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Abstract
Accountability for public education often requires estimating and ranking the quality of individual
teachers or schools on the basis of student test scores. Although the properties of estimators of teacher-
or-school effects are well established, less is known about the properties of rank estimators. We
investigate performance of rank (percentile) estimators in a basic, two-stage hierarchical model
capturing the essential features of the more complicated models that are commonly used to estimate
effects. We use simulation to study mean squared error (MSE) performance of percentile estimates
and to find the operating characteristics of decision rules based on estimated percentiles. Each
depends on the signal-to-noise ratio (the ratio of the teacher or school variance component to the
variance of the direct, teacher- or school-specific estimator) and only moderately on the number of
teachers or schools. Results show that even when using optimal procedures, MSE is large for the
commonly encountered variance ratios, with an unrealistically large ratio required for ideal
performance. Percentile-specific MSE results reveal interesting interactions between variance ratios
and estimators, especially for extreme percentiles, which are of considerable practical import. These
interactions are apparent in the performance of decision rules for the identification of extreme
percentiles, underscoring the statistical and practical complexity of the multiple-goal inferences faced
in value-added modeling. Our results highlight the need to assess whether even optimal percentile
estimators perform sufficiently well to be used in evaluating teachers or schools.
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Accountability and Value-Added Modeling
School accountability is a national and state policy priority. The Senate, House of
Representatives and over 40 state legislatures have passed bills or enacted laws to hold schools
accountable for student outcomes. Accountability systems often involve ranking school
districts, schools, and teachers. For example, Standard and Poor’s provides (at each state’s
request) percentile rankings of all 501 Pennsylvania and 554 Michigan school districts, and
evaluators in Dallas, Texas use relative performance metrics to assess teacher and school
effectiveness (Webster & Mendro, 1997). Such comparisons may be used to sanction schools
or teachers with low-ranking student outcomes and to provide monetary rewards for those with
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high-ranking student outcomes. In recent years, for example, California gave bonuses of up to
$25,000 for teachers in schools with the highest ranking test-score gains (see
http://www.cde.ca.gov/ope/awards/certstaff/).

Performance measures can be simple aggregates such as mean or median score, percentage of
students exceeding a threshold, or year-to-year gains in scores at particular grades. More
complex measures derive from value-added models that use longitudinal data on students and
student background characteristics to determine school performance (Clotfelter & Ladd,
1996; North Carolina State Board of Education, 2000; Sanders, Saxton, & Horn, 1997;
Webster, Mendro, Orsak, & Weerasinghe, 1998). Value-added models focus on growth in
student achievement and produce estimates of the effects on growth attributable to individual
teachers and schools rather than to other sources. The models are typically intricate, involving
regression to adjust for differences in student and community characteristics (North Carolina
State Board of Education, 2000; Meyer, 1997; Webster et al., 1998) and complex covariance
matrices to account for multiple test scores from the same student and the nesting of students
within classes and schools (Sanders et al., 1997; Webster et al., 1998).

Statistical Issues
Comparing schools and teachers requires simultaneous consideration of estimated values and
their statistical uncertainties. For example, due to differential statistical stability, using
hypothesis tests to identify poor performance can unfairly penalize teachers with relatively
stable estimates, while direct use of estimates can unfairly penalize teachers with relatively
unstable estimates. Gelman and Price (1999) and Shen and Louis (1998) formalize this
competition and show that no single set of estimates or assessments can effectively address all
goals. For example, teacher-specific maximum likelihood estimates (MLEs)1, based on
regression parameters and scores for only those students taught by that teacher, are valid for
estimating teacher-specific performance. However, ranks derived from MLEs generally
perform poorly. Ranks based on posterior means or Best Linear Unbiased Predictors (BLUPs)
from a properly implemented Bayesian approach (Sanders et al., 1997; McClellan & Staiger,
1999; Kane & Staiger, 2001), while generally outperforming MLEs, also are not optimal.
Procedures have been developed to address nonstandard inferences on random effects, using
loss functions to structure histogram and rank estimates (Louis, 1984; Laird & Louis, 1989;
Devine, Louis, & Halloran, 1994; Shen & Louis, 1998). The current study extends these
analyses by using simulations to examine the performance of estimators optimized for
estimating ranks (equivalently, percentiles) under squared error loss.

The remainder of the article is organized as follows. The next section outlines a two-stage
Gaussian hierarchical model that is sufficiently general to capture the essential structure of
more complicated value-added models. The two subsequent sections, Rank and Percentile
Estimation and Performance Evaluation formalize the inferential framework for assessing rank
estimation performance, defining the estimands, estimators and evaluation criteria. The
Simulation Results section presents the results of the simulation study, considering global
estimator performance, percentile-specific performance, and the operating characteristics of
decision rules for identifying extreme percentiles. Finally, The Discussion section discusses
the key results and their implications for inference in value added modeling.

1Throughout the paper we use “MLE” to refer to direct estimates of teacher-specific performance, in contrast to Bayes or empirical-
Bayes estimates that use the ensemble of estimated effects to produce the final estimated teacher effects.
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Model Structure
Value-added models can be quite complicated, entailing a number of nested components such
as students within classrooms, teachers within schools, schools within districts, etc. Therefore,
hierarchical models (Bryk & Raudenbush, 1992) provide a natural and effective statistical
framework in which to structure inferences. These models have been extensively studied and
applied from both classical and Bayesian perspectives. We focus on the Bayesian perspective
because it provides an integrated, coherent structure in which to evaluate ranking procedures.
All inferences derive from the joint posterior distribution of the unknown parameters, with
inferences guided by a loss function. See Carlin and Louis (2000) for details on Bayesian data
analysis.

We obtain results on ranking performance for a standard two-level Gaussian-Gaussian,
hierarchical model, which is sufficiently general to highlight the principal issues. For clarity,
we present the model in terms of measurements at the teacher level, although the structure
applies more broadly to measurements at greater levels of aggregation such as schools or
districts. Let K be the number of teachers, and θ1, …, θK denote the unknown teacher effects.
For each teacher, we obtain a directly estimated effect Yk (e.g., an MLE) with associated
sampling variance . To focus on the fundamental issues, we restrict attention to the equal
variance ( ) case. The model we consider is

(1)

(2)

where τ2 is the “between-teacher” variance quantifying the degree of heterogeneity in the true
teacher effects and σ2 is the variance of the teacher-specific measurements Yk. Note that σ2 is
not the variance of the observables nested within teacher (such as student test scores) which
would commonly be termed the “within-teacher” variance. Rather, it reflects the sampling
variability of the aggregate measurements at the teacher level. For example, in the simplest
case where the variance of an individual student test score is γ2 and Yk is the mean test score
for n students taught by teacher k, σ2 = γ2/n.

We assume that (μ, τ2, σ2) are known, so that the teacher effects have independent normal
posterior distributions with means

(3)

and common variance ρσ2, where ρ =τ2/(τ2 + σ2). Performance of rank estimators does not
depend on μ, so we set μ = 0 without loss of generality. Also, performance depends on τ and
σ only through the ratio τ/σ. This introduces some indeterminacy; for example, τ/σ → 0 either
because the teacher-specific variance is too large to yield information on the θs or because
there is no variance among the θs (e.g., true teacher performance is identical). The true
percentiles are ill-defined in the latter case, so we avoid this triviality by assuming
nondegenerate, “standardized” teacher effects with τ = 1. Thus σ2 should be interpreted as
σ2/τ2, the magnitude of the measurement error relative to the true heterogeneity among the
teachers. Equivalently, performance depends only on the fraction of the total variance of the
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Yk attributable to true differences among teachers, ρ = 1/(1 + σ2), which Bock, Wolfe, and
Fisher (1996) call the “stability coefficient” for an estimated teacher effect. It ranges from 0
to 1, with larger values indicating more reliable inferences. We use ρ to index performance
throughout the remainder of the article. Properties of the rank estimators also depend on the
number of teachers K, but when ranks are converted to percentiles and K ≥ 20, this dependence
is small and does not affect conclusions. Also, in practice it will be necessary to estimate μ and
τ2 as part of the overall analysis, but for large K our assumption that these hyperparameters are
known has negligible influence on the evaluations.

This basic model captures the main features associated with ranking and can be used to evaluate
more complicated models. In fact, the structure is relevant well beyond the context of value-
added models to, for example, hierarchical Rasch models. The model requires values for the
between-teacher variance, the direct teacher-specific estimates (e.g., MLEs) and the variances
for these teacher-specific estimates. These estimates can be produced by a very complicated
model with, for example, regression adjustments and multiple hierarchies, and can relate to
single-year change scores, weighted combinations of such scores over years, or any other
teacher-specific summary. The variances of these estimates can be similarly complicated,
depending on the number of students, the degree of between-student variability, exam variance,
and other factors as captured by a richly structured hierarchical model. However, as long as
MLEs and associated variances are available, the sufficient statistics may be well approximated
by a two-stage Gaussian model (in general with unequal σk). Within this framework the
essential operating characteristics of inferential procedures can be evaluated efficiently and
are representative of the characteristics of more complicated models. Of course, the model
specified in Equations 1 and 2 assumes a common value of σ2 for the teacher-specific variances.
While this assumption does limit the suitability of the model as a proxy for more complicated
value-added models, it does clearly communicate key results. The issues we identify carry over
to the more general case.

Rank and Percentile Estimation
We begin by defining, for fixed values of the true teacher effects θk, the ranks

(4)

Thus the smallest θ has rank 1. “Obvious” estimators for the Rk include the ranks of the observed
data Yk and the ranks of the posterior means. However, deriving an optimal estimator requires
specifying a loss function. For overall performance we use summed squared error loss (SSEL)
(Carlin & Louis, 2000), which for a generic collection of estimated ranks { } is given by

(5)

Under SSEL, in general the optimal ranks for the θk are neither the ranks of the observed data
nor the ranks of the posterior means. Rather, the optimal ranks are the posterior mean ranks
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(6)

Additional discussion and analytical results for these estimators, such as their covariance
matrix, are provided by Laird and Louis (1989) and Shen and Louis (1998).

Unlike traditional ranks, the R̄k are not restricted to take values in {1, …, K}. Rather, because
they are shrunk toward the mid rank (K + 1)/2, they are not necessarily equally spaced and in
general are not integers (Conlon & Louis, 1999). R̄ is not an “equal-shrinkage” estimator
because even for fixed ρ, the amount of shrinkage varies with the true percentile and with the
pattern (spacings) of the Yk. This is in contrast to traditional effects estimators such as the
posterior mean, whose degree of shrinkage does not depend on the true mean. Their shrinkage
can be an attractive feature because ranks confined to the lattice may over-represent distance
and under-represent uncertainty. In cases where the lattice ranks are required, we use

(7)

As shown by Shen and Louis (1998), in the equal variance case ( ),

(8)

and so there is no issue as to what are the optimal (integer) ranks. However, in the unequal
variance case, these three approaches can produce very different ranks, with the obvious
estimators behaving poorly (Shen & Louis, 1998; Goldstein & Spiegelhalter, 1996; Morris &
Christiansen, 1996). Thus, in general, one should use Equation 7 for integer ranks.

As K gets large, SSEL for the ranks gets large because the range of possibilities grows.
Moreover, in practice the teacher percentiles (on the scale of 0 to 100) are more appropriate
quantities to consider. We thus evaluate performance not for the Rk, but rather for the
percentiles

(9)

The similarly transformed values of R̄k(Y), denoted by P̄k (Y), are the optimal estimators for
the Pk with respect to SSEL. Also, we use P̂k(Y)to denote the similarly transformed optimal
integer ranks, which of course are no longer integers, but are constrained to the lattice 100k/
(K + 1) for k = 1, …, K on which the Pk take values. All results discussed in the remainder of
the article are for the percentiles Pk rather than the raw ranks.

Performance Evaluation
Our goal is to evaluate the performance of the percentile estimators P̄k(Y) and P̂k (Y) both
averaged over all teachers and for teachers of a specific percentile. In both cases, we evaluate
estimator performance by examining preposterior properties (i.e., average performance before
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either the θs or the Ys have been generated). The preposterior properties are the “classical”
properties of the ranking estimator under repeated sampling from the model with fixed
parameter ρ. Thus, although we use the Bayesian paradigm to motivate our ranking estimators,
the properties evaluated are familiar to both the Bayesian and classical paradigms.

Aggregate Performance

For a general percentile estimator  of the percentiles Pk, we use
MSE as our evaluation criterion, given by:

(10)

where E averages over both θ and Y. We denote this aggregate MSE by MSEP̄ for the estimators
P̄k and by MSEP̂ for the estimators P̂k, and we denote the root mean squared errors by
RMSEP̄ and RMSEP̂. Because these quantities depend on both K and ρ, we make this
dependence explicit with notation such as MSEP̄(K, ρ) and MSEP̂(K, ρ) when necessary. Note
that because this criterion averages over all teachers, and for the basic model the θk are
conditionally iid, MSEP̂(K, ρ) or MSEP̄(K, ρ) also apply to individual teachers (i.e., to θk for a
fixed index k). However, they do not apply to “the largest θ”, “the smallest θ” or any other
specific rank in the unobserved θk.

Percentile-Specific Performance
To evaluate performance for particular percentiles of the collection of θs, we need the following
notation. Let 0 < p < 100 be the percentile of interest. For fixed K this value corresponds to
one of the lattice percentiles 100k/(K + 1) for k = 1, …, K (i.e., it is one of the Pk). This distinction
is unimportant as K gets large, but restricting p to take values on this grid simplifies
presentation. Care must be taken to distinguish the teacher indices 1, …, K, which do not change
from sample to sample, from the percentile indices which do change. Let Y(p) denote the Y
value generated by θ[p(K + 1)/100], the pth percentile of the θs, and let kp be the coordinate index
for Y(p). That is Y(p) = Yk p. Note that Y (p) is not necessarily equal to Y[p (K + 1)/100], the pth

percentile of the Ys, and equivalently, kp is not necessarily equal to p(K + 1)/100. Indeed, the
true index of Y(p) is unknown because all of the θs are unknown, but it is required to evaluate
percentile-specific performance of ranking procedures.

For a general percentile estimator , we evaluate the MSE for
estimating the percentile p by

(11)

where  is the percentile estimator for the teacher truly at the pth percentile. We consider
RMSEP̄(K, ρ, p) and RMSEP̂(K, ρ, p) in our evaluations.

Simulation Results
We used simulation to perform our evaluations because exact analytical results are not available
outside of a small number of special cases (discussed later in this section), and only limited
analytical approximations are available. In particular, we derived approximations to
MSEP̄(K, ρ) for any values of K and ρ as well as to MSEP̂(K, ρ, p) for large K, the latter leading
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to an asymptotically exact expression for MSEP̂(K, ρ) for large K. The simulation results agreed
well with these analytical approximations; however, a complete and unified evaluation of the
aggregate and percentile-specific performances of the different estimators required simulation.

All simulations were implemented on personal computers running Linux. We programmed
two independent routines with identical function, one written in C and the other in R (Ihaka &
Gentleman, 1996). The former was most efficient and used to produce all results presented
here. The latter was used to verify these results, and in all cases the agreement was perfect.
Both routines are available from the authors upon request.

We performed simulations for values of K equal to 20, 100 and 1,000. The case of K = 1,000
is virtually identical to those for larger K. For each value of K, we performed simulations for
values of ρ from .05 to .95 in increments of .05, as well as .99. Some results for the limiting
cases of ρ= 0 and ρ= 1 are available analytically and are provided as a basis of comparison.
For each value of K and ρ, the simulations repeatedly generated the θk, Yk, the resulting
estimators of the percentiles, and their squared-error performance, both for particular
percentiles and averaged across all percentiles. The K = 20 simulations used 100,000 iterations
for each value of ρ, while 10,000 iterations were used for K = 100 and 5,000 for K = 1,000.
The reduction of the number of iterations for large K reduced the computational burden of
ranking and sorting such a large number of teacher effects for each iteration. Repeated
experiments and an analysis of Monte Carlo standard errors indicated that the numbers of
iterations were sufficient to characterize the results accurately. For example, the Monte Carlo
standard errors of our estimates of MSE are less than 0.1% of the estimate for all values of ρ.

Aggregate Performance
The most basic quantities to consider are the average performances RMSEP̄(K, ρ) and
RMSEP̂(K, ρ) for different values of τ and K, summarized in Figure 1. Results for the limiting
cases were obtained analytically. In the no-information case, since the teacher effects are a
priori iid, the true value of Pk for a given teacher is distributed over repeated samples of the
θs as a discrete uniform-random variable on 100k/(K + 1) for k =1, …, K. The mean of this
distribution is 50 and the variance is (100)2 (K − 1)/[12(K + 1)]. Pk completely shrinks to the
mean in the no-information case, so that RMSEP̄(K, 0) is simply the standard deviation. For
large K, this value is approximately 29 as shown in the figure. On the other hand, P̂k assigns
percentiles uniformly across the range in the no-information case, so that the RMSEP̂(K, 0) is

 times the standard deviation, approximately 41 for large K. In the “complete- information”
case where ρ =1, the data are perfectly informative about the θs and thereby about the true
ranks, so the errors are zero. Values of RMSEP̄(K, ρ) and RMSEP̂(K, ρ) for all intermediate
values of ρ were determined by simulation.

Note that RMSEP̂(K, ρ) ≥ RMSEP̄(K, ρ) for every value of K and ρ, which follows from the
optimality of R̄. The better performance of the optimal estimator is most pronounced for small
values of the stability coefficient, with diminishing advantages as the stability coefficient
increases. In all cases, the dependence on K is slight. The primary implication of Figure 1 is
that even when using the optimal estimator under squared error loss, estimation of the
percentiles is very difficult. Although the percentiles do not follow a Gaussian distribution,
approximate 95%-confidence intervals for a randomly selected Pk would be 2 × 2 ×
RMSEP̄(K, ρ) percentage points wide. Such intervals become shorter than the entire 0 to 100
range of percentiles only when ρ > 0.3, and more disturbingly, remain wide even when ρ
becomes quite large (implying either extreme heterogeneity in the teachers or very informative
data). For example, 95%-confidence intervals for the Pk do not become less than 25 percentage
points wide until the stability coefficient exceeds .95. Thus, it is truly difficult to estimate
percentiles, and one needs a rather gigantic teacher effect or rather miniscule variance in
teacher-specific estimates to produce acceptable performance.
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It is also interesting to consider the difficulty of estimating percentiles relative to the more
traditional estimation of the θk effects themselves. Under squared error loss, the optimal effects
estimators are the posterior means given in Equation 3, and the MSE for these estimators is
the posterior variance ρσ2. Note that as σ2 → 0, the data become perfectly informative about
the θk, no matter what the value of τ. However, performance in estimating percentiles depends
only on the variance ratio (τ2/σ2), and setting τ2 = 1 produces results that generalize to all τ2

where the ratio remains constant. If a reduction in σ2 is coupled with a corresponding reduction
in τ2, the performance for percentile estimation does not improve.

Moreover, the stability coefficient (times 100) represents the percentage reduction in the MSE
for the estimating the θk produced by observing the Yk, as (τ2 − ρσ2)/τ2 = ρ. The values presented
in Figure 1 can be used to calculate the corresponding percentage reduction in MSE for
estimating the Pk produced by observing the Yk, given by [MSEP̄(K, 0) − MSEP̄(K, ρ)]/
MSEP̄(K, 0). It can be shown that the percentage reduction in MSE for the percentiles is
bounded above by that for estimating the effects. The Yk thus provide less information about
the percentiles than they do about the effects themselves. However, the difference in reduction
to MSE is quite small, always less than two percentage points.

Percentile-Specific Performance
The aggregate properties of the percentile estimators, although informative about general
performance, do not tell the more interesting story about their performance for specific θ
percentiles. Indeed, for both estimators performance is highly dependent on the target
percentile and on ρ. These comparisons are made in Figure 2, which provides percentile-
specific RMSE performance (symmetric about the 50th percentile) for three different levels of
the stability coefficient (.05, .50 and .95). For both estimators, overall performance tends to
improve as the stability coefficient increases, with the estimators exhibiting nearly identical,
effective behavior in the high-stability case. In less informative cases, although the optimal
estimator has better average performance, it is dominated by P̂ for extreme percentiles. That
is, although optimality implies that RMSEP̂(K, ρ) ≥ RMSEP̄(K, ρ), RMSEP̂(K, ρ, p) can be
substantially less than RMSEP̄(K, ρ, p) depending on the values of p and ρ. The shrinkage of
P̄ toward 50%, which is most pronounced when ρ is small, introduces large bias for extreme
percentiles and is responsible for the poor performance of the estimator in these cases. On the
other hand, P̂ “unshrinks” the optimal estimates back onto the percentile lattice by construction,
which results in reduced error for extreme percentiles at the price of increased error for
intermediate percentiles.

Figure 3 further illustrates the bias and variance trade-off between the two estimators. When
the stability coefficient is small, the R̄ are tightly distributed around 50% for all true percentiles.
Thus, by restrictive shrinkage, P̄ has little variance but bias grows as a function of the distance
between p and 50. As the stability coefficient grows, the shrinkage is reduced and the variability
of the estimator increases. Without shrinkage, the P̂ are much more variable, with nontrivial
probability of taking values across the entire range when the stability coefficient is small.
However, there is less bias in that the P̂ densities more quickly center around the true percentiles
as the stability coefficient increases.

Decision Rules Based on Percentile Range Membership
As discussed previously, a common goal of accountability programs is to identify the lowest
and highest performing teachers or schools (e.g., the lowest and highest deciles) for remediation
or reward. This task generally becomes easier as the stability coefficient increases, but at a rate
that is discouragingly slow and also sensitive to which of P̄ or P̂ is used. Figure 4 shows the
operating characteristics of two alternative decision rules for classifying teachers in the upper
decile: (a) classify teachers as extreme if P ̄ exceeds 90 or (b) classify teachers as extreme if
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P ̂ exceeds 90. For each true percentile of the θs and for the stability coefficients of .05, .50
and .95, the figure displays the preposterior probability that each decision rule classifies
individuals in the upper decile. Such a decision is incorrect for true percentiles in the range (0,
90) and is correct otherwise. Note that because of the symmetry, analogous results apply to the
identification of teachers in the lower decile.

Through conservative shrinkage, P̄ identifies teachers as extreme only when there is very strong
evidence. This behavior maintains a low probability of incorrectly classifying teachers truly
below the upper decile, but at the price of having a low probability of correctly identifying
teachers truly in the upper decile. On the other hand, P̂ identifies extreme individuals regardless
of the amount of information available in the data. This produces a greater probability of
correctly classifying teachers in the upper decile, but also introduces a greater probability of
misclassifying teachers in the remainder of the distribution. This can be extremely unreliable
when the stability is small, as even the lowest performing teacher conceivably could be
identified as being among the best. As the stability coefficient approaches zero, the probabilities
for P̄ converge to zero for all percentiles, while those for P̂ converge to the a priori value of
0.1. The two decision rules converge to a common behavior as the stability coefficient increases
to 1; however, they remain distinct for stability coefficients even as high as 0.95. Neither
estimator achieves an acceptably low probability of misclassification until the stability
coefficient is quite high.

Discussion
Our analysis provides important results on the feasibility of using value-added models as a
mechanism for ranking teachers or schools. We conclude that, in general, estimating percentiles
or ranks is quite difficult and substantial information is necessary for acceptable, aggregate
performance. This information must manifest as either extreme heterogeneity among the
teachers or very small sampling variance, producing high-stability coefficients. How large the
stability coefficient must be to achieve the desired level of performance is of course subjective,
but it is clear that estimators and decision rules are not truly reliable until the stability coefficient
is near 1.

This goal is unlikely to be met, calling into question the advisability of using estimated ranks
as a basis for policy decisions. For example, Bock et al. (1996) use data from 11 counties in
Tennessee to estimate the teacher percentage of total variance in gain scores for fourth grade
students. They assume teacher-specific effects estimated from 75 students — 25 students per
class from three cohorts. The stability coefficient ranged between 0.47 and 0.51 for social
studies and reading to slightly over 0.70 for language, math, and science. Even with these
stability coefficients, the standard error of the optimal percentile estimator is approximately
16 percentage points for language, math, and science and approximately 21 percentage points
for reading and social studies. Confidence intervals will cover nearly the entire percentile range.

Ranking schools may be equally difficult. Because schools have more students than
classrooms, one might expect the school percentage of total variance to be larger than that of
the teacher. However, using the Tennessee data, Bock et al. (1996) found that for two teachers
with 25 students in each classroom and three cohorts used to estimate the school effects for a
single grade, the school percentages of total variance were 47%, 67%, 65%, 69% and 62% for
reading, language, math, science and social studies respectively. If we considered all five
grades per school the percentages would be even lower. These low values are the result of small
overall school effects relative to the variability produced by teachers. Estimated school-level
ranks or percentiles will be highly unstable for school systems with similar variance
components to those in Tennessee.
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Estimating extremes presents additional statistical and practical complexities. The two, optimal
percentile estimators trade off bias and variance in different ways, impacting both percentile-
specific MSE performance and decision-rule operating characteristics. P̄ restricts the number
of teachers found to be above or below an extreme, at the price of missing some who truly are
extreme. P̂ behaves in the opposite manner, always finding teachers in the extremes, even if
they are not. If policy makers intend to use estimated percentiles or ranks for accountability,
it is advisable that the choice of estimator and related decision rules be guided by consideration
of the losses incurred by these different kinds of errors. For example, if teachers identified as
extreme are likely to face punitive sanctions or receive large monetary rewards (like the
$25,000 bonus of California), then policy makers might find mis-classifying nonextreme
teachers as relatively more costly and prefer to use decisions based on P̄. If teachers classified
as low-performing will receive additional training, then policy makers might see missed
training as costly and prefer using decision rules based on P̂.

Unfortunately, the results for the basic, two-stage model are in many ways “best-case.”
Performance is evaluated under the assumption that the model is correct and that direct-estimate
variability is constant over teachers or schools. In practice, these variances can be far from
equal, inducing complicated performance. Of possibly greater importance, value-added models
are subject to numerous potentially severe sources of bias, stemming from the nonrandom
allocation of students to teachers and teachers to schools, systematic errors stemming from
equating school or teacher “value-added” to the changes in test scores, and model
misspecification. These influences further challenge the validity of rankings based on value-
added models at the teacher and school levels.

Finally, our analyses based on the basic, two-stage model with a common sampling variance
identify important properties, but more general scenarios warrant consideration. The most
important generalization will be to study the unequal σk case. Performance will be very
complicated, depending on the relation between true percentile and MLE variance. Another
important generalization generates estimates using weighted square error loss, with deviations
for extreme percentiles given greater weight (Stern & Cressie, 1999).
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FIGURE 1.
RMSEP̄(K, ρ) (black) and RMSEP̂(K, ρ) (gray) as a function of the stability coefficient for
different values of K.
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FIGURE 2.
Comparison of RMSEP̄(1000, ρ, p) (black) and RMSEP̂(1000, ρ, p) (gray) for specific
percentiles and different values of the stability coefficient.
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FIGURE 3.
Approximate large K sampling distributions of P̄ (left column) and P̂ (right column) for
individuals truly at the 5th (solid), 25th (dashed) and 50th (dotted) percentiles. Rows
correspond to stability coefficients of 0.05, 0.50 and 0.95.
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FIGURE 4.
Preposterior probabilities of P̄ (“o”) and P̂ (“x”) classifying individuals in the upper decile as
a function of the true percentile.
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