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Abstract

Ruthenium catalyzed tert-prenylation of isatin 1 occurs efficiently in the absence of N-protecting
groups under the conditions of C-C bond forming transfer hydrogenation employing 1,1-
dimethylallene as the prenyl donor. The prenylated adduct, 3-hydroxy-3-tert-prenyl-oxindole 2, is
converted to the tertiary neopentyl chloride 3, which participates in nucleophilic substitution by way
of an aza-ortho-xylylene intermediate to furnish adducts 4a-4i. Through tertiary neopentyl
substitution, two contiguous all carbon quaternary centers are established.

Prenylated indole alkaloids have attracted attention due to their remarkable biological effects
and challenging structural features. 1 Those incorporating tert-prenyl moieties at the 2- or 3-
position include the brevianamides, austamides, paraherquamides, marcfortines, echinulins,
aspergamides, norgeamides, avrainvillamides, stephacidins, notamides, roquefortines, as well
as the amauromine, ardeemin, and flustramine families of natural products. The construction
of indole alkaloids that incorporate a 3-tert-prenyl moiety requires construction of two
contiguous all-carbon quaternary centers. Typically, this substructure is installed through the
reaction of bis-N-protected tryptophan derivatives with N-(phenylseleno)phthalimide to form
3-phenylselenio-pyrroloindoline adducts, which are ionized with methyl triflate in the presence
of prenyl tributylstannane.2 Considerable pre-activation attends this method, which requires
stoichiometric use of both tin and selenium reagents, as well as protection of the indolic
nitrogen.

In the course of studies aimed at the development of C-C bond forming hydrogenations beyond
hydroformylation,3 we recently developed a suite of catalytic methods for carbonyl allylation,
4 b,d,e,f,i,j,k crotylation4b,c,g,k and reverse prenylation4a,b,h,k in the absence of stoichiometric
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allylmetal reagents. In the specific case of reverse prenylation,4a,b,h,k it was found that reductive
C-C bond formation is achieved simply upon hydrogenation4a or transfer
hydrogenation4b,h,k of 1,1-dimethylallene in the presence of carbonyl partners, including
isatins.4a,k Although the synthesis of 3-tert-prenylated oxindoles can be achieved through the
addition of n-prenylindium reagents to isatins 5 or through enolate-Claisen rearrangement, 6
N-protected isatins are generally required.7,8e

Here, we report that under the mild conditions of transfer hydrogenation, direct tert-prenylation
of isatin occurs in the absence of N-protecting groups. Furthermore, the resulting adduct, 3-
hydroxy-3-tert-prenyl-oxindole 2, is readily converted to the chloride 3, which engages in
tertiary neopentyl substitution with C-nucleophiles to furnish adducts possessing two
contiguous all-carbon quaternary centers, presumably by way of an aza-ortho-xylylene
intermediate.8,9 To our knowledge, these studies represent the first general protocol for
intermolecular substitution in a tertiary neopentyl system.10,11

Our initial studies focused on the reaction of isatin 1 with 1,1-dimethylallene under the
conditions of ruthenium catalyzed transfer hydrogenation. Our prior work on allene couplings
of this type took advantage of a catalyst derived from RuBr(CO)3(η3-C3H5) and t-BuPPh2 in
combination with isopropanol as terminal reductant.12 For the present study, a process better
suited to gram scale synthesis was sought. Hence, our optimization focused on the use of
commercially available RuHCl(CO)(PPh3)3 as pre-catalyst. For this catalyst precursor, formic
acid was found to be superior to isopropanol as terminal reductant. Additionally, the choice of
ligand proved to be crucial. Use of RuHCl(CO)(PPh3)3 in the absence of added ligand did not
result in product formation. However, use of RuHCl(CO)(PPh3)3 in the presence of more
electron rich phosphines, such as tris(4-methoxyphenyl)phosphine or JohnPhos, provided the
desired product of tert-prenylation 2 in isolated yields of 61% and 74%, respectively, at catalyst
loadings of 2.5 mol % employing equimolar quantities of isatin 1, 1,1-dimethylallene and
formic acid at 65°C. The latter conditions employing JohnPhos as ligand were employed on
10 gram scale with isolation of the product via crystallization from ethyl acetate-hexane
(Scheme 1).

With gram quantities of alcohol 2 in hand, methods for the synthesis of tertiary neopentyl
chloride 3 were explored. Standard conditions employing thionyl chloride and a tertiary amine
base led to isolated yields ranging between 30%-90%. However, the desired chloride 3 was
contaminated with substantial quantities of Wagner-Meerwein product. It was postulated that
Wagner-Meerwein rearrangement occurs upon ionization of the transient chlorosulfite to form
the protonated aza-ortho-xylylene. Based on this interpretation, irreversible dianion formation
followed by the addition of thionyl chloride should generate a transient chlorosulfite that should
eliminate to furnish a neutral aza-ortho-xylylene, which should be less susceptible to Wagner-
Meerwein shift. Indeed, treatment of alcohol 2 with 2.2 equivalents of LHMDS followed by
thionyl chloride provided the tertiary neopentyl chloride 3 in 69% yield as a single
constitutional isomer (Scheme 1).

Acquisition of chloride 3 set the stage for tertiary neopentyl substitution. Upon exposure of
chloride 3 to dimethyl malonate in the presence of potassium carbonate in dichloromethane
solvent,8 the desired product of tertiary neopentyl substitution 4a was obtained in 84% isolated
yield. These conditions were applied to a range of C-nucleophiles. As demonstrated by the
formation of adducts 4a-4i, active methylene compounds, cyanide and electron rich arenes
engage in efficient tertiary neopentyl substitution with chloride 3 (Scheme 2). Finally,
borohydride reduction of chloride 3 also is possible, as demonstrated by the formation of 4j
(Scheme 3).
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In summary, we report a protecting group-free method for the gram-scale synthesis of 3-
hydroxy-3-tert-prenyl-oxindole 2 via ruthenium catalyzed C-C bond forming transfer
hydrogenation. Conditions were identified for the conversion of tertiary neopentyl alcohol 2
to the corresponding chloride 3 in the absence of Wagner-Meerwein shift. Finally, chloride 3
engages in tertiary neopentyl substitution by way of an aza-ortho-xylylene intermediate to
furnish the tert-prenylated oxindoles 4a-4i. Future studies will focus on the development of
related asymmetric neopentyl substitutions and application of these methods toward the
synthesis of naturally occurring 3-tert-prenylated indoles.
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Figure 1.
Examples of indole alkaloids that incorporate a tert-prenyl moiety at the indole 3-position.
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Scheme 1.
Reverse prenylation of isatin 1 and conversion to 3-chloro-3-tert-prenyl oxindole 3.a
aCompound 2 was isolated by crystallization from ethyl acetate-hexane. Compound 3 was
isolated by silica gel chromatography. See Supporting Information for experimental details.
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Scheme 2.
Tertiary neopentyl substitution of chloride 3 to furnish adducts 4a-4i possessing contiguous
all-carbon quaternary centers.a
aFor adducts 4a-4f, 300 mol % of NuH was employed. For adducts 4g-4i, 150 mol % of NuH
was employed. Cited yields are of material isolated by silica gel chromatography. See
Supporting Information for experimental details. bObtained as a mixture of diastereomers and
keto-enol tautomers. cFor the formation of 4d, 10 mol % Bu4NI, THF-H2O (1:3) was used as
solvent and the reaction was run for 24 h.
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Scheme 3.
Dehalogenation of chloride 3 mediated by NaBH4.
aAs described in Scheme 2.
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