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Abstract
Purpose of review—This report summarizes emerging clinical and preclinical data pertaining to
the use of CCR5 monoclonal antibodies (mAbs) as therapies for HIV-1 infection. The epitope
specificity of CCR5 mAbs is discussed in relation to its critical impact on antiviral activity and CCR5
antagonism. We compare and contrast mAbs and small-molecule CCR5 antagonists in terms of their
binding and antiviral properties. Two CCR5 mAbs have entered clinical testing and have successfully
completed proof-of-concept studies in HIV-infected individuals, providing initial information on the
potential therapeutic utility of these agents.

Recent findings—New studies support the view that the most potently antiviral CCR5 mAbs
recognize the second extracellular loop of CCR5 either exclusively or in combination with the amino
terminus. Studies have revealed fundamental differences in how mAbs and small molecules bind
CCR5 and inhibit HIV-1. CCR5 mAbs and small-molecule CCR5 antagonists have demonstrated
consistent antiviral synergy and limited or no viral cross-resistance in independent studies. Single
intravenous infusions of CCR5 mAbs significantly reduced HIV-1 RNA levels in infected individuals
for 2–3 weeks without appreciable toxicity.

Summary—CCR5 mAbs have demonstrated broad and potent antiviral activity in vitro. Clinical
studies have established CCR5 mAbs as potent antiretroviral agents with prolonged activity
following a single dose. CCR5 mAbs represent both a distinct class of CCR5 inhibitor and a novel
approach to HIV-1 therapy.
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Introduction
CCR5 monoclonal antibodies (mAbs) recently entered proof-of-concept trials in HIV-infected
individuals with only CCR5-tropic (R5) virus detectable, and results from the first two studies
are available. Single, well-tolerated infusions of CCR5 mAbs resulted in potent, rapid and
prolonged reductions in viral load, and the single-dose antiviral effects compared favorably
with those obtained after 10 to 14 days of treatment with small-molecule CCR5 antagonists.
The emerging clinical and laboratory data support the view that CCR5 mAbs offer several
potential advantages over existing antiretroviral therapies in terms of potency, tolerability,
dosing frequency and other factors.
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CCR5 Structure and Roles in Immune Function and HIV-1 Infection
CCR5 biology was reviewed recently [1]. The following paragraphs summarize critical aspects
and recent developments. HIV-1 entry into host cells proceeds through a coordinated series of
events mediated by the viral envelope glycoproteins gp120/gp41 and host cell receptors. HIV-1
gp120 first binds its primary receptor, CD4 [2], and then undergoes a conformational change
that exposes a binding site for a chemokine receptor [3;4], principally CCR5 [5–7] or CXCR4
[8], that acts as a fusion co-receptor. These events trigger gp41-mediated fusion of the viral
and cellular membranes. CCR5 is the predominant co-receptor used by HIV-1 for transmission
and during the early stages of infection. In contrast, CXCR4-using variants are rarely
transmitted but can become more apparent later in disease [9–14].

CCR5 belongs to a family of G-protein-coupled receptors (GPCRs) that respond to stimuli
ranging from photons to proteins. CCR5 is expressed on a number of cell types, including
activated/memory CD4+ and CD8+ T cells, macrophages, NK cells, NKT cells, microglia and
astrocytes. On CD4+ T cells, CCR5 is a marker for a T helper 1 (Th1) phenotype. CCR5
regulates cell migration, activation and polarization through multiple kinase pathways. Its
natural agonists are the chemokines CCL3 (MIP-1α), CCL3L1 (MIP-1αP), CCL4 (MIP-1β)
and CCL5 (RANTES), which are soluble ~8 kDa cytokines. HIV-1 infection does not require
CCR5 signaling.

CCR5 spans the plasma membrane seven times in a serpentine manner (Figure 1) [15]. The
extracellular portions represent potential targets for HIV-inhibitory mAbs and comprise an
amino-terminal domain (Nt) and three extracellular loops (ECL1, ECL2 and ECL3). Sulfation
of Nt tyrosines promotes gp120 binding and facilitates HIV-1 entry [16;17].

Numerous coding region, regulatory region and copy-number polymorphisms exist in the genes
for CCR5 and its ligands. The geographic distributions of these polymorphisms suggest that
these genes have evolved in response to differing environmental pathogens. Polymorphisms
in CCR5 and its ligands critically affect HIV-1 transmission and disease progression [9–14;
18–20]. A number of polymorphisms have a greater disease-modifying effect than
heterozygosity for the well-studied 32 basepair deletion in the CCR5 coding region (Δ32).
Δ32 is an inactivating mutation that affords nearly complete protection from HIV-1 infection
when present in two copies. Δ32 homozygotes lack a functional CCR5 receptor. This genetic
absence of CCR5 has no obvious effect on human health, but it has been associated with
increased risk for symptomatic disease from flavivirus infections [21;22]. The findings support
development of agents that block HIV-1 without abrogating CCR5’s role in normal immune
function.

Generation of CCR5 mAbs
Numerous CCR5 mAbs have been described [23–33]. Most mAbs were generated by
immunizing wild-type mice with rodent cell lines engineered to express human CCR5.
Typically, hybridomas were generated and then screened for production of mAbs that bind
CCR5. In other cases, hybridomas were initially screened for inhibition of HIV-1 envelope-
mediated cell fusion. This latter approached yielded mAbs with potent antiviral activity [25;
32].

Alternatively, CCR5 mAbs were generated in mice transgenic for the heavy and light chain
genes for human antibodies [31] or were isolated from a phage antibody library constructed
from non-immunized human donors [28]. Another mAb was isolated from a phage antibody
library derived from an immunized rabbit [30]. Additional mAbs were raised against an Nt
peptide [29].
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As a class, GPCRs are not highly immunogenic in their native states embedded within the cell
membrane. The extracellular portion of CCR5 comprises just 90 amino acids distributed over
four domains. The largest of these domains are the Nt and ECL2 at approximately 30 amino
acids each. It perhaps is not surprising that significant efforts were expended to generate CCR5
mAbs: Wu et al. identified CCR5 mAbs in one of eight hybridoma fusions [23], while other
groups reported screening between 10,000 and 25,000 hybridoma supernatants to identify six
to seven novel CCR5 mAbs [25;32].

Epitope specificity
The most potent HIV-inhibitory mAbs described to date recognize conformational epitopes.
For such mAbs, specificity has been mapped using CCR5 point mutants [25;27;33;34], CCR5
deletants, and/or CCR5 chimeras that contain extracellular regions from homologous
chemokine receptors [26;27;33;34]. These approaches have yielded results that are broadly
consistent, with CCR5 point mutants providing the greatest precision. For example,
independent groups have mapped the epitope for mAb 2D7 to ECL2 using CCR5/CCR2b
chimeras [24;27;33;34]. The 2D7 epitope was mapped to ECL2 residues K171 and E172 using
CCR5 alanine point mutants [25;27;33;34].

Table 1 lists the epitopes recognized by mAbs that have been mapped using CCR5 point
mutants, and the amino acids involved in mAb binding are illustrated in Figure 1. For these
mAbs, the dominant epitopes lie within the Nt and ECL2, which are the largest extracellular
regions and show significant divergence from mouse CCR5. As illustrated in Figure 1, ECL2
can be divided into amino-terminal and carboxy-terminal regions based on patterns of mAb
reactivity [27;34].

Most potently antiviral mAbs bind residues in ECL2 alone or in combination with Nt residues
[25;27;34]. Compared to ECL2 mAbs, mAbs that bind exclusively to the Nt typically have less
potent antiviral activity [24;25;27]. In contrast, Nt mAbs are more potent than ECL2 mAbs in
blocking binding of soluble gp120/CD4 complexes to CCR5 [25;27;34]. This finding
presumably reflects the multiple roles of CCR5 in binding gp120 and triggering membrane
fusion.

These findings are consistent with a two-site model for gp120-CCR5 interactions [35;36]. In
the model for subtype B viruses, the bridging sheet and V3 stem on gp120 bind to tyrosine-
sulfated forms of the CCR5 Nt, whereas the V3 crown interacts with ECL2 [16;37–40]. The
model suggests that optimal inhibition of HIV-1 may be obtained with a mAb that occludes
HIV-1’s access to both ECL2 and Nt, either by directly binding a multidomain epitope or by
steric hindrance.

The binding sites for CCR5 mAbs are distinct from those for small-molecule CCR5 antagonists.
These differences in CCR5 binding translate into important differences in antiviral properties,
as described below. The available small-molecule CCR5 inhibitors bind the hydrophobic cavity
formed by the transmembrane helices. Notably, E283 in the seventh transmembrane region is
a principal site of interaction for small molecules. A recent study mapped the binding sites for
maraviroc and vicriviroc to an identical set of amino acids [41], as indicated in Figure 1.

Antiviral activity in vitro
Although numerous CCR5 mAbs have been described, few broadly and potently inhibit HIV-1.
As discussed above, epitope specificity critically influences antiviral activity. Antiviral activity
did not correlate with CCR5 binding affinity for mAbs to unrelated epitopes [31]; however,
antiviral activity tracked CCR5 binding affinity for mAbs to similar epitopes [34;42].
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Given the multitude of CCR5 mAbs developed by independent groups, no systematic
comparison of antiviral activities has been performed. However, a number of mAbs were tested
using PhenoSense™ HIV-1 Entry (Monogram Biosciences, South San Francisco, CA), a single-
cycle assay that utilizes HIV-1 envelope-complemented reporter viruses [43–46]. The
validated, reproducible nature of this assay enables some limited cross-study generalizations.
Based on the published information, the most potent CCR5 mAbs demonstrated 50% inhibitory
concentrations (IC50s) in the range of 0.1–1.0 μg/mL (0.67–6.7 nM), with an approximately
1 log10 variation across diverse viral isolates. The mAbs afford essentially complete inhibition
at higher concentrations [43–46].

CCR5 mAbs have demonstrated similar potencies for viruses derived from different genetic
subtypes [32;47;48], stages of disease [49], and adult and pediatric infections [50]. CCR5
expression levels show considerable person-to-person variation [23;51;52] and have been
reported to affect both HIV-1 infectivity [23] and the potency of CCR5 inhibitors in vitro
[52]. CCR5 mAbs efficiently inhibited CCR5-mediated entry of dual/mixed (R5X4) viruses
in cell lines that express CCR5 but not CXCR4 [25;32;50]; however, limited inhibition of
R5X4 viruses was observed in cultures of peripheral blood mononuclear cells [47–49].

CCR5 antagonism
In contrast to the two-site model for gp120, chemokines principally bind CCR5 via ECL2
[24;53;54]. The binding sites for gp120 and chemokines on CCR5 therefore are overlapping
but distinct, and the antiviral and antagonist activities of CCR5 mAbs are dissociable. ECL2
mAbs often inhibit HIV-1 and chemokine signaling with similar efficiencies [24;25;32]; Nt
mAbs typically display minimal CCR5 antagonism but less potent antiviral activity [25;32;
33;55]. Rarely, CCR5 mAbs have been reported to possess agonist or partial agonist activity
[33]; most mAbs do not activate CCR5 at any concentration.

Amongst the mAbs described in the published literature, the mAb PA14 binds a unique epitope
spanning ECL2 and Nt [25]. PA14 preferentially inhibited HIV-1 at concentrations that did
not block the natural activity of CCR5 in vitro, although CCR5 antagonism was observed at
higher concentrations [25]. When compared with the ECL2 mAb 2D7 in parallel testing, PA14
was a more potent HIV-1 inhibitor and a less potent CCR5 antagonist. The findings indicate
that PA14 can distinguish fine differences in the binding sites for HIV-1 and chemokines on
CCR5.

Synergy with other antiretroviral agents
Three in vitro studies examined the antiviral activity of CCR5 mAbs in combination with small-
molecule CCR5 antagonists [56–58]. The antibodies examined were PA14, PRO 140
(humanized PA14), 2D7, RoAb13, RoAb14, 2D7 and 45523. The small-molecule CCR5
antagonists included maraviroc, vicriviroc, aplaviroc, SCH-C and TAK-779. Antiviral synergy
was reported by each group for most studied combinations of CCR5 mAbs and small-molecule
antagonists, and the synergy was attributed to co-binding of CCR5 [56;57]. One notable
exception was mAb 45523 used in combination with either maraviroc or aplaviroc, where
synergy was not observed due to competition for CCR5 binding [57]. In parallel studies,
additive rather than synergistic effects were observed for combinations of small-molecule
CCR5 inhibitors [56;57]. The findings provide a rationale to combine CCR5 mAbs and small-
molecule antagonists in the clinic and further underscore the mechanistic differences between
these classes of CCR5 inhibitors.

Synergy also was reported for combinations of CCR5 mAbs that bind distinct epitopes, with
the highest synergy observed between Nt and ECL2 mAbs [25;57]. Additive to synergistic
effects were reported between CCR5 mAbs and enfuvirtide, a peptide inhibitor of gp41
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membrane fusion [56;57]. Additivity was observed between CCR5 mAbs that bind similar or
overlapping epitopes.

Cross-resistance between CCR5 mAbs and small-molecule CCR5 antagonists
Viruses resistant to small-molecule CCR5 antagonists were generated by serial passage of virus
in the presence of increasing concentrations of inhibitor in vitro. These viruses typically
retained an R5 phenotype and acquired the ability to utilize inhibitor-bound receptor [59–64].
In vivo resistance has reflected the emergence of resistant R5 viruses as well as the outgrowth
of pre-existing R5X4 viruses [65;66]. In single-cycle antiviral assays, viral resistance to small-
molecule antagonists was manifest as a reduction in the maximum percent inhibition at high
inhibitor concentrations rather than a change in IC50 [59–63;66], consistent with the view that
small-molecule CCR5 antagonists act as allosteric inhibitors [67–69].

Several small-molecule resistant viruses were tested for susceptibility to CCR5 mAbs. Despite
demonstrating high-level resistance to the small-molecule CCR5 antagonists, the viruses
remained susceptible or even hyper-susceptible to inhibition by CCR5 mAbs [59–61;66;70].
The lack of cross-resistance between mAbs and small-molecule CCR5 antagonists likely
reflects differences in their modes of CCR5 binding (Figure 1) and mechanisms of HIV-1
inhibition (competitive v. allosteric).

There is limited information at present regarding forced viral resistance to CCR5 mAbs.
Additional studies are needed to determine whether such viruses retain an R5 phenotype and
are susceptible to inhibition by small-molecule CCR5 antagonists.

Human clinical studies
Two CCR5 mAbs have been tested in HIV-infected individuals [42;51]. Both mAbs are of the
human IgG4 isotype, and the studies shared several design similarities. In each case, the mAbs
were studied as single, escalating intravenous infusions to HIV-infected subjects with HIV-1
RNA >5,000 copies/mL, CD4 > 250 cells/μL, only CCR5-tropic (R5) virus detectable, and no
concurrent antiretroviral therapy. Co-receptor tropism was assessed using the first-generation
Trofile™ assay (Monogram Biosciences) [43]. In both studies, subjects were followed for 56–
58 days post-treatment to assess tolerability, pharmacokinetics (PK) and antiviral effects.

Unlike the development programs for small-molecule CCR5 antagonists [71–73], the phase 1
programs for the CCR5 mAbs did not examine drug-drug or food interactions. Such studies
were not necessary given that mAbs are injected and are catabolized by proteolysis within cells
of the reticuloendothelial system. This process is distinct from and does not interfere with the
typical metabolic pathways for small-molecule drugs.

HGS004 (CCR5mAb004, Human Genome Sciences, Rockville, MD) [42]—HGS004
is a human mAb that binds ECL2 and inhibits R5 HIV-1 entry and chemokine signaling with
similar efficiencies [31]. In a phase 1 clinical trial, 63 subjects were randomized to receive
placebo or HGS004 at doses of 0.4, 2, 8, 20 and 40 mg/kg. Subjects were mostly male (86%)
with a mean age of 41 years and mean HIV-1 RNA levels of 25,100 copies/mL. All subjects
completed the study. Two 2mg/kg subjects experienced infusion-related uticarial rash that
responded to diphenhydramine, and all subsequent subjects were pre-treated with
diphenhydramine prior to infusion.

Significant reductions in HIV-1 RNA were observed at doses of 8 mg/kg and higher. Plasma
HIV-1 RNA reductions of >1 log10 were observed in 14 of 26 subjects (54%) treated with 8,
20 or 40 mg/kg HGS004. Mean viral load reductions of 1 log10 were observed at day 14 for
the 8 and 20 mg/kg groups. At 40 mg/kg, the mean viral load reduction was approximately 0.8
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log10 at days 14 and 21. Three of ten 40 mg/kg subjects experienced a change in co-receptor
tropism to dual/mixed virus on study. One of these individuals experienced a transient 1
log10 reduction in HIV-1 RNA; the others had no significant antiviral response. Co-receptor
tropism changes also were observed in one subject each in the 0.4 and 20 mg/kg groups but
not in other groups.

PK data were non-linear. Although the maximum serum concentrations were dose proportional,
overall exposure (area under the concentration-time curve, AUC) increased more than
proportionally with dose. The mean terminal serum half-life ranged from 4.7 to 7.9 days across
the different dose levels. The mean CCR5 receptor occupancy was approximately 80% at day
28 for each of the three highest dose groups. Significant increases in CD4 and CD8 cell counts
were observed in all HGS004 groups, and this finding was hypothesized to reflect redistribution
of CCR5-expressing cells from peripheral tissues into the blood.

PRO 140 (Progenics Pharmaceuticals, Inc., Tarrytown, NY) [51]—PRO 140 is a
humanized form of the mouse mAb PA14, which binds an epitope spanning ECL2 and Nt.
PA14 and PRO 140 have been characterized for breadth and potency of antiviral activity in
several preclinical studies [25;47;49;50;56;74].

The first HIV trial of PRO 140 was a randomized, double-blind, placebo-controlled study in
39 individuals with early-stage disease. Cohorts were randomized 3:10 to receive a single
infusion of placebo or PRO 140 at doses of 0.5, 2 or 5 mg/kg. PRO 140 was generally well
tolerated, and no dose-limiting toxicity or pattern of toxicity was observed. There was no
requirement to pre-medicate with antihistamines. There were no remarkable laboratory or
electrocardiogram findings.

Rapid, dose-dependent and highly significant reductions in HIV-1 RNA were observed (Figure
2). Mean maximum (nadir) viral load reductions of 0.39±0.20, 0.58±0.30, 1.20±0.63
(p=0.0002) and 1.83±0.41 log10 (p<0.0001) were observed for the placebo, 0.5 mg/kg, 2 mg/
kg and 5 mg/kg groups, respectively. At day 10, the mean log10 declines in viral load were
0.13±0.24, 0.37±0.54, 1.04±0.45 (p=0.0001) and 1.70±0.49 (p<0.0001) for the placebo and
ascending dose groups. Mean viral load reductions of >1 log10 persisted for 2–3 weeks post-
treatment in the 5 mg/kg group. All 5 mg/kg subjects had an antiviral response of ≥1.0 log10
reduction in HIV-1 RNA (Figure 2). These single-dose antiviral effects are the largest reported
for any HIV-1 drug and compare favorably with those observed following 10 to 14 days of
treatment with small-molecule CCR5 antagonists [75–77].

The area under the PRO 140 concentration-time curve from time zero to infinity (AUC∞) values
increased more than proportionally with dose, averaging 11.1, 74.3 and 278 mg × day/L for
the ascending dose groups. Mean terminal serum half-lives were 3.9 and 3.5 days for the 2 and
5 mg/kg dose groups, respectively. All tests for anti-PRO 140 antibodies were negative with
the exception of a single low-titer result at Day 59 for a 5 mg/kg subject. The antibodies had
no obvious effect on PK metrics or antiviral response. At 5 mg/kg PRO 140, there was a trend
(p=0.055) towards increased CD4+ cells over baseline. There was no depletion of CCR5+ cells
following treatment; however, significant receptor occupancy (p<0.05) was observed for 2–4
weeks in all PRO 140 groups. This study established PRO 140 as a potent antiretroviral agent
with prolonged activity.

Conclusions
CCR5 mAbs broadly and potently inhibit R5 HIV-1 in vitro, and potent antiviral activity has
been demonstrated in HIV-infected individuals. CCR5 mAbs represent a novel approach to
HIV-1 therapy and offer several potential advantages over existing therapies in terms of
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infrequent (e.g., weekly to monthly) dosing, favorable tolerability, and limited drug-drug or
food interactions. CCR5 mAbs are distinct from small-molecule CCR5 antagonists in terms
of their binding sites on CCR5 and mechanisms of HIV-1 inhibition. CCR5 mAbs and small-
molecule antagonists can be considered distinct classes of CCR5 inhibitors based on their
potent antiviral synergy and lack of viral cross-resistance. Clinical proof of concept has been
obtained using intravenously administered CCR5 mAbs. Additional studies of intravenously
and subcutaneously administered CCR5 mAbs have been initiated.
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Figure 1. Schematic diagram of CCR5 illustrating the binding sites for mAbs and small molecules
Amino acids are indicated in the single-letter code. Residues implicated in mAb binding are
color-coded by filled symbols in the extracellular domain or sub-domain. Green = Nt; blue =
ECL1; red = amino-terminal portion of ECL2; yellow = carboxy-terminal portion of ECL2.
The specificities of individual mAbs are listed in Table 1. A putative binding site for maraviroc
and vicriviroc in the transmembrane helices (residues W86, Y108, I198, Y251 and E283) is
illustrated with magenta circles. The assignment of the seven transmembrane helices [15] is
indicated with cylinders.
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Figure 2. Antiviral activity of single-dose PRO 140 in HIV-infected adults
Subjects received single intravenous infusions of placebo (PBO) or PRO 140 at doses of 0.5
mg/kg, 2 mg/kg or 5 mg/kg. Plasma HIV-1 RNA levels were monitored for 58 days. Top
panel: Percentage of subjects in each treatment group who experienced a ≥ 10-fold reduction
in HIV-1 RNA at any timepoint post-treatment. Bottom panel: Mean log10 changes in HIV-1
RNA for each treatment group. Study Day 10 represents nine days post-treatment. An
individual nadir represents the maximum reduction experienced by a subject at any time-point
post-treatment.
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Table 1
Amino acids implicated in mAb binding to CCR5 as determined using CCR5 point mutants
Mutation of the indicated amino acids was reported to reduce mAb binding to CCR5 as determined by flow cytometry.

Antibody Epitope Reference(s)

2D7 Q170, K171, E172, W190 [25;27;33;34]

502 D2, Y3 [27]

519 D2, Y3, Q4 [27]

45501 K171, E172 [27]

45517 K171, E172 [27]

45523 K171, E172, D95 [27]

45529 Y184, S185, Q186, Y187, Q188, F189 [27]

45531 Y184, S185, Q186, Y187, Q188, F189 [27]

45533 K171, E172 [27]

45549 K171, E172 [27]

CTC2 S6, S7, Y10, D11 [27]

CTC5 D2 [27]

CTC8 Y10, D11, I12, N13 [27]

CTC9 D2, Y3 [27]

CTC12 S7, I9, Y10, D11 [27]

MC-6 K171, E172 [33]

MC-7 S7, P8, Y10, D11 [33]

MCR35.4 Y184, S185, Q186, Y187, Q188, F189 [27]

MCR40.3 Y184, S185, Q186, Y187, Q188, F189 [27]

PA8 N13, Y15 [25]

PA9 D2, Y3, Q4, S7, P8, N13, Y176, T177 [25]

PA10 D2, Y3, Q4, P8, N13, Y176, T177 [25]

PA11 Q4 [25]

PA12 Q4 [25]

PA14 D2, R168, Y176 [25]

RoAb12 K171, E172, W190 [34]

RoAb14 K171, E172, W190 [34]

RoAb18 K171, E172, W190 [34]
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