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ABSTRACT

Stochastic expression is a hallmark of the Ly49
family that encode the main MHC class-I-recogniz-
ing receptors of mouse natural killer (NK) cells.
This highly polygenic and polymorphic family
includes both activating and inhibitory receptor
genes and is one of genome’s fastest evolving loci.
The inhibitory Ly49 genes are expressed in a sto-
chastic mono-allelic manner, possibly under the
control of an upstream bi-directional early promoter
and show mono-allelic DNA methylation patterns.
To date, no studies have directly addressed the
transcriptional regulation of the activating Ly49
receptors. Our study shows differences in DNA
methylation pattern between activating and inhibi-
tory genes in C57BL/6 and F1 hybrid mouse strains.
We also show a bias towards bi-allelic expression of
the activating receptors based on allele-specific
single-cell RT–PCR in F1 hybrid NK cells for Ly49d
and Ly49H expression in Ly49h+/� mice. Further-
more, we have identified a region of high sequence
identity with possible transcriptional regulatory
capacity for the activating Ly49 genes. Our results
also point to a likely difference between NK and
T-cells in their ability to transcribe the activating
Ly49 genes. These studies highlight the complex
regulation of this rapidly evolving gene family of
central importance in mouse NK cell function.

INTRODUCTION

Natural killer (NK) cells constitute an important part of
the body’s defence both as centurions of innate immunity
and as communicators and collaborators of the adaptive
immune system. They exert their function via the

interpretation of signals received from their surface
receptors. Normal cells display major histocompatibility
complex (MHC) class I molecules that are recognized by a
number of inhibitory receptors on the surface of NK cells.
The inhibitory receptors prevent activation of NK cells
and the destruction of normal, MHC class I-possessing
cells (1). NK cells also possess stimulatory (activating)
receptors that recognize other molecules on the surface
of potential target cells which are mostly pathogen-
encoded or stress-induced self proteins (2–4).
NK activation and the killing of target cells therefore

depend on the balance between stimulatory and inhibitory
signals received from these surface receptors. In primates
and some other mammals, the killer cell immunoglobulin-
like (KIR) family of genes code for the main MHC class-I
recognizing receptors (5). However, in rodents, the struc-
turally unrelated Ly49 family provides this function. Both
KIR and Ly49 families are polygenic and polymorphic
among different individuals and mouse strains (6,7).
The KIR gene cluster of human is �150 kb containing

approximately 14 genes and pseudogenes with very high
coding and regulatory sequence similarity (8) indicating
that they arose through recent gene duplication events
(9). There is great diversity in both gene number and
sequence polymorphisms for the KIRs among different
people (6). The Ly49 gene cluster has also arisen from
recent duplications and gene conversions of ancestral
genes (10–12). Hence, there is high sequence similarity
both in the coding and non-coding regions among the
majority of the genes. The Ly49 cluster includes 16
genes and pseudogenes spanning over 600 kb in the
C57BL/6 (B6) mouse strain and is located in the natural
killer gene complex (NKC) region of chromosome 6
(8,13). There are two functional Ly49 activating receptors,
Ly49D and H, coded by the B6 genome. Ly49D binds to
the MHC-class-I allele H2-Dd (14,15) and Ly49H binds to
the m157 protein of mouse cytomegalovirus (MCMV)
conferring resistance towards virus infection in the strains
of mice that express Ly49H (2,3,16,17). Unlike the
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inhibitory Ly49 receptors that are expressed on T and
NKT cells as well as NK cells, the stimulatory Ly49 recep-
tors are only expressed on NK cells (18). Lack of a well-
defined upstream promoter-1 (Pro-1) region, which likely
acts as a stochastic switch for inhibitory receptor genes
in immature NK cells (19,20) and reports of the higher
co-expression of Ly49D and H and deviation from the
product rule (21), suggest that the activating Ly49 genes,
despite being surrounded by inhibitory genes in the Ly49
gene cluster, are subject to distinct regulatory mechanisms.
DNA methylation of the 50-region of the inhibitory

Ly49 genes correlates with their expression. In the
case of Ly49a and Ly49c, where stochastic mono-allelic
expression has been demonstrated, we have previously
shown that DNA methylation and mono-allelic receptor
expression correlate (22). The existence of stochastic
mono-allelic expression and/or correlation with DNA
methylation is unknown for the activating receptors.
Here, we have investigated the link between DNA methy-
lation of the 50-region of activating receptors and the
maintenance of their expression. Furthermore, we show
evidence for a mode of transcriptional regulation for
the activating Ly49 genes that differs from that of the
inhibitory genes.

MATERIALS AND METHODS

Mice

All C57BL/6 mice were bred and maintained in the animal
facility of the British Columbia Cancer Research Centre
(Vancouver, British Columbia, Canada). 129SvEvTac and
129SvEvTac/C57BL6 F1 hybrids were ordered from
Taconic farms. NOD/ShiLtJ and C57BL6/NOD-ShiLtJ
F1 hybrids were ordered from the Jackson Laboratory
(Bar Harbor, Maine, USA). All mice used in this study
were more than 6-weeks old. The B6.BXD8/B6 (23) and
age-matched B6 mice were 6.5-weeks old. All experiments
were according to a protocol approved by the Committee
on Animal Care of the University of British Columbia.

Antibodies, cell separation and flow cytometry

The monoclonal antibody (mAb) anti-FcRg (2.4G2)
(24,25) and 3D10-FITC (21) have been described before.
Anti- CD3e-PerCP-Cy5.5, anti- NK1.1-PE, anti-
NK1.1-APC, anti-DX5-PE (alpha-2 integrin, CD49b),
1F8-FITC (anti-Ly49C/I/H), 5E6-biotin (anti-Ly49C/I),
4E5-FITC (anti-Ly49D), A1-biotin (anti-Ly49AB6) and
fluorochrome-conjugated streptavidin were purchased
from BD Biosciences (Mississauga, Ontario, Canada).
The anti-mouse NKp46-PE antibody was purchased
from eBioscience (San Diego, CA, USA). The 12A8 pur-
ified antibody was generously provided by Dr Stephen
Anderson (NCI, Frederick, MD, USA) and was conju-
gated to FITC via Thermo Scientific Pierce EZ-label fluo-
rescein isothiocyanate protein labelling kit (Rockford, IL,
USA) per manufacturer’s protocol. Flow cytometry for
cell sorting was performed on Cytopeia Influx cell sorter
and Becton Dickinson FACSAria Cell Sorting System
(Mississauga, Ontario, Canada). All sorted samples were
>95% pure or resorted for high purity. For the single-cell

sorting, NK cells were sorted into wells containing JEG-3
(human choriocarcinoma) as carrier cells. Doublet
discrimination was applied to avoid more than one cell
per well.

Primary cell and tissue genomic DNA extraction

Genomic DNA (gDNA) was obtained from FACS sorted
cells as described before (22). gDNA was extracted from
fresh B6 mouse liver using DNAzol reagent (Invitrogen)
per manufacturer’s instructions. Further proteinase K
digestion and phenol–chloroform extraction was
performed.

Sodium bisulfite conversion and PCR

Bisulfite conversion was performed as described previ-
ously (22). The conversion rate was >98%. First-round
PCR amplification of Ly49h 50 region was performed
using Ly49h forward and reverse flanking bisulfite prim-
ers. Converted DNA was used as template in a 45 ml reac-
tion volume, containing 30 pmol of each primer, 1mM
dNTPs, 3mM MgCl2 and 0.5U Taq Platinum DNA poly-
merase (Qiagen). After initial denaturation for 7min at
958C, 30–40 cycles were performed, each consisting of
90 s at 958C, 55 s at 508C and 40 s at 728C with a final
extension of 7min at 728C. Two microliters of the first
PCR was used for nested amplification using Ly49h
forward and reverse nested bisulfite primers. The same
amplification conditions were chosen as for first-round
PCR with the exception that the annealing temperature
was changed to 48+0.18C/cycle. All bisulfite primer
sequences are shown in Table 1.

For the Ly49d 50 region of the B6 strain the following
primers were used to amplify two regions for COBRA
analysis of two CpG dinucleotides: first round (flanking)
PCR was performed with Ly49d forward and reverse
flanking bisulfite primers. After initial denaturation for
7min at 958C, 35 cycles were performed, each consisting
of 90 s at 958C, 55 s at 518C and 50 s at 728C with a final
extension of 7min at 728C. Two separate nested PCRs
were performed on 3 ml of the product of the flanking
PCR to amplify two regions containing an upstream and
a downstream (in relation to transcription start site) CpG
dinucleotide. For the upstream CpG-containing fragment
the Ly49d forward flanking and reverse nested bisulfite
primers were used. After initial denaturation for 7min at
958C, 35 cycles were performed, each consisting of 90 s at
958C, 55 s at 518C and 17 s at 728C with a final extension
of 7min at 728C. The downstream CpG-containing frag-
ment was amplified via the Ly49d forward nested and
reverse flanking bisulfite primers. After initial denatura-
tion for 7min at 958C, 35 cycles were performed, each
consisting of 90 s at 958C, 55 s at 538C and 40 s at 728C
with a final extension of 7min at 728C. The resulting pro-
ducts were subjected to combined bisulfite and restriction
enzyme analysis (COBRA).

For Ly49d and Ly49r 50 region amplification from the
129SvEvTac/C57BL6 F1 hybrid cells, first round PCR
was performed with the same flanking primers as Ly49d
as their sequence is identical to Ly49r with the same PCR
conditions as that used for Ly49d of B6. Nested PCR was

5332 Nucleic Acids Research, 2009, Vol. 37, No. 16



performed on 2 ml of the flanking PCR product with the
forward nested Ly49d primer (which is identical to Ly49r
sequence) and Ly49d/r reverse nested bisulfite primer.
After initial denaturation for 7min at 958C, 35 cycles
were performed, each consisting of 90 s at 958C, 55 s at
50+0.18C/cycle and 45 s at 728C with a final extension
of 7min at 728C. The PCR products were electrophoresed
on 1% agarose gels and correct size bands were extracted
using the MinElute gel extraction kit (Qiagen). The pur-
ified products were cloned into the T-vector using the
pGEMT-vector kit (Promega). Sequencing was performed
using the SP6 primer by McGill University and Genome
Québec Innovation Centre sequencing facility. All clones
included in the figures are unique as per criteria stated
before (22).

Combined bisulfite and restriction enzyme analysis

For COBRA, gel purified fragments of Ly49d upstream
and downstream regions were digested with TaqaI and
BmgBI restriction enzyme (NEB), respectively to distin-
guish between methylated (CpG) and unmethylated
(TpG). Only fragments that were originally methylated
in the gDNA and therefore not converted by sodium bisul-
fite treatment are cut. Gel purified Ly49h fragments were
digested with TaqaI (NEB) and BsaAI (NEB) restriction
enzymes.

RNA extraction, RT–PCR and 5’ amplification of
cDNA ends

cDNA was generated from total B6 and NOD/
ShiLtJ spleens and FACS sorted B6T-cell RNA per
SuperScript III protocol. PCR was performed on the gen-
erated cDNAs using primers specific for Ly49d, g, h,
Nkg2d and actin. Ly49g and actin primers have been
described before (22). All RT–PCR primer sequences are
shown in Table 1.

50-Rapid amplification of cDNA end (50-RACE) was
performed on B6 spleen RNA using the FirstChoice
RML-RACE kit (Ambion) per manufacturer’s protocol
with Ly49h-specific primers. For the outer PCR, the
Ly49h Exon 3–4 reverse primer used for RT–PCR was
used as the outer 50-RACE primer in combination with
the kit’s outer forward primer. For the inner PCR, Ly49h
Exon 2 inner reverse primer in combination with the
kit’s inner forward primer. The products were cloned
into the T-vector using the pGEMT-vector kit
(Promega). Sequencing was performed using the T7
primer by McGill University and Genome Québec
Innovation Centre sequencing facility.

Electrophoretic mobility shift assay

Nuclear extract from FACS sorted B6T-cells and IL-
2-expanded FACS-sorted B6 NK cells were prepared as
described before (26). Electrophoretic mobility shift assay
(EMSA) was performed with the following double-
stranded probes located downstream of the transcriptional
start site within exon1 of various Ly49 genes (only the
forward strand is shown in Table 1): to control for
length differences among the probes, poly-T tails were
added to the shorter Ly49a and c probes. The YY1 anti-
body (sc-281) was purchased from Santa Cruz
Biotechnology and supershift experiments were performed
as described before (26).

Single-cell RT–PCR

Single-cell RT–PCR and Southern blotting was performed
as described before (27) with minor modifications. RNA
from JEG-3, a human choriocarcinoma cell line (28), was
used as carrier. Ly49d forward exon 2 and reverse exon 4
primers were used to specifically amplify Ly49d cDNA
of both B6 and NOD/ShiLtJ. Ly49dB6-specific oligo
probe and Ly49dNOD-specific oligo probe were used to

Table 1. Oligonucleotide sequences of primers and probes

Ly49h forward flanking bisulfite primer 50-ATA GGG GAA TGT TAG GGT TAA AAA G-30

Ly49h reverse flanking bisulfite primer 50-ATT TAA CCT AAT ATA ACA CAA CCA A-30

Ly49h forward nested bisulfite primer 50-GGA TAT ATG TTT TGT TTT TTT TGG T-30

Ly49h reverse nested bisulfite primer 50-TAA CAC AAC CAA AAA AAC TCT CAA C-30

Ly49d forward flanking bisulfite primer 50-TAT TAA GAT GTA ATT AGT ATG ATT TAA T-30

Ly49d reverse flanking bisulfite primer 50-ACA ATA CAT TTA TAC ACT TCA CCT AA-30

Ly49d reverse nested bisulfite primer 50-CCA AAT ACT ACA AAA AAA ATA ACT ATA T-30

Ly49d forward nested bisulfite primer 50-AGG TAG AGT TAT AGG TAA TAA TAG T-30

Ly49d/r reverse nested bisulfite primer 50-TTC CTC TAC CTT AAT TTC TTA AC-30

Ly49d Exon 2 forward primer 50-CGG AAG CCT GAA AAA GCT CG-30

Ly49d Exon 4 reverse primer 50-TCA CAC AGT ATG TTT TGA TCC C-30

Ly49h Exon 2 forward primer 50-GAA CAG CCA GGT GAG ACT T-30

Ly49h Exon 3-4 reverse primer 50-TGT TTG TGA CAA AGT TTT TTC AGT-30

Nkg2d Exon 2 forward primer 50-ACT ACC AGT CAA CCT GGA GAA-30

Nkg2d Exon 6 reverse primer 50-GAC ATA TCC AGT TGT TAG GGC AT-30

Ly49dB6/NOD forward Exon 2 primer 50-GCT GTG AGA TTC CAT AAG TCT TC-30

Ly49dB6/NOD reverse Exon 4 primer 50-GAT GCT GCA GTT ATT GTG GTG-30

Ly49dB6-specific oligonucleotide probe 50-CGG AAG CCT GAA AAA GCT CG-30

Ly49dNOD-specific oligonucleotide probe 50-AGC CTC GAA AAG CTG GCC TCA-30

Nkg2d-specific oligonucleotide probe 50-CAA TTC GAT TCA CCC TTA ACA CAT T-30

Ly49h Exon 2 inner reverse primer 50-AAA GTG ACC TCC TGC TCA CT-30

Ly49d forward EMSA probe 50-AGA AAA GGC CCA CAT TAC CCC AAC AGG GAC ATC CAT TCC TTC TAC-30

Ly49h forward EMSA probe 50-AGT AAA GGC CCA CAT TAC CCC AAT TGA GGC ATC CAT TCT TTC TAC-30

Ly49a forward EMSA probe (Plus two T-10-mers) 50-tttttttttt AGA AAA AGC CAA CTT TTT CCT CCA C tttttttttt-30

Ly49c forward EMSA probe (Plus two T-4-mers) 50-tttt AGA AAA CGC CAA CGT TTC AGA CAA ATT TTC CCT CCA C tttt-30
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specifically detect cDNA from Ly49dB6 or Ly49dNOD in
Southern blot analysis. For Nkg2d, the same primers used
for RT–PCR (previous section) were used and the pro-
ducts were identified after Southern blotting with an
Nkg2d-specific oligo probe. Up to five sets of independent
PCRs were performed on each single cell.

RESULTS

Lack of detectable activating Ly49 transcripts in T-cells

Unlike the inhibitory Ly49 receptors, the activating Ly49
receptors of the B6 strain (Ly49D and H) are not
expressed on the surface of T and NKT cells (29,30).
This absence of surface expression on T and NKT is
most likely due to the negligible amounts of the activating
adaptor protein DAP12 that seems to be required for cell
surface expression of the B6 activating Ly49 receptors
(31,32). However, there are reports of the association of
Ly49D with the activating adaptor protein CD3z and
DAP10 (33,34). We also did not detect Ly49R (an activat-
ing receptor in 129 mice) or Ly49D and R surface expres-
sion on 129SvEvTac or 129SvS6/B6 F1 hybrid fresh
ex vivo splenic T-cells (DX5�, CD3e+) respectively by
flow cytometry (data not shown). To determine if
transcripts for the activating receptors exist in T-cells,
fresh ex vivo splenic T-cells were sorted with high purity
and RT–PCR with Ly49d and Ly49h-specific primers was
performed on the isolated RNA (Figure 1A). Transcripts
from both Ly49d and Ly49h were detected in whole
spleen but very little to none in splenic T-cells, which
correlates with the lack of surface expression of these
receptors on T-cells. We detected similar amounts of the

inhibitory Ly49g and Nkg2d cDNA in both splenic lym-
phocytes and sorted T-cells.

5’-region DNA methylation of Ly49d and Ly49h
correlates with state of expression

Ly49 genes have multiple promoters but most are tran-
scribed from a region called Pro-2, which is thought to
be the main promoter in mature NK cells (19,35). The
transcriptional start site of Ly49d has been mapped to
the Pro-2 region (35). To determine the promoter of
origin for Ly49h, 50RACE was performed on whole
spleen RNA with gene-specific primers. The Ly49h tran-
scripts detected originated from Pro-2. However, unlike
other Ly49 genes (35) we did not detect transcriptional
start site variability for Ly49h (Figure 1B).

Based on the 50RACE results, the region equivalent to
the Pro-2 of the inhibitory Ly49 genes is the main area of
transcriptional start for Ly49h. We examined the DNA
methylation status of the CpG dinucleotides of this
region that we shall refer to as the 50-region of Ly49h
from here onwards. There is a cluster of six CpGs
within the proximal 50-region of Ly49h with three CpGs
located upstream and three located downstream of the
transcription start site (Figure 2A).

Sodium bisulfite sequencing revealed heavy methylation
of this region in FACS-sorted Ly49H-negative (1F8�)
splenic NK and T-cells but not in Ly49H-positive
(1F8+, 5E6�) NK cells (Figure 2B). As with the inhibitory
Ly49a gene (22), the CpG sites downstream of the tran-
scriptional start site are most heavily methylated in
Ly49H-negative cells. However, unlike for Ly49a and
Ly49c which display a ‘half-and-half’ mono-allelic methy-
lation pattern, the Pro2 region was hypo-methylated in all
clones sequenced in the Ly49H+ population. The bisulfite
sequencing results were also confirmed by COBRA
(Figure 2C).

There are very few CpG dinucleotides in the 50-region
of Ly49d. Hence, we only used COBRA to analyze two
CpG dinucletides, one upstream and the other down-
stream of the transcription start site (Figure 2D). TaqaI
and BmgBI restriction endonucleases were used to assay
the upstream and downstream CpGs, respectively.
Ly49D expressing and non-expressing NK cells of fresh
ex vivo spleen were FACS sorted and analyzed for DNA
methylation at these two CpGs. The results are the
combination of four individual PCRs per each sorted
population. Ly49D negative NK cells show moderate
amounts of DNA methylation at both assayed CpGs
where as the Ly49D positive NK cells show almost no
DNA methylation at either site (Figure 2E) reflecting
a DNA methylation pattern similar to that observed
for the Ly49h 50-region in Ly49H positive NK cells
(Figure 2B and C).

5’-region DNA methylation of Ly49d and Ly49r does not
correlate with stochastic mono-allelic receptor expression
in 129S6/B6 F1 hybrid

Mono-allelic gene expression has not been shown for the
activating Ly49 genes and we did not observe the bimodal

Figure 1. Transcription of activating Ly49 genes. (A) RT–PCR on
whole spleen and sorted splenic T-cells was performed for actin (25
cycles), the inhibitory Ly49g and activating Ly49d and h as well as
Nkg2d (30 cycles) with gene-specific primers. (B) 50RACE of Ly49h
on cDNA from whole spleen. Vertical downward-pointing arrows
show the transcription start sites assayed by 50RACE. The numbers
on top of the arrows show the number of sequenced clones beginning
at a given nucleotide position. The exon 1/intron 1 boundary is also
indicated.
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DNA methylation pattern typical of the mono-allelically
expressed inhibitory Ly49a and c (22) for Ly49d and h in
receptor-expressing NK cells. In order to verify the DNA
methylation status of both alleles of an activating receptor
in receptor-expressing NK cells, we investigated the DNA
methylation status of Ly49d in the 129S6/B6 F1 hybrid.
Antibody binding and specificities have been examined for

the 129S6 strain Ly49 receptors allowing for sorting
and analysis of specific Ly49-expressing subpoulations
(36). Ly49dB6 and Ly49r129 are considered alleles based
on the criteria presented by Makrigiannis et al. (36,37)
such as coding region homology, intron homology and
gene order. We therefore chose to assay DNA methylation
of the 50-regions of Ly49d and r in the F1 hybrid.

Figure 2. DNA methylation patterns of the 50 regions of Ly49d and h in the B6 strain. (A) Location of all CpG dinucleotides in the 50 region of
Ly49h is shown. CpGs are represented by vertical lines, black boxes represent exons and the bent arrow indicates the transcriptional start and the
direction of transcription. The CpGs within the boxed region (�430 bp) were assayed for methylation in primary C57BL/6 splenic NK cells via
sodium bisulfite sequencing (B) and COBRA (C). For bisulfite sequencing, each line represents the sequence of an independent clone. The location of
the CpG dinucleotides assayed by COBRA are indicated by arrows. Fragments that contain a CpG dinucleotide at these locations are digested by
restriction endonuclease indicating methylation in the original genomic DNA. Fragments that remain uncut contain a TpG instead of a CpG, which
indicates that in the original genomic DNA template this CpG was unmethylated. (D) CpG dinucleotide distribution in the 50 region of Ly49d is
shown. CpGs are represented by vertical lines, black boxes represent exons and the bent arrow indicates the transcriptional start (35) and the
direction of transcription. (E) Two CpGs indicated with vertical arrows were assayed for methylation in primary B6 splenic NK cells by COBRA.
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There are no antibodies available that bind Ly49D but
not Ly49R or vice-versa, making receptor/allele-specific
sorting impossible because the 4E5 and 12A8 antibodies
(14) detect both receptors. However, the 4E5 antibody
also detects Ly49O129 and Ly49V129 where as 12A8
binds to Ly49AB6 as well (36). The percentage of NK
cells expressing Ly49D (stained with 4E5) and R (stained
with 12A8 antibody) in B6 and 129S6 strains respectively
is 50-60% (data not shown). In order to specifically sort
Ly49D and R expressing cells in 129S6/B6 F1 hybrid,
splenic lymphocytes were co-stained with 12A8 (anti-
Ly49D, R and AB6) and A1 (anti-Ly49AB6) antibodies.
The A1 antibody also detects Ly49P129 and V129 with
low binding affinity (36).
Assuming Ly49d and r are allelic, we hypothesized that,

based on the lack of a bimodal DNA methylation pattern
observed for Ly49D and H expressing NK cells in B6,
both Ly49d and r 50-regions should be hypo-methylated.
We FACS sorted 12A8-positive/A1-negative NK cells
(Figure 3A). This population should include Ly49D-
single positive, Ly49R single-positive and Ly49D and
R double positive cells. A few polymorphisms in the
50-region of Ly49d and r, assayed by sodium bisulfite
sequencing, allow for their distinction (Figure 3B).

We also sorted 12A8 negative (Ly49D/R non-
expressing) NK cells and analyzed the 50-region of
Ly49d and r for this population as well (Figure 3B). As
expected, the 50-region of Ly49d and r in the Ly49D/
R-negative NK cells was hyper-methylated for all the
sequenced clones. With the exception of two clones
for Ly49d and one clone for Ly49r, all other clones
(16 clones) are hypo-methylated in Ly49D/R-positive
NK cells. The most 50 CpG of all of the nine independent
Ly49R-positive clones is methylated in Ly49D/R-positive
NK cells. However, the rest of the methylation pattern
does not resemble that of the Ly49D/R-negative cells.
We also sequenced the Ly49r Pro2 region from Ly49R-
postive NK cells of the 129/SvEvTac mouse (the parent of
the F1 hybrid) to gauge the methylation of the most 50

CpG. We observed the same methylation pattern as in the
F1 (Supplementary Figure 1) possibly indicating that this
pattern of methylation is specific to the Ly49r locus. The
bimodal DNA methylation observed for the inhibitory
Ly49a and c is not observed for Ly49d and r, rather the
pattern of DNA methylation resembles that observed for
Ly49h.

Detection of bi-allelic expression of Ly49d

The recent sequencing and assembly of the NOD Ly49
cluster (7) provided an opportunity to test allelic expres-
sion of activating Ly49 receptors. While there may be
some question as to the allelic relationship of Ly49dB6

and Ly49r129, the NOD strain has a definite Ly49d allele
with �98.5% identity to the B6 Ly49d sequence at the
level of cDNA (7,38). In order to directly test the quality
and quantity of allelic expression of Ly49D, we single-cell
FACS sorted NK cells (NKp46+, DX5+, NK1.1+,
CD3e�) from B6/NOD F1 hybrid spleen and performed
single-cell RT–PCR (27) followed by Southern blot and
hybridization with allele-specific probes (see Figure 4 for
example).

We assayed 88 NK cells and detected cDNA for
Ly49dB6 and/or Ly49dNOD in 40 cells where cDNA from
both Ly49dB6 and Ly49dNOD was detected in 22 of these
40 cells indicating 55% bi-allelic expression (Table 2).
We never detected any products from wells that only

Figure 3. DNA methylation of Ly49d and Ly49r 50-region in the
F1 hybrid of 129/S6 and B6. (A) Ly49D/R expression profile of
129S6xC57Bl/6 F1 hybrid fresh spleen NK cells (DX5+, CD3e�).
The Ly49D/R-expressing (12A8+, A1�) population (gated) and non-
expressing (12A8�, A1�) were sorted and analysed for DNA methyla-
tion. (B) Sodium bisulfite sequencing of 12A8-positive/A1-negative NK
cells (Ly49D/R positive) and 12A8-negative NK cells (Ly49D/R nega-
tive). Ly49d and r differ in the position of one CpG dinucleotide but
also have other polymorphisms in this region (�700 bp). All clones
presented here are unique.

Figure 4. Detection of Ly49dB6 and Ly49dNOD cDNA by single-cell
RT–PCR and Southern blot. Ly49dB6-specific and Ly49dNOD-specific
probes were hybridized to identical blots of amplified cDNA generated
from single-cell RT–PCR on FACS sorted F1 hybrid splenic NK cells.
This figure shows a representative experiment (one set of PCRs) where
seven individual cells show one or more products. Three cells contain
Ly49dB6 only, two cells contain Ly49dNOD only and two cells contain
both products. C indicates a lane with cDNA from JEG-3 carrier
cells only (no sorted NK cell) and N indicates the no-template control
lane. After five sets of independent PCRs 4 of 9 single cells in this
combination of F1 cells showed bi-allelic expression for Ly49d (data
not shown).
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contained carrier cells. The single-cell RT–PCR technique
will underestimate bi-allelic expression due to the fact that
one allele may not be detected through inefficient cDNA
generation during the RT reaction, multiple sample puri-
fication steps and random sampling error (27,39).

As a control for the efficiency of our method, we used
Nkg2d, an activating receptor gene that is transcribed in
all NK cells (40) most probably at levels similar to the
Ly49 genes, to gauge the efficiency of cell sorting, cDNA
generation and detection. We only detected 73 Nkg2d+

cells from the total cells assayed after multiple sets of inde-
pendent PCRs (Table 2). Nkg2d transcripts went unde-
tected in seven NK cells indicating that possibly 9% of
the time the transcript of a gene and/or allele is not
detected by our method. In total, we detected transcript
for at least one of Ly49dB6, Ly49dNOD and Nkg2d in 80
cells from the total of 88 NK cells assayed.

Interestingly, the difference between the fraction of cells
positive for Ly49dNOD versus Ly49dB6 is nearly 3-fold. The
allelic expression of Ly49G in various F1 hybrid mice
using allele-specific antibodies shows that different alleles
of the same gene can be expressed at different levels in
various mouse strains (41). This might be due to the
MHC class-I background of the mice, the Ly49 cluster
gene composition as well as polymorphisms in the pro-
moter regions.

Expression of Ly49H in a single genomic allele mouse
model

Ly49H is expressed on �50% of splenic NK cells in the B6
strain. For a completely bi-allelically transcribed gene
expressed in 50% of NK cells, each allele would be
expressed in all expressing cells and would contribute
half of the total transcript in each cell. In a situation
with only one genomic allele present, the fraction of cells
expressing the gene should, however, remain the same at
50% but the amount of total transcript should be halved.
For a gene expressed mono-allelically through allelic
exclusion, one allele is chosen for expression and the
other allele is repressed. If this gene is expressed in 50%
of cells, each allele is transcribed in 25% of cells only.
In contrast, for a stochastic mono-allelic expression pat-
tern, as described for the inhibitory Ly49 receptors, every
allele is equally, randomly and independently expressed
(42). Based on this model, if 50% of NK cells are positive
for a receptor, each allele should be expressed in 29.2% of
NK cells with 8.4% of all NK cells expressing this receptor
bi-allelically (see model of this situation in Figure 5A).

We attempted to distinguish between the bi-allelic
versus stochastic mono-allelic model using the B6.BXD8

(B6.Ly49h�/�) mouse, generated recently by two indepen-
dent groups (23,43), which carries the B6 Ly49 cluster with
a �26 kb deletion spanning the length of the Ly49h gene.
Both groups have independently shown that the expres-
sion of other Ly49 receptors does not change in the
B6.BXD8 mouse compared to the wild-type B6 mouse
indicating that the lack of Ly49H does not affect the
expression of other Ly49 receptors (23,43). Unfortunately,
an inhibitory Ly49 gene deletion mouse model does
not exist for comparison. The B6.BXD8 is unique because
the deleted Ly49 genomic allele is in the same Ly49 gene
cluster as the other (non-deleted) chromosome. The vari-
able Ly49 clusters as well as possible differences in MHC
class-I background can produce confounding effects on
expression of Ly49 receptors in F1 hybrids (41).
To investigate the expression pattern of Ly49H on NK

cells carrying only one genomic allele of Ly49h on the
B6 background, we FACS analyzed peripheral blood
NK cells from 6-week old Ly49 h+/� heterozygous
(B6.BXD8/B6) mice by staining with the 3D10 antibody.
The percentage of NK cells expressing Ly49H in the het-
erozygous mice (Ly49h+/�) was reduced to 35% from that
of age-matched B6 (Ly49h+/+) that have 50% Ly49H+

NK cells (P= 0.0005) (Figure 5B). This fraction of Ly49H
expressing cells in the heterozygotes is lower than expected
for a completely bi-allelically expressed gene but higher
than the expected 29.2% based on the stochastic mono-
allelic model (Figure 5A). Thus, based on these data, the
situation for Ly49h likely lies between these two extremes.
Although we cannot predict the possible effects of the
deletion of one Ly49h allele on the expression of the
other allele, we can assume that in the wild-type B6 back-
ground both alleles should have the same probability
of expression. Since Ly49H is expressed on 50% of NK
cells and assuming that in the Ly49h+/+ B6 mouse the
second allele would also be expressed on 35% of NK
cells, the bi-allelic expression of Ly49H would be �20%
(Figure 5C). This value is strikingly similar to the percent-
age of Ly49dB6/NOD (bi-allelic) NK cells (assuming 50%
Ly49D+ NK) of the B6/NOD F1 hybrid, as assayed with
single-cell RT–PCR (Figure 5D).

Low sequence identity in the 5’-UTR of inhibitory and
activating Ly49 genes

The regulatory elements governing the transcription of
activating Ly49 genes have not been analyzed to date.
It is unknown if inhibitory and activating genes share
common transcription factors. Multiple alignment of a
number of inhibitory and activating Ly49 genes from var-
ious sequenced mouse strains (performed with Clustal W)

Table 2. Single-cell RT–PCR results

cDNA type Ly49DB6 Ly49DNOD Ly49DB6

and NOD
Total
Ly49D+

Ly49D�

NKG2D+
Ly49D+

NKG2D+
Total
NKG2D+

Ly49D+

NKG2D�
Total cells
with cDNA

Number of transcribing
single cells (n)

5 13 22 40 40 33 73 7 80

Percentage positive 5/40=12.5% 13/40=32.5% 22/40=55% 40/73=55% 33/73=45% 7/80=8.8%
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shows a region in exon 1 that is present for the activating
Ly49 genes but is either absent or different for the inhib-
itory ones (Figure 6A). This region contains a number of
potential binding sites for the transcription factor Yin
Yang-1 (YY1) in the activating but not the inhibitory
genes.
Since more than half of the assayed CpG dinucleotides

of the 50-region of Ly49 genes fall downstream of the
transcriptional start site, it is possible that differential
methylation of this region might affect transcription of
the Ly49 genes. Furthermore, investigation of the possible
differential regulatory role of this region might explain
some of the differences between inhibitory and activating
receptor expression. We therefore probed the possible
existence of activating gene specific transcription factor
binding sites by gel-shift assay with nuclear extracts
from FACS sorted IL-2 cultured NK cells and T-cells
(Figure 6B and Supplementary Figure 2).
Fragments spanning the region of interest from Ly49a,

c, d and h were used as probe. In both NK and T-cells a

differential pattern of protein binding was observed
between the activating and inhibitory Ly49 probes. A
large band (indicated by a bracket in Figure 6B and
Supplementary Figure 2), likely consisting of multiple pro-
tein complexes, was most prominent for the activating
genes. In addition, a protein complex only bound to the
activating Ly49 probes (indicated by arrow in Figure 6B
and Supplementary Figure 2) disappeared (supershifted)
in the presence of YY1 antibody.

DISCUSSION

Here, we have analyzed the DNA methylation of the
50-region of B6 activating NK receptor genes, Ly49d and
h. We have shown that DNA methylation of this region
correlates with expression patterns of these receptors as
with the inhibitory Ly49A, Ly49C (22) and NKG2A
(44). Furthermore, as in the case of Ly49a, the CpG dinu-
cleotides downstream of the transcriptional start site of
Ly49h seem to have higher levels of methylation compared

Figure 5. Expression of Ly49H in B6 Ly49h+/� NK cells and comparison to the stochastic mono-allelic expression model. (A) Expression of a
theoretical Ly49 receptor expressed on 50% of NK cells based on the stochastic mono-allelic model in an inbred mouse strain. (B) The percentage of
peripheral blood NK cells expressing Ly49H in B6.BXD8/B6 (Ly49h+/�) mice and age-matched B6 (Ly49h+/+) were determined by FACS. P-value
was calculated according to the two-tailed unpaired t-test. (C) Allelic expression of Ly49H in a theoretical B6 mouse based on the expression of this
receptor in B6.BXD8/B6 (Ly49h+/�) mice. The dashed circle and brackets indicated predicted expression patterns. (D) Allelic expression of Ly49D
on NK cells based on the single-cell RT–PCR results (Table 2) in B6/NOD F1 hybrid. Each chromosome is shown with a line, the alleles are shown
with rectangle, arrows indicate transcription and cross shows the deleted allele.

5338 Nucleic Acids Research, 2009, Vol. 37, No. 16



Figure 6. Identification of a region of high homology among activating Ly49 genes. (A) Alignment of 50 regions of inhibitory and activating Ly49
genes. A region, located in exon 1, with high homology among activating receptors only, is boxed (dashed line). The region of transcriptional start
site is indicated by the solid black line above the alignment. Promoter region sequences of Ly49d and h of NOD, Ly49p and r of 129/S6 as well as
Ly49a, c, d, e, f, g and h of the B6 strain are shown. Ly49a, c, e, f and g are inhibitory genes and all other sequences are from activating genes. CpG
dinucleotides are also highlighted. The sequence used as probe in the supershift experiment is indicated for Ly49d with box (solid line). Potential YY1
binding sites (CCAT and ACAT) are shown in bold font. (B) Double-stranded probes harbouring the region of interest in exon 1 for the activating
Ly49d and h of the B6 strain and the corresponding region for the inhibitory Ly49a and Ly49c were used in gel-shift experiments with nuclear extract
from FACS-sorted T-cells and IL-2 cultured NK cells. A YY1 antibody was used for supershift assays. The bracket indicates the protein complexes
bound most significantly by the activating Ly49d and h probes but not the inhibitory Ly49a and c in both NK and T-cells. The arrow indicates
another protein complex specific to the activating Ly49 probes that disappears (supershifts) in the presence of anti-YY1 in both NK and T-cells.

Nucleic Acids Research, 2009, Vol. 37, No. 16 5339



to those located upstream in Ly49H-negative cells. This
find again raises the possibility of the existence of a prox-
imal downstream regulatory element for the Ly49 genes
whose function might be affected by DNA methylation.
Indeed for the KIR genes, a region spanning the trans-
criptional start site and the 50-UTR provides the core
promoter activity in T-cells but not NK cells (45). This
region also binds different protein complexes in NK and
T-cells as shown with gel shift experiments (45). The
multiple alignment of the 50-region of inhibitory and acti-
vating Ly49 genes revealed a region of high homology in
exon 1 among the activating genes that is not present in
the inhibitory Ly49 sequences (Figure 6A). Further inves-
tigation of this region, for the activating Ly49d and h
versus the corresponding region for the inhibitory Ly49a
and c, in gel shift experiments, showed different patterns
of protein complex binding between inhibitory and acti-
vating gene regions (Figure 6B). YY1 was also confirmed
as a candidate transcription factor binding to this region.
YY1 is known to have both transcriptional activating and
inhibiting properties (46). In addition, the tested region
showed a different protein-binding pattern with nuclear
extract from NK and T-cells (Figure 6B). These results
combined with the lack of detectable activating Ly49 tran-
scripts in T-cells support a varied mode of transcriptional
regulation for the two types of Ly49 genes. Further ana-
lysis of this region is needed to confirm the extent of its
role in the transcriptional regulation of the activating
Ly49 genes.
In contrast to the inhibitory receptors, the DNA

methylation pattern of the 50-region in the Ly49D and H
expressing NK populations does not follow the bimodal
(half-and-half) methylation pattern. The half-and-half
pattern of DNA methylation correlates with the mono-
allelic expression of Ly49A, C and NKG2A as was sub-
sequently shown using F1 hybrids for Ly49a and Nkg2a
(22,44). If DNA methylation does not correlate with
stochastic mono-allelic expression; either stochastic gene
expression is maintained at the level of histone modifica-
tions only or this pattern is possibly an indication of high,
if not complete, bi-allelic expression and even the lack of
stochastic expression of the activating receptors.
We have previously shown that the transcription of

some Ly49 genes and Nkg2a correlates with histone acet-
ylation levels (22,44,47). Ly49g transcription in the EL4
cell line is activated mostly in response to histone deace-
tylase inhibitors but is mostly unaffected by DNA methyl-
transferase inhibitors. Histone acetylation levels of the
Pro-2 region as assayed via chromatin immunoprecipita-
tion (ChIP) also correlate with state of expression in
EL4-derived subclones (47). It is possible that the stochas-
tic mono-alleleic expression of Ly49G (42) is controlled
at the level of histones only. Based on these results, it
is also possible that the maintenance of the activating
receptor expression patterns is through differential histone
modifications.
However, an alternative hypothesis to explain the

lack of a half-and-half DNA methylation pattern could
be that the expression of the activating receptors is pre-
dominantly bi-allelic. Based on this hypothesis, in the
Ly49D/R expressing NK cells of the 129/B6 F1 hybrid,

the 50-regions of both Ly49d and r should always be
hypomethylated to reflect absolute bi-allelic expression.
Our results show that most Ly49d and r clones are
hypo-methylated (16/19) in the receptor-expressing NK
cells indicating a strong deviation away from the mono-
allelic DNA methylation pattern observed for the inhibi-
tory genes (Figure 3B). If Ly49d and r are not alleles but
are independent loci, based on the product rule, assuming
no bias for co-expression given 50% surface expression of
each receptor by NK cells, we would expect 25% of all
NK cells to be co-expressing the two receptors. Since the
total of NK cells expressing one or both of Ly49D and R
would be 75% (assuming independent loci), we would
expect that 1/3 of all clones sequenced for each gene
(when sorting for D and/or R expressing NK cells) to
show hyper-methylation patterns similar to the negative
population. Our data indicates a much lower methylation
frequency than would be expected with stochastic mono-
allelic expression and hence we can conclude that neither
Ly49d nor r show bimodal DNA methylation patterns.
Our experiment does not prove or disprove the allelic
relationship of Ly49d and r.

The bias towards bi-allelic expression of the activating
Ly49 receptors is further supported by the results of the
single-cell Ly49d allele-specific RT–PCR performed on
NK cells of the B6/NOD F1 hybrid (Table 2) as well as
the higher than expected expression of Ly49H from a
single genomic allele (Figure 5). We detected bi-allelic
transcription of Ly49d in 55% (22/40) of Ly49d-transcrib-
ing NK cells. If Ly49D is expressed on 50% of NK cells,
the percentage of NK cells expressing this receptor
bi-allelically would be �28% (Figure 5D). The single-cell
RT–PCR method tends to be somewhat inefficient in
detecting bi-allelic gene expression. The transcription
factor, Pax-5, was statistically deemed to be bi-allelically
expressed by this method even though only close to 65%
of the cells analysed showed bi-allelic expression (39).
Transcripts for our control gene Nkg2d, that is expressed
by all NK cells (40), went undetected in �9% (7/80) of
NK cells (Table 2), indicating a likely underestimation of
the bi-allelic expression percentage calculated for Ly49d.
However, based on the few hyper-methylated clones
detected from the Ly49D/R-expressing NK cells as well
as the detection of only one Ly49d allele in a few single
cells (from the B6/NOD F1 hybrid) even after five sets of
single-cell RT–PCR, we believe that a real albeit very
small population of NK cells express Ly49D mono-
allelically.

It is not inconceivable that the activating receptors are
controlled and expressed differently from the inhibitory
receptors. The lack of a well-defined Pro-1 element
and its transcripts (19,20) in addition to deviation of
co-expression percentages from the product rule (21) sug-
gests a different mode of transcriptional regulation from
that of the inhibitory genes. Also, in the Ly49h genomic
transgenic mouse, Ly49H expression was restricted to NK
cells as is the case with the endogenous receptor (48).
This might be due to the lack of the adapter protein
DAP12 in T and B cells. However, in mice carrying only
an Ly49d cDNA transgene (driven by H-2Kb promoter
and IgH enhancer) (32) some surface expression of
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Ly49D was observed on T cells (49) indicating possible
pairing of Ly49D with other adaptor proteins in these
cells. The ability of T-cells to express some Ly49D on
their surface in the absence of DAP12 in this transgenic
mouse (49) supports the notion that the endogenous
Ly49d promoter might be inactive in T-cells due to lack
of necessary transcription factors and/or the presence of
repressive epigenetic marks at regulatory sequences. Our
results support both possibilities. The Ly49h 50 region is
hypermethylated in T-cells (Figure 2B) indicating a possi-
ble epigenetic hindrance to transcription of this gene in
these cells. The lack of detectable Ly49d and h transcripts
in T-cells (Figure 1A) also supports this notion.
Furthermore, the 50-UTRs of both Ly49d and h show dif-
ferent protein complex binding pattern compared to that
of the inhibitory Ly49 genes (Figure 6B).

In contrast to the endogenous receptor, in the Ly49a
genomic transgenic mouse, expression of Ly49A was
seen on the majority of splenic B-cells for all transgenic
lines regardless of copy number of the transgene (50). The
30Kb Ly49a genomic transgene contained the Pro-1
region and it was subsequently shown that the deletion
of this region in the same transgene abrogated the expres-
sion of Ly49A in NK, T and B cells (50). Mice carrying a
79kb Ly49h genomic transgene spanning the complete
length of the gene displayed Ly49H expression patterns
similar to the B6 Ly49h gene indicating that the transcrip-
tional regulatory sequences necessary for the ‘wild-type’
expression of this gene are contained within the 79 kb
region (48). Ly49h transcript and percentage of NK cells
expressing Ly49H correlated in the transgenic mice and
increased according to the transgene copy number, but
only up to a certain threshold (48). This phenomenon
indicates a possible control mechanism for an upper
limit of expression likely at the level of transcription
and/or at the level of NK selection.

The activating Ly49 genes evolve faster than their inhib-
itory family members (51). This is evident from the large
variation in the number and sequence of the activating
Ly49 genes and the high number of activating psuedo-
genes in nearly all the sequenced mouse strains (7,11).
It is also possible that the regulatory sequences of the
activating receptors evolved differently from that of the
inhibitory receptors in order to allow a tighter control
in NK cells and as a side effect of this evolution, mouse
T-cells lost the ability to express these receptors. Deviation
from stochastic expression might also allow more control
on the number of activating receptors on the surface of
NK cells because mono-allelic expression might lead to a
lower number of receptors on the cell surface compared to
bi-alleleic expression (41). Hence, in a non-stochastic
system, the expression level of these receptors is homoge-
neous among different NK cells. In conclusion, our results
suggest that distinct modes of transcriptional regulation
govern the expression of the activating and inhibitory
Ly49 genes.
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