GWAS in both neuropsychiatry
and other complex disorders are a useful guide, it appears that even the strongest signals being
detected are explaining less than 1% of phenotypic variance, and thus small contributions from
many genetic variants appears more the rule than the exception. As noted above, the findings
of Plomin and his group that 4 genetic variants together explained only 0.8% variance in
intelligence, suggests that at least hundreds of genes are likely involved to explain heritability
of 40%. Such estimates ignore the possibility that epigenetic factors account for some currently
unknown proportion of this variance.

The promise of phenomics rests in part on the concept that mechanistic biological hypotheses
linking genome to syndrome can help set constraints on these massive webs of associations.
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There is hope that elements of convergence, following self-organizing principles that have
been discerned in other disciplines as diverse as chemistry and economics may be applicable
also to the emergence of multiple aspects of gene expression and higher level phenotypes
(Kauffman, 1993, Nykter et al., 2008). Considerable work already has advanced the idea that
the emergent properties of cognition from neural systems activity may depend on self-
organizing neural networks (Tononi et al., 1994, 1999, Sporns et al., 2005). Similar progress
is being made applying information science and network principles to the study of gene
networks and other biological systems (Sridhar et al., 2007, Zheng et al., 2007, Centler et al.,
2008).

A major question remains: at what level of a multi-level mechanistic network is it most fruitful
to attempt identifying such phenotypic convergence? Is it most fruitful to focus on the
transcriptome, the proteome, the signalome, or elsewhere?

Narrowing the Search Space for Phenomics Research: Examples from the
CNP

Within the Consortium for Neuropsychiatric Phenomics (CNP), which is one of nine
Interdisciplinary Research Consortia supported by the NIH Roadmap Initiative starting in 2008
(http://nihroadmap.nih.gov/interdisciplinary/index.asp), we have prioritized investigation of
two cognitive phenotypes for translational research. We refer to these phenotypes as response
inhibition mechanisms, and memory mechanisms. Phenotype selection benefited from
considering the criteria outlined above, together with input from two teams that considered
catalogs of phenotypes worthy of investigation both across psychiatric disorders (cross-
disorders workgroup) and across different species (cross-species workgroup). In the course of
considering a diversity of possible phenotypic targets, one important question emerged: At
what level of phenotypic expression would it be best to focus attention?

The need to narrow focus in phenomics research is prompted by the sheer magnitude of possible
associations as summarized above. A key tenet of the phenomics strategy is to maximize
agnosticism in recognition of the many unknowns we face (including the possibility that many
“candidate genes” reflect false positive findings, and that many phenotypes are ill-defined).
But given extensive pleiotropy together with the likelihood that neuropsychiatric traits are
polygenic – perhaps massively polygenic – it is clearly implausible to conduct research that
will provide an unbiased sample of the human phenome (i.e., phenome-wide association).

We determined that for the purposes of neuropsychiatric phenomics (i.e., establishing a
research program dedicated to linking genomic to neuropsychiatric syndromal levels of
description), a focus on cognitive phenotypes would be most fruitful. The key rationale for
focusing on this level of analysis is that cognitive phenotypes may be meaningfully related to
higher level symptoms and syndromes on the one hand, and to underlying neural systems
activity on the other hand. In this way, cognitive phenotypes were seen as offering a potential
mediating link from the study of behavioral phenotypes to their brain bases, and interposing a
bottleneck to facilitate transdisciplinary research capable of marrying clinical to basic research
in neuropsychiatry. Many cognitive phenotypes further manifest many of the desirable
properties alluded to previously, including: (a) genetic validity (with heritability of most well-
defined cognitive phenotypes approximating 50%; (b) reasonable measurement properties
(with internal consistency indices approximating .90 and test-retest reliability of many
measures approximating .80); (c) relevance for translational research (since for at least some
cognitive phenotypes, there exist non-human homologs or analogs).

Among the critical linkages, cognitive phenotypes may offer valuable tools for bridging from
human research to basic research via the neural systems level. Current neuroimaging methods
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particularly have enabled interrogation of neural systems activation effects associated with
cognitive manipulations, thus forging a relational link that bridges observable behavior to
underlying biology. Some imaging methods even permit insight into cellular and signaling
correlates of cognitive phenomena. The capacity to elicit neural systems responses to cognitive
probes in humans can be actively complemented by the study of similar cognitive processes
in lower-level biological systems in non-human species. Thus we conceptualize the vertical
research strategy as operating both top-down in humans, from the level of syndromes through
symptoms and cognitive phenotypes to neural systems (complemented by GWAS), and
bottom-up in mice, given the facility with which we can create new transgenic models and
determine the effects of the genetic manipulations on molecular expression, cellular systems
and signaling pathways, and neural systems.

The CNP’s selection of response inhibition and memory mechanisms as focal phenotypes was
based on the criteria noted above, and our capacity to examine these in integrated top-down
and bottom-up research, given the specific areas of expertise possessed by members of an
extensive group of collaborators. The research team of the Consortium for Neuropsychiatric
Phenomics includes more than 50 investigators representing dozens of disciplines including
genetics, statistical genetics, molecular biology, neurobiology, systems neuroscience,
cognitive neuroscience, neuropsychopharmacology, clinical neurosciences (including
psychiatry, neurology, psychology, and neuropsychology), public health, statistics,
psychometrics, and computer science. We have established research teams to address both the
response inhibition and memory mechanisms themes using the top down approaches (human
GWAS studies with approximately 10 hours of cognitive phenotyping per individual, and
additional neuroimaging investigations in a subgroup). These are complemented by bottom-
up studies in which we are creating transgenic models based on candidate genes of putative
relevance to these themes. For example, one set of studies in the response inhibition theme
focuses on a bacterial artificial chromosome transgenic model that permits cell-specific
alteration in expression of the G protein-coupled receptor 6 gene Gpr6 within medium spiny
neurons in the striatum. These studies are following up on exciting findings that Gpr6 −/− mice
show increased initiation of responses under instrumental conditioning schedules, but
decreased capacity to withhold the same responses under leaner schedules (Lobo et al.,
2007). In the memory mechanisms theme, ongoing work is following up on findings examining
transgenic manipulations of Disc1 and Dysbindin, which have shown a range of cognitive,
neurophysiological, and neuroanatomic deficits paralleling those observed in patients with
neuropsychiatric illnesses such as schizophrenia and bipolar disorder (Cannon et al., 2005, Li
et al., 2007).

Another unique feature of this work, dictated by the phenomics strategy, is that the GWAS is
principally targeting a group of community volunteers rather than specific diagnostic groups.
This approach is based on the idea that quantitative traits representing these phenotypes are
likely to be most powerfully identified in broad population samples, rather than in groups
selected for diagnostic phenotypes, which are biased towards the extremes of the relevant
phenotype distributions. To the extent that individuals with neuropsychiatric disorders
represent extreme values on these quantitative traits, the relevant phenotyping assays will show
restricted range and thus reduced power to detect associations. The CNP is therefore focusing
its GWAS assessments of response inhibition and memory phenotypes on 2000 community
individuals (recruited from the Los Angeles metropolitan region, and thus referred to as the
“LA2K” study), and will also study smaller samples of 100 individuals in each of three
diagnostic groups (including people with diagnoses of Schizophrenia, Bipolar I Disorder, and
Attention Deficit/Hyperactivity Disorder or ADHD). The 300 patients are included primarily
to characterize their performance on response inhibition and memory phenotype assays, rather
than to help identify novel genetic associations. If genetic associations with the cognitive
phenotypes are identified in the LA2K sample, we can then determine the extent to which these
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genetic variants occur in the patient groups and if these appear useful in explaining deviant
scores. This strategy is based on the premise that the genetic bases for quantitative traits such
as memory and response inhibition are likely to show strong overlap between individuals who
have psychiatric diagnoses and those who do not. If this is true, findings of genetic association
in the non-diagnosed group will be informative for the diagnosed group. If this premise is
wrong, and the phenotypic deviation shown among diagnosed individuals is due to “syndrome-
specific” genetic factors, then the information derived from the LA2K will be a helpful start
on the path to determining the unique genetic sources of these effects.

Data Analytic Strategies for Phenomics Research
The sheer scope of phenomics research in the GWAS era raises data analytic challenges on an
unprecedented scale. It has become difficult even to represent, much less comprehend the
hypotheses that we are beginning to interrogate. This complexity places a new burden on the
field to develop data mining and informatics strategies that are capable of identifying
meaningful associations across multiple levels, and involving hundreds of thousands of
variables.

Given that analysis of genome-wide datasets has only been widespread over the last few years,
there have been rapid advances in development of novel analytic methods. Most effort so far,
however, has involved the analysis of an individual phenotype, usually a high level diagnostic
phenotype, in a “case-control” study design. In these designs, the simplest possible analytic
model involves direct comparison of allelic frequencies at each one of several hundred
thousand (or more) single-nucleotide polymorphisms (SNPs), possibly supplemented by fine
mapping studies or other approaches to replication and/or verification of candidate genetic
signals. Given that this approach involves hundreds of thousands of statistical tests, control for
false positive results is of paramount importance, and a variety of methods to determine false
discovery rates have been suggested (Kang and Zuo, 2007, Wakefield, 2008). The basic
analytic strategy, however, has widely remained one of conducting many independent tests,
while acknowledging that the degree of independence remains uncertain. The importance of
moving beyond the “massively univariate” perspective to consider gene X gene and gene X
environment interaction effects is difficult to overestimate, as is highlighted in recent work
(Burdick et al., 2008). Furthermore, recent reports suggest that important phenotypic variation
may be related more strongly to either copy number variations or rare variants that may be
missed using currently standard SNP arrays (Lencz et al., 2007, Sebat et al., 2007).

Efforts have been made to reduce dimensionality on the genomic level through identification
of haplotypes, singular value decomposition and independent component analysis of gene
expression data, and other novel analytic strategies (Li et al., 2005, Yuan and Li, 2007, Biswas
et al., 2008, Madi et al., 2008). Advances in these methods may particularly aid in analysis of
gene X gene interaction effects, which may be of great importance for complex polygenic
phenotypes (Musani et al., 2007). Similar efforts have been made to reduce dimensionality at
the phenotype level, again using singular value decomposition methods, clustering methods,
or both (e.g., factor mixture modeling)(Muthen et al., 2006). The proliferation of new methods
to advance dimension reduction at genotypic and phenotypic levels is exciting and will likely
be helpful to advance phenomics research. Additional methods will likely be important,
however, that are capable of both multi-level modeling of phenotypic constructs (in contrast
to most dimension reduction strategies that are applied only within a single level of phenotypic
observation), and that are capable of identifying the best combinations of genotype and
phenotype that relate to each other.

“Genomic convergence” is a term coined to describe a multifactorial, multistep approach
combining gene expression and genomic data to identify and prioritize targets (Hauser et al.,
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2003). We suggest that extending this strategy to include higher level phenomic data is a logical,
but not trivial, next step. Similar conclusions have been drawn, and some interesting new
approaches are emerging to enable superior multivariate, multilevel analysis and visualization
of genotypic and phenotypic data together (Beyene et al., 2007). Given the challenges of
reducing scope to aid the pragmatics of both comprehension and computation, methods are
needed to efficiently prune multilevel models. Sparse canonical correlation analysis, so far
applied to genomic and gene expression data (Parkhomenko et al., 2007), is appealing in its
aim to maximize shared variance between genotype and phenotype, rather than maximize
variance explained within each level considered separately and then examine associations
between the factors that emerge, which has been the dominant model. Major questions remain
about the most effective ways to prune such models; ultimately we believe biological
hypotheses will enable rational constraints to be applied without jeopardizing discovery.

Implicit in this prioritization of multivariate gene-phene association is the likelihood that the
traditional concepts of heritability may be usefully revised. Adopting the conventional
definition of broad-sense heritability (H2) as the ratio of genetic variance (G2) to phenotypic
variance (P2), Wikipedia suggests that: “Estimating heritability is not a simple process, since
only P can be observed or measured directly” (accessed 10/29/08). While questions remain
about how much genotypic variance can be observed or measured directly, current studies
assessing hundreds of thousands of markers already may provide some estimates, and future
methods will surely come closer. A component of the phenomics research program is to
advance development of models that will estimate heritability directly from genomic data rather
than from phenotype inheritance patterns.

*Omics Need Informatics
Informatics strategies are helping address the new and profound challenge of identifying
meaningful signals from GWAS. Many aspects of informatics development require ontologies
that provide sufficient identification of the concepts under study, and their possible inter-
relations. The Gene Ontology project (http://www.geneontology.org) is serving a useful role
already by providing a coherent framework with which investigators can identify gene products
by cellular component, biological process and molecular function. The “Entrez” system
provided by the National Center for Bioinformatics already contains, in addition to the widely
used literature repository (PubMed) and a literature-based database containing annotations
specifically relevant for functional genomics (Online Mendelian Inheritance in Man), a rich
and steadily growing series of major databases covering Nucleotides (15 databases), Proteins
(6 databases); Structure (3 databases); complete Genomes (5 databases), Expression (3
databases), and Chemicals (3 databases). Publications now routinely utilize these
bioinformatics resources in creative ways to either constrain analysis, identify replication
signals, or interpret results. Despite the rapid growth and utility of these knowledge resources,
representation of higher-level phenomic information remains at best incomplete.

The lack of informatics resources for higher-level phenotype data currently poses a limit on
phenomics research. To address one segment of this large gap, we have been working on
developing ontologies and annotation databases for neuropsychiatric phenomics research, and
particularly for the domain of cognitive phenotypes, which has many unique challenges (Bilder
et al., submitted). This has involved the building of controlled vocabularies for cognitive
concepts and tasks, symptoms, and syndromes. This work already has revealed some striking
idiosyncrasies in patterns of term use in the biomedical literature. For example, a recent study
aimed to identify published literature on heritability for the concept “cognitive control”, which
has enjoyed dramatic increase in use over the last decade (Sabb et al., 2008). In identifying
published work on “cognitive control” it was found, however, that this new construct was
actually measured using exactly the same tests that had previously been used to index other
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constructs (“working memory”, “task switching/set shifting”, “response inhibition”, or
“response selection”). This instability in the use of cognitive concept labels poses a challenge
that needs to be addressed by anchoring cognitive concept use to the measurement level, much
as the labeling of SNPs has benefited from adoption of the Reference SNP ID system (rs-
numbers) that can be related to physical genomic sequence data. In contrast, gene naming
conventions remain elusive and creativity abounds (Seringhaus et al., 2008).

Efforts to develop a useful taxonomy of cognitive tasks face challenges. Given that the goal
of developing a task taxonomy is better anchoring and specification of the more fluid cognitive
concepts, organizing cognitive concepts by “function” would involve circular logic and could
be counterproductive, possibly leading to reification of inaccurate concepts. An alternative that
may be less subject to bias is development of task taxonomies that are more like the familiar
phylogenetic taxonomies of species. The analogies between task development and evolution
of species may have additional merits. Most published tasks are clearly “descended” from
“ancestors”, and often involve either (attempted) direct replication or subtle modification of
the parent task. Less frequently, a task paradigm is changed substantially; we suggested that
the term “task speciation” may help identify those events in task evolution marking differences
significant enough that the results of the new task cannot be (or should not be) “mated” with
those of the previously existing task to produce a “viable” meta-analytic result. Determinations
about whether data should be pooled or not remain somewhat subjective, and different
decisions may reflect differing goals of different investigators. But this kind of specification
would nevertheless mark a significant advance over the current lack of conventions, and could
facilitate development of guidelines on those features of cognitive test paradigms which when
changed should prompt consideration of task speciation. Cognitive ontology development is
considered in greater detail elsewhere (Bilder et al., submitted), and is the primary aim of an
ongoing project, which we hope will benefit from collaborative network inputs (see
www.cognitiveatlas.org).

Assuming that it is possible to develop ontologies representing higher phenomic levels,
considerable additional effort is necessary to develop the methods for representing the
complex, multi-level hypotheses capable of relating genome to syndrome. The CNP includes
a project – Hypothesis Web Development for Phenomics Research (RL1LM009833) – that
aims to develop tools to help develop, visualize, and share multilevel phenomics hypotheses.
Currently scientific hypotheses tend to be articulated using a string of assertions that take the
form: “X is associated with Y” [citation]; “Y is associated with Z” [citation]; “suggesting that
X may influence Z, mediated by Y”. In addition to the logical leaps and failures to prove
causality in such assertions, it is further conspicuous that citations are used to assert the “truth”
of evidentiary components in these hypotheses, as though these were binary, when instead we
are aware that the reported relations are only partially true, typically having exceeded some
arbitrary threshold of significance. Given that the threshold for significance is usually based
on disconfirming the null hypothesis of zero association, interpreting such findings as
“truths” (implying 100% confidence) is at least partially misleading.

This highlights the potential value of conditioning assertions in terms of quantitative effect
sizes. When two alternative hypotheses are presented as chains of assertions with binary “truth”
values assigned to every link, there is no way to judge the relative merits of the hypotheses. In
contrast, if links are supported by quantitative estimates documenting the strength of each
association, it is possible to identify the stronger chain. Extending this rationale to even more
complex, partially overlapping networks of associations, the effect size statistics can be used
further to select (and prune) branches that will maximize overall hypothesis strength. It is hoped
that the “Background & Significance Sections of the Future” may replace current practice with
graphical “hypothesis webs” supported by such quantitative, empirical annotation. These
efforts may benefit from newly developed strategies for Meta-Analytic Structural Equation
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Modeling, which enables analyses to be pooled at the level of study results, rather than at the
individual subject level (Furlow and Beretvas, 2005, Riley et al., 2007, Cheung, 2008). While
the same caveats apply to data pooling in these analyses as they do to any meta-analytic pooling
of findings, the challenges are magnified as the complexity of models increases. Developing
these methods offers the promise, however, that one day literature searching can be converted
to knowledge mining with dynamic extraction of concept maps based on strength of
association, and for discovery to be realized based on exploratory interrogation of maps with
which investigators may previously have been unfamiliar.

Some tools are already freely available on-line to advance the hypothesis web concept (see
Table 2). PubGraph (www.pubgraph.org) was developed to generate graphical concept webs
where nodes in the graphs are concepts defined by PubMed queries, and edges connecting the
nodes are annotated with Jaccard coefficients revealing the strength of association between
concept pairs. PubAtlas (www.pubatlas.org) has further developed this literature querying
facility to generate heat maps of concept co-occurrence matrices, and enable the historical
changes in these maps to be plotted or played as movies, enabling researchers to visualize the
dynamic growth of concept relations over time, and then select the relevant literature that
underlies trends. PubAtlas further contains a series of pre-defined lexica (e.g., cognitive
concepts, cognitive tasks, neuroanatomy), organized as series of PubMed queries, so that it is
possible to “blast” any arbitrary search term against these lexica to find intersections with any
term in the pre-defined set. PubBrain (www.pubbrain.org) takes concept-queries, intersects
these with a modified version of the NeuroNames lexicon (neuroanatomic terms from the
Foundational Model of Anatomy), and then projects the intersections on a three-dimensional
probabilistic atlas of the brain (Shattuck et al., 2008). The Phenowiki (www.phenowiki.org)
was developed to enable collaborative quantitative annotation of cognitive phenotype concepts
(Sabb et al., 2008). The Phenowiki combines some features of a wiki (text annotation about
cognitive concepts and tasks), with additional features of a relational database. These include
quantitative data fields for empirical information about group difference effect sizes, effect
sizes for associations between pairs of variables, study sample sizes and some demographic
characteristics, along with psychometric properties for psychological test variables. Each of
these applications offers partial solutions to a very large problem; it is hoped that further
development and integration of these and similar tools will one day enable integrated
development, visualization, and testing of complex multilevel hypotheses.

Conclusions and Future Directions
Phenomics is an emerging transdiscipline that aims to leverage breakthroughs in genome-wide
genotyping, burgeoning knowledge in the clinical and cognitive neurosciences, and
unimagined developments in information and computer sciences, to yield traction on
biomedical problems of enormous complexity. The phenomics perspective suggests that
systematic study of multiple phenotypes, across multiple biological scales, will be important
even if ever-larger sample sizes succeed in revealing robust genetic associations with high level
syndromal phenotypes. The need for this perspective seems particularly compelling in its
application to neuropsychiatric syndromes. As we move into the “post-GWAS era”, it is likely
that declining costs and new methods will enable ever-finer mapping of genetic sequences,
detecting rare variants and copy number variations not revealed by most current platforms.
While so far it remains unclear to what extent epigenetic factors may help account for
phenotypic variance not explained by genomic data, the theoretical potential is vast (Mehler,
2008), and some major initiatives are aiming to develop epigenomics more fully
(http://nihroadmap.nih.gov/epigenomics/initiatives.asp), making it possible that epigenome-
wide analysis may become a staple of biological characterization in the future. There remain
major challenges in identifying and effectively studying human population samples sufficiently
large, and capable of addressing challenges of genomic and phenomic diversity. Given the
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limited throughput of existing lab-based phenotyping methods, web-based ascertainment and
phenotyping strategies may represent the most rational way forward, but considerable work is
needed to translate what is now technically feasible into pragmatic deployments. While still at
early stages in the Human Phenome Project, there remains great promise that phenomics can
help us realize the vision of personalized medicine and rational neuropsychiatric diagnosis and
treatment.
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Figure 1.
Seven-level schematic illustrating relevant components of mechanistic “genome to syndrome”
hypotheses for phenomics research
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Table 1
Considerations for Phenotype Selection in Phenomics Research

Genetic Validity

a) moderately high heritability; association with related disorders in family members

b) relate to known common functional genetic variation

Measurement Properties

a) reliability (nomothetic validity, internal consistency); test-retest reliability (at least within a particular state, and preferably across states in illnesses which
have an episodic pattern); and other desirable psychometric properties (e.g., discriminating power across a broad range of individual differences)

b) have good concurrent validity (convergent and divergent validity) with respect to hypothesized endophenotypes

Relevance for Human Applications

a) related to higher level constructs in humans, enabling links to clinical effectiveness and outcomes

b) suitable for application in clinical trials

c) associated with neuropsychiatric morbidity

d) cross-disorders relevance – the phenotype construct has been identified as important in more than one diagnostic syndrome

Relevance for Translational Investigation

a) homologies of expression across species enabling both basic and clinical investigation

b) latent endophenotype constructs relate to neural systems models sufficiently well studied that physiologically plausible manipulations can be effected and
measured using currently available techniques

c) implicated neural systems already are targets of known partially effective treatments for existing disorders, or these systems are the targets of new chemical
entities

Knowledge of Environmental Effects

a) known environmental effects on phenotype expression can usefully constrain modeling of phenotypic variance explained by genotypic variance, and may
be particularly valuable in model organisms where environments can be strictly controlled (epigenetic mechanisms are seen as an area of rapid expansion in
knowledge and systems in which these can be studied effectively may be prioritized
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Table 2
Web-applications developed to advance neuropsychiatric phenomics research

Application URL Description

PubGraph www.pubgraph.org Creates graphs of PubMed query results, where nodes are concepts defined by
each query and edges are annotated with association statistics

PubBrain www.pubbrain.org Generates co-occurrence statistics of PubMed query with neuroanatomic lexicon,
and projects weighted results on a 3D probabilistic atlas of the human brain

PubAtlas www.pubatlas.org Generates co-occurrence statistics among PubMed queries, generates heat maps
and history plots, provides pre-defined lexica for “blast” queries relevant to
neuropsychiatric phenomics research

Phenowiki www.phenowiki.org Provides wiki-like text annotation for cognitive concepts and tests, and
collaborative database entry of quantitative effect size, heritability,
psychometric, and sample statistics

Cognitive Atlas www.cognitiveatlas.org Provides collaborative annotation for cognitive concepts and tests, including
specification of assertions with evidence for and evidence against, and
confidence voting (under development)
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