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Abstract
When a multi-compartment neuron is divided into subtrees such that no subtree has more than two
connection points to other subtrees, the subtrees can be on different processors and the entire system
remains amenable to direct Gaussian elimination with only a modest increase in complexity.
Accuracy is the same as with standard Gaussian elimination on a single processor.

It is often feasible to divide a 3-d reconstructed neuron model onto a dozen or so processors and
experience almost linear speedup. We have also used the method for purposes of load balance in
network simulations when some cells are so large that their individual computation time is much
longer than the average processor computation time or when there are many more processors than
cells. The method is available in the standard distribution of the NEURON simulation program.
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Introduction
Hines et al. (2008), from now on referred to as the previous paper, demonstrated the practical
usefulness of splitting cells into two subtrees in compute-bound parallel network simulations
when load balance is otherwise impossible. With a communication cost of a pair of MPI Send/
Recv operations and with a message size of only two double precision values, per split-cell,
per time-step, the neuron compartment equations could be solved with no change in accuracy
or stability, and with essentially no increase in number of arithmetic operations during Gaussian
elimination. The split-cell method is limited to at most a doubling of the number of processors
on which a given simulation can be usefully performed but it is intriguing that computation
time (as opposed to communication time) continued to dominate the runtime for our published
test models even with the largest processor numbers for which load balance was attainable.
Therefore the ability to split cells into more than two pieces is strongly desirable. The hope is
that Gaussian elimination of the distributed compartment equations, which is necessary for
numerical stability, will continue to be a small part of the runtime.

Rempe and Chopp (2006) present a predictor-corrector method which is very efficient but at
the cost of an inexact solution at the branch points. Mascagni (1991) solves the linearized
equations exactly by domain decomposition in which tridiagonal systems are solved for
compartments between branch points and a dense linear system is solved for the branch points.
Mascagni recommends the method for the simulation domain where there are few branch
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compartments relative to compartments between branches. Heglund (1991) presents a parallel
algorithm for solving an unbranched cable and provides a comprehensive discussion of its
complexity and numerical stability.

The parallel Gaussian elimination algorithm we have settled on is a fairly straightforward
extension of the single split-cell algorithm presented in the previous paper. It differs from
Heglund in its suitability to handling tree structures. It differs from Mascagni by including a
constraint on splitting which reduces the size and complexity of the branch point matrix.

Our Gaussian elimination strategy divides the tree topology matrix into subtrees with the
constraint that no subtree has more than two distinct connection points. In the numerical
methods section we show that this constraint allows an attractive compromise between the
flexibility of arbitrary division and the efficiency of the single split method. Since the
computation and communication cost is proportional to the degree of splitting, the method is
most effective when the cell is split into the minimum number of pieces required for load
balance.

Into how many pieces can a cell be usefully split? The increased communication cost imposed
by the multisplit method is paid every time step. This is in very negative contrast to spike
exchange communication, which needs to take place only at minimum spike delay intervals
consisting of many time steps (e.g. Morrison et al., 2005). Furthermore, during a single cell
simulation, all processors but one are necessarily idle while they wait for that processor to
finish solving the reduced tree matrix. Clearly the method has to prove itself on a set of
uncontrived models. This paper exhibits a practical heuristic for multiple piece cell division
and load balancing for single cell simulation on multicore (shared memory) workstations and
for network simulation on supercomputers when the number of cells is much less than the
number of processors.

Methods
All simulations were carried out with the NEURON v6.1 simulation program (Hines and
Carnevale, 2007). The “multisplit” functionality is available when NEURON is configured
with the --with-paranrn option which requires pre-installation of an implementation of the
the Message Passing Interface (MPI). On multicore machines we used MPICH2
(http://www-unix.mcs.anl.gov/mpi/mpich) configured with the --with-
device=ch3:nemesis option which drastically reduces MPI communication time under
shared memory compared with the default socket device.

Performance tests for single cell simulations were carried out on an Intel x86_64 dual-processor
dual-core 3.2 GHz Dell Precision 490 and a SGI Prism Extreme with 32 1.5GHz Itanium2
processors and 300GB of shared memory. Network simulations were run on the 8192 processor
(700MHz PowerPC 440) EPFL IBM Blue Gene/L.

Parallel single cell simulations to test the multisplit algorithm can be carried out on any single
cell ModelDB model without modification and the examples we chose were the CA3 pyramidal
neuron model of Lazarewicz et al (2002), the highly inhomogeneous CA1 pyramidal neuron
model of Poirazi et al (2003), and a large Purkinje cell model by Miyasho et al (2001). The
first network model used to test the multisplit algorithm in conjunction with load balancing is
that of Traub et al (2005) using code modified from the ModelDB section of the Senselab
database (http://senselab.med.yale.edu) and is the same as described in the previous paper (gap
junctions turned off). To compare the relative overhead of spike exchange, distributed
multisplit neurons, and gap junction communication we also ran simulations with gap junctions
turned on. The second network model is a version of the neocortical column simulations
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performed within the Blue Brain Project. Unlike the first network model, here, the multisplit
algorithms help balance the processor load in the scenario where the number of cells essentially
equals the number of processors but the cell complexities are varying substantially.

In all cases, the parallel models produce quantitatively identical spike patterns or voltage
trajectories compared to their serial versions. Model code for parallelization of the single cell
models and links to the network models are available from ModelDB with accession number
97985.

Numerical methods
Spatially discretized neuron equations have a tree topology in which the current balance
equation of the ith compartment has the form

(1)

where the Vi, Vp, and Vc are the voltages at the end of a time step of this, the unique parent,
and all the child compartments respectively. The a coefficients are constants depending only
on the shape of the compartments and axial resistance. The d and b are evaluated using only
parameters and variables known at the beginning of the time step in the ith compartment. (A
gap junction connecting compartments i and j solved by the modified Euler method, adds a
term to bi that requires the value of Vj at the beginning of the time step and does not affect the
topology of the equations.) On a serial machine, the number of operations required to solve
the tree topology matrix equations is exactly the same as for a tridiagonal matrix representing
an unbranched cable with the same number of compartments (Hines and Carnevale, 1997).
The previous paper showed that this holds also when a cell is split into two pieces and solved
on different processors.

To illustrate the Gaussian elimination operations we use a kinetic scheme diagram style in
which an arrow (single or double sided) expresses the interaction directions, between the states,
denoted as circles. Thus a two compartment model with the equations

is represented as

and, after a triangularization step that eliminates the effect of the Vj on equation i, we draw,

to express
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where  and . Notice that equation i no longer depends on other
compartments and back-substitution eliminates the effect of the Vi in equation j to result in the
solved system

We need one other interaction notation due to a peculiarity of the NEURON program. That is,
isolated subtrees are connected by a virtual wire instead of resistors so that we draw

with no arrowheads to signify

Normally, when two NEURON sections

are connected together

the redundant nodes are combined

However, when the sections being connected are not on the same machine, both the connecting
nodes are retained and eliminating the interaction term introduced by the wire is accomplished
by adding the equations together (Hines et al, 2008).

Instead of attempting a mathematical description of the parallel Gaussian elimination method,
it will be more understandable to use an example which shows how the major issues are
resolved.

A prerequisite to the presented method is the division of the neuron morphology into subtrees
so that no subtree has more than two connection points to other subtrees. This constraint follows
only from practical considerations: Allowing only one connection point makes it impossible
to divide a tree into many subtrees. It will become clear that allowing more than two connection
points significantly increases the Gaussian elimination complexity.

Figure 1 illustrates the compartment representation of a specific branched neuron along with
its exemplary division into 8 subtrees (other divisions that satisfy the at-most-two-connection-
points-to-other-subtrees rule are possible) connected by wires and which may be distributed
in any manner on from 1 to 8 processes. As implied in the transition between Figure 1B and
Figure 1C, when a subtree is disconnected from its parent tree, each subtree retains at least the
portion of the shared node that includes the interaction term or terms from the adjacent nodes
in the subtree. Terms in the split node involving channels and synapses may be distributed
according to convenience. In practice they follow the section to which they belong.
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Gaussian elimination is carried out in several phases. The result of phase 1 is illustrated in
Figure 2B and consists of triangularizing each subtree as much as possible using the optimum
leaf to root ordering. For subtrees with only one connection point, this triangularization is
complete. But for subtrees with two connection points, optimum triangularization stalls when
it reaches any point on the path between the two connection points. The resulting submatrix
along the path has, in fact, exactly the tridiagonal form of an unbranched cable and we call it
the backbone path. The problem, of course, is that one cannot complete the triangularization
from either end of the backbone path unless one first eliminates terms from the connecting
subtrees. This can be trivially done if all the subtrees connected to one end of the backbone
path themselves have only one connection point (since their triangularization is complete) but
not if one of the connecting subtrees has two.

The second phase is to transform the tridiagonal submatrix of each backbone path into a
submatrix in which the backbone compartments are affected only by the two end compartments.
The result is illustrated in Figure 2C and has an “N” topology in which interior compartments
depend only on the ends but the two ends must be solved simultaneously.

During the third phase, each subtree sends the equations that still contain interaction terms,
i.e., d′ and b′ of the triangularized root of each subtree that has only one connection point, and
the 2×2 matrix elements and right hand sides of the backbone end points. Equations of
compartments connected by wires, are added together and the result, illustrated in Figure 2D,
is called the reduced tree matrix. The reduced tree matrix is solvable by classical optimal
Gaussian elimination. The voltages are then sent back to the relevant subtrees, resulting in
Figure 2E which is fully triangularized.

The final two phases are: back-substitute the two end compartments of the backbone path,
Figure 2F, and complete any remaining tree back-substitutions.

The reasons for restricting the number of connection points on a subtree to two or less are now
apparent. First, transforming the simple tridiagonal like tree into a topology with more than
two endpoints greatly increases the number of operations needed. Two endpoints are bad
enough — the transformation into an N topology of an n compartment backbone takes 2(n –
2) divisions and 6(n – 2) multiplications without moving triangularization forward at all. This,
along with backbone back substitution, is the principle computational cost of the method,
asymptotically increasing by 3/2 the number of divisions and by 8/3 the number of
multiplications normally required by the backbone elements. Second, for m connection points
on a subtree, a dense matrix equation of rank m must be transferred for addition to the reduced
matrix. Third, the reduced matrix would not have a tree topology.

NEURON support for multisplit computation
To support parallel simulation of individual neurons with the multisplit method described
above, NEURON's ParallelContext class was extended with the method section
ParallelContext.multisplit(x, sid) which specifies that the compartment of the
section containing position x (0 <= x <= 1) is connected by a “virtual” wire to all the other
locations having the same positive integer split identifier, sid. The sid for a split point must be
globally unique across all processes but is completely independent of other integer identifiers
such as the spike source identifier or cell identifier used for spike exchange. Error messages
are generated if the number of split points on a tree is greater than two or if the multisplit
connection topology contains a loop, i.e., the reduced matrix is not a tree. Trees do not have
to be in different processes in order to be connected by multisplit and that makes both load
balancing and debugging easier. After every virtual connection is specified, the no-argument
version of ParallelContext.multisplit() must be called by all processes to set up
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internal data structures and the MPI Send/Recv communication pattern. The no-argument call
must be made even by processes with no multisplit cells in order to allow completion of several
MPI collective calls needed to analyze the connection pattern.

To use multisplit, it is not necessary to change the code that defines cell types. It is usually
easiest to create the entire cell in any process which needs any piece of the cell, disconnect the
pieces, and throw away all except those pieces to be simulated in that process. For single cells,
this roughly doubles the cell creation portion of the setup time and makes it independent of
number of processes. But that increase is generally small compared to runtime savings. For
networks, setup time usually continues to be inversely proportional to number of processors
and is, in any case, normally dominated by the time taken to setup network connections.

A number of administrative issues become more complicated in a multisplit simulation,
especially for networks, and some more or less general idioms have been developed to manage
the extra complexity. First, divided cells make the notion of global cell identifier (Morrison et
al., 2005) somewhat ambiguous. To make spike coupled network connections between
undivided cells, the global cell identifier (gid, see Migliore et al, 2006, for an extended
discussion of its role in a NEURON context) identifies both a whole cell and its normally
unique spike detection location. In its role as spike detection location, the gid is used as the
source of a NetCon and is internally critical in making sure a spike is delivered to the proper
synapses. In its role as cell identifier, it is contingently employed by the user code to determine
if the cell exists in a process and, if so, to retrieve a reference to the cell object. For a multisplit
cell, we use the old whole cell gid (call it the base_gid) for the spike detector and the pruned
cell object where that spike detector exists. For the other pruned cell objects containing different
subtrees, an idiom that has worked well in practice is to invent a thisprocess_gid =
base_gid + index*maxgid where maxgid is greater than the largest base_gid and the
index is the smallest piece index left in the pruned cell object. The virtue of this mapping is
that it is easy to create functions that return the base gid from the associated gid on this process
and vice versa. So, as spike detector, the base gid must be used in the call on the processor
where the spike source location exists pc.cell(base_gid, spike_source) as well as the
calls on the processors where the synapse targets exist netcon = pc.gid_connect
(base_gid, target) where pc is a reference to a ParallelContext instance. On the other
hand, retrieval of a target reference, or creation of the target synapse from base_gid and
section name information, requires getting a reference to the pruned cell using the
thisprocess_gid and, if it exists, checking whether the section exists in the pruned cell
using one of the variants of if (section_exists(“section_name”, cell_object))
{ … }

Other issues tend to have uniform solutions that have been encapsulated in standard library
procedure calls. These include the determination of complexity, determination of split points
and subtrees of a whole cell so that no subtree is larger than a maximum size, determination
of a load balanced distribution of pieces on available processors, and pruning away subtrees
not belonging to a given cell on a given process and performing the inter- and intra-processor
reconnections with pc.multisplit. Note that an intra-processor reconnection could be
accomplished in principle with the standard NEURON connect statement but at the cost of
even further administrative complication.

Results
Load balance

As justified in the previous paper, load balance is the first priority for efficient compute-bound
parallel simulation. We also showed that a simple proxy that assigns a complexity value to
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each compartment allows reasonably accurate prediction of processor computation time and
thus makes static load balancing feasible. In that paper the severe restrictions on splitting
required a special load balance algorithm. With the multisplit method, however, a cell may be
split into pieces in a very large number of ways. Though the precise count is complicated by
the constraint that a subtree can have no more than two connection points, the fact that a branch
point with 2, 3, or 4 connected NEURON sections can be split (or left alone) in 2, 4, and 15
ways respectively, gives an indication of the degree of flexibility. Although the selection of
cell split points during the process of load balancing is conceptually attractive, we chose the
much simpler direct method of first dividing a cell into pieces so that every piece has less than
some maximum complexity value, and then distributing the pieces according to the Least
Processing Time (LPT) algorithm (Korf, 1998). LPT serially places the largest remaining piece
on the processor with the least complexity. LPT is generally able to balance in the neighborhood
of 1% if the maximum piece complexity is about a third of the average complexity per
processor. The primary explanation for that success is that our maximum piece complexity cell
division algorithm usually ends up with a good number of small pieces. Roughly, the cell
division algorithm starts at the soma and examines the complexity of each subtree, keeping
subtrees connected to the soma as long as the complexity is less than the maximum and
disconnecting them if the complexity is greater. Disconnected subtrees are reconnected to each
other if their sum is less than the maximum. For subtrees with greater than maximum
complexity, we move one section away from the root and repeat the process.

Figure 3 shows the cell division and LPT algorithm result for the CA3 pyramidal cell of the
Lazarewicz model. The complexity of this 632 compartment neuron on an x86_64 processor
is 76789. That is, the compartments contain many channels and the predicted computation time
is that factor longer than that of a single empty compartment. The splitting algorithm was
limited to no piece larger than 0.1 of the total and ended up dividing the cell into 15 subtrees
connected at 7 distinct locations. The largest subtree complexity is 7533 with the smallest
subtree having a complexity of 122 and consisting of one short section. Seven subtrees are
connected at the soma. The LPT algorithm that distributes the 15 pieces on 4 processors results
in a maximum complexity on processor 3 of 19440 for a predicted load imbalance of 1%.

Figure 4 shows the distribution of cell complexity for a neocortical column model of the Blue
Brain Project. From the histogram listing the number of cells per estimated complexity, it can
be seen that there is a tail of cells that is much larger than the 9236 average cell complexity.
In the case of whole cell distribution the most complex cell of complexity 42385 will be the
rate limiting step for any processor count larger than 2180, i.e., when the average load per
processor is getting smaller than the load for the largest cell. With the multisplit algorithm we
chose to divide cells so that no piece is larger than 0.8 times the average processor complexity,
i.e., for 8192 processors there are 16694 pieces and no piece is larger than 9034. The distribution
of resulting piece complexities is shown on the right hand side of Figure 4. The LPT algorithm
that distributes those pieces on 8192 processors achieves a predicted load imbalance of 5%.

Single cell simulations
Figure 5 shows that the multisplit method scales well on the test models on shared memory
machines up to 8 processors and gives worthwhile reduction in runtime on 16 processors.

Average computation time (open circles) generally follows ideal scaling behavior though there
is apparently a significant high speed cache effect for the Purkinje model on the 4 processor
Dell machine. At first sight that is puzzling since the total complexity (the proxy used for load
balancing) of the CA1, CA3, and Purkinje models are 33786, 93410, and 25674 respectively.
(The similarity in runtimes for the CA3 and Purkinje models is an artifact of the different
tstop and dt for the models such that the number of steps in a run for the three models is
7500, 5600, and 20000.) The (section, compartment, mechanisms used) counts of the three
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models are (183, 331, 23), (211, 632, 19), (1088, 1088, 19) and the average complexity per
compartment is 100, 150, 25. It seems reasonable to suppose that the complexity is not
necessarily related to the number of unique memory accesses per time step. Modest evidence
for this is that each of the dual-core processors on the x86_64 Dell machine has 2MB of cache
and the change in memory size when each model is created is 3.8, 4.4, and 5.3 MB.

Associated with each open circle (computation time) is a vertical line whose extent shows the
minimum and maximum computation times for the processors involved in the simulation. Most
of these are too short to be easily visible, demonstrating the excellent load balance, often less
than 1%, from the combination of many small pieces and the LPT algorithm. The worst
predicted imbalance is 6% for the CA3 simulation on 2 processors and that had a computation
time imbalance also of 6%.

For all 30-processor runs, the difference between computation time and runtime is dominated
by MPI Send/Recv time with reduced tree computation time being always about 10% of the
difference. The reduced-tree receive-buffer size can be calculated from the number of pieces,
p, and number of split points, s. There are s − 1 backbones, each sending 6 doubles, and p −
(s − 1) leaf subtrees, each sending 2 doubles. (We ignore that the machine solving the reduced
tree matrix does not have to send its own subtree information but merely copies the elements
into the reduced tree.) Then the receive buffer size for the reduced tree is 2p + 4s − 4 double
precision values.

A small improvement in 30-processor runtimes, though not enough to justify that number of
processors, can be achieved by reducing the degree of splitting. Figure 5 simulations were
carried out with a maximum piece size of 0.3 of the average processor complexity. The idea
was to have about 3 pieces per processor and in practice what happens is, in addition, there are
quite a few much smaller pieces as well. That makes it easier for the LPT algorithm to
successfully balance. It is clear that a smaller number of pieces will improve MPI Send/Recv
time at the cost of worsened load balance. We re-ran the 30-processor simulations with a range
(0.3 to 1.0 in increments of 0.1) of maximum piece size criteria and plotted the best runtime
as a dash-mark on Figure 5. Table 1 shows the best runtime with associated statistics along
with the original results for the 0.3 maximum piece size factor.

Network simulations
Figure 6 shows runtime performance scaling for the 356 cell Traub model with and without
gap junctions on the EPFL IBM Blue Gene computer. Except at 2048 processors the multisplit
simulations used a 0.5 maximum piece size factor. At 2048 processors, although load imbalance
was very good at 6% the runtime was 23.4 seconds, significantly more than the 18.7 second
runtime shown on the graph that resulted from a maximum piece size factor of 0.8 with a load
imbalance of 18%. The number of pieces with those two factors were 6811 and 4058 pieces
respectively and the extra communication time was larger than the load balance savings
(maximum computation time, 14.4 and 15.6 s respectively).

The scaling results for the 10,000 neuron neocortical column simulation of the Blue Brain
Project are shown in Figure 7. Over 1000 ms, these simulations exhibit an average per cell
firing rate of 6 Hz and, with 13 million connections between cells, generate 77 million synaptic
events. For the 1024 and 2048 case the runtime for whole cell balancing and multisplit are
essentially identical, i.e. the complexity of the most complex cells is smaller or equal to the
average complexity of a processor. In the 4096 processor case, the scaling for the whole cell
case breaks down (filled squares) as the most complex cell now becomes the rate limiting step.
The multisplit algorithm with LPT balancing on the other hand shows ideal scaling and with
respect to average computation time we see a significant cache effect. Though the predicted
load imbalance is 5% for the 8192 processor case the measured maximum and average
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computation time exhibits a load imbalance of 18%. While these results are already very
satisfying, further speedup may be achievable if the reasons for the deviation of the measured
computation time balance and the expected balance from the complexity proxy can be
identified.

Discussion
For the single cell models tested, the number of useful processors is related to the complexity
per compartment. The CA3 model had an average complexity per compartment of 150 meaning
that the computation time to setup its matrix equation was approximately 150 times longer than
that equation's contribution to Gaussian elimination. With this degree of compartment
complexity, runtime scaling is very good up to 16 processors because each processor is
computation bound by its set of pieces even though the 110 piece reduced tree matrix has a
rank of 58. On the other hand, the Purkinje cell model had an average compartment complexity
of 25 and ideal scaling was limited to 8 processors with a 46 piece, 27 rank reduced tree matrix
and 1242 average processor complexity.

Migliore et al (2006) justified the use of a naive spike exchange method based on an
MPI_Allgather every interprocessor-network-connection-minimum-delay-interval. For the
network models presented here, spike exchange overhead is minimized through the use of
several compression techniques introduced by Morrison et al. (2005). That is, the 4-byte global
identifier is compressed to a single byte (allowed when there are at most 255 cells on any
processor) and the 8-byte double precision spike event time is compressed to a single byte
(allowed when there are fewer than 256 fixed size time steps within an integration interval).
Furthermore, the spike buffer size was set large enough so that there was no occasion for a
spike buffer overflow that would require a second MPI_Allgatherv. With these optimizations,
which do not affect accuracy with the fixed step integration method, spike exchange is a small
portion of the runtime; approximately 0.4 s for the 356 cell Traub model on 2048 processors
and 5 s for the 10k cell BlueBrain model on 8192 processors.

Our first implementation of the multisplit method focused on minimizing transfers by allowing
only backbones long enough to safely ignore coupling coefficients between the backbone
endpoints. Unfortunately, we observed many 3-d reconstruction examples for which splitting
into more than a few subtrees required very short backbones whose ends were tightly coupled.
Allowing alternating short and long backbones preserved the analogy to the single split transfer
pattern but turned out not to be satisfactory because of numerical instability problems when
using the second order correct Crank-Nicholson method; despite the transformation of short
backbones into an N topology matrix. Also, splitting into n subtrees at the soma required n(n
−1) transfers due to exchange between every pair of subtrees. The reduced tree reduces this to
2n transfers. The reduced tree method also provides a good practical compromise between
splitting flexibility and fast Gaussian elimination. And that method's double precision
quantitative identity to single process optimal tree Gaussian elimination has proved to be an
extremely useful debugging aid.

Direct static load balancing analogous to the previous paper, which starts by filling processors
with the largest possible pieces and splitting as needed to top off, has not been attempted and
should do even better than the sequence of “maximum piece size splitting” followed by LPT.
However, any replacement algorithm should avoid a wide range for the piece count on the
processors since under those conditions we observed large discrepancies between predicted
and actual processing times. LPT tends to keep the number of pieces on each processor
reasonably similar. Although the general balance problem is np-complete, the non-optimal
balance found by LPT is usually good enough, especially when there are many small pieces
whose complexity is a small fraction of the average complexity per processor (cf. Hayes,
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2002). In the future, however, there are two reasons to consider combining splitting and
balancing in one algorithm for Blue Gene load balance. First, each Blue Gene node (dual
processor) is directly connected, in a 3-D torus topology, to 6 others. If the pieces of a cell are
forced to be on these 7 nodes (14 processors) with the reduced tree in the center, one would
expect MPI Send/Recv overhead to be dramatically reduced. Second, the above notion implies
local balance and that allows parallelization of the decisions about splitting and distribution,
allowing scaling of this part of the problem to the next generation of very large cluster machines.

The CA3 model (Lazarewicz et al, 2002) comes from ModelDB with the variable time step
integration method turned on. That method reduces the runtime for a single x86_64 process
from 77 to 41 seconds. Presently, the implementation of the multisplit method is restricted to
NEURON's fixed step integration method. It would clearly be beneficial to eliminate this
restriction and, in principle, that can be easily accomplished since the variable step integrators
(Hindmarsh and Serban, 2002) already support parallel equation solving. Unfortunately, the
problem becomes complicated in a spiking network environment since, at first blush,
NEURON's local variable time step method (Lytton and Hines, 2005) requires that the least-
time element of the event and cell queues be identical in all processes that share a part of the
same cell. This problem would be, of course, obviated in a threaded environment.

The use of threads is an attractive alternative to MPI in a shared memory environment. With
threads, NEURON program launch would be the same as on a single processor and full GUI
functionality would be immediately available. Since Gaussian elimination is normally a very
small fraction of total simulation time, multisplit is not directly needed, but will be very
important for cache efficiency in order to avoid copying matrix equations from the cache in
which they are set up to the cache where they are solved. There may be a savings in reduced
tree communication as well since several MPI buffer copies would be avoided. It should also
be mentioned that cache efficiency militates against using threads at the compartment level for
network simulations where small cells are coupled by spike events in which the minimum delay
interval between spike generation and spike delivery is many time-steps. Plesser et al.
(2007) show that dividing a network into cell groups, each of which fits into cache, is very
effective in avoiding cache misses over the entire minimum delay integration interval. An
example of the significance of this for cache efficiency is the dentate gyrus model of
Santhakumar et al (2005, also cf. Migliore et al, 2006) simulated on a 3GHz i686 single
processor machine with a 512KB cache. As a single process the simulation runtime is 290
seconds but when launched with 4 or 8 MPI processes (all on a single processor) the runtime
is 253 and 247 seconds respectively.

However, it is not feasible to run large network models on “small” shared memory machines,
and, for load balance on processor clusters, the use of multisplit is critical for performance
scaling as the number of processors becomes similar to or greater than the number of cells.
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Figure 1.
A: Kinetic scheme for the example neuron. B: Scheme is divided into 8 subtrees connected at
4 distinct compartments. C: Subtrees separated from each other each have some terms from
the original shared compartment and are connected together by 0 resistance virtual wires.
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Figure 2.
The sequence of steps that carry out Gaussian elimination of the partitioned neuron in Figure
1C. A: Starting structure prior to any elimination steps. B: After phase1, single connection
point subtrees are fully triangularized and two connection point subtrees are triangularized up
to the backbone path. C: After phase 2, tridiagonal backbone paths are transformed so that all
backbone compartments depend only on the end compartments. D: At the start of phase 3, a
reduced tree is constructed. Here it consists of 4 coupled equations. The patterns inside each
circle are meant to indicate that the d and b matrix elements are the sums of the corresponding
elements from the connecting subtrees. At the end of phase three, the voltages are sent back to
the subtrees. E: After phase 3, all subtrees are fully triangularized. F: After phase 4, all voltages
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along the backbone paths are known. In phase 5, not illustrated, the backsubstitution is
completed.
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Figure 3.
Left panel: Lazarewicz model CA3 pyramidal cell is divided into 15 pieces with 7 distinct
connection points. Middle panel: Complexity of each of the pieces ordered from greatest to
least. Right panel: LPT algorithm chooses a processor for each piece based on the processor
with the least cumulative complexity.
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Figure 4.
Complexity histograms for the 10000 cell model and when the cells are split into 16694 pieces
suitable for load balanced simulation on 8192 processors. Maximum cell complexity is 42,385
and total network complexity is 92,360,610. The largest cell was split into 8 pieces with a
reduced-tree matrix rank of 5. LPT load imbalance is 5%. Maximum piece size during splitting
was chosen using 0.8*total complexity/nhost.
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Figure 5.
Performance as a function of number of processors for three single cell models. The x86_64
machine is the 4 processor Dell. The ia64 machine is the 32 processor SGI. For the latter, the
last two points are for 24 and 30 processors. Filled circles are runtime in seconds. Open circles
are average computation time. The dashed line is the “ideal” (−1) slope performance scaling
in this log2 vs log2 plot relative to the one processor computation time. Open circles contain a
vertical line, usually too short to be visible, that spans the minimum to maximum computation
time for the processors that took part in each simulation. The dash mark for 30-processor runs
is the best runtime as maximum piece size was varied.
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Figure 6.
Performance as a function of number of processors for the 356 cell Traub model. The style is
the same as that of Figure 4 except that the filled squares are the runtime with gap junctions
included. At 256 processors there is a switch from whole cell balance to the multisplit method.
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Figure 7.
Performance as a function of number of processors for the 10000 cell model. Style is the same
as that of Figure 4. Filled squares are for whole cell balancing.
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