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Summary
A frequent occurrence in medical research is that a patient is subject to different causes of failure,
where each cause is known as a competing risk. The cumulative incidence curve is a proper summary
curve, showing the cumulative failure rates over time due to a particular cause. A common question
in medical research is to assess the covariate effects on a cumulative incidence function. The standard
approach is to construct regression models for all cause-specific hazard rate functions and then model
a covariate-adjusted cumulative incidence curve as a function of all cause-specific hazards for a given
set of covariates. New methods have been proposed in recent years, emphasizing direct assessment
of covariate effects on cumulative incidence function. Fine and Gray proposed modeling the effects
of covariates on a subdistribution hazard function. A different approach is to directly model a
covariate-adjusted cumulative incidence function, including a pseudovalue approach by Andersen
and Klein and a direct binomial regression by Scheike, Zhang and Gerds. In this paper, we review
the standard and new regression methods for modeling a cumulative incidence function, and give
the sources of computer packages/programs that implement these regression models. A real bone
marrow transplant data set is analyzed to illustrate various regression methods.
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1. Introduction
Problems in analyzing competing risks data often arise in biomedical researches, where each
subject is at risk of failure from K different causes. When one event occurred, it precludes the
occurrence of another event. For the competing risks data, one observes an on study time and
a failure type indicator for each individual. In cancer studies, one common example of
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competing risks are disease relapse and death in remission. The cumulative incidence curve is
the proper summary curve in analyzing the competing risks data. Unfortunately, it has been
commonly seen in practice of using one minus Kaplan-Meier estimate for each competing
cause. It overestimates the incidence rates of a particular cause in the presence of all other
competing causes (see Klein et al. [1]). Recently, Klein and Moeschberger [2], Martinussen
and Scheike [3], Pintilie [4], and Klein and Zhang [5] reviewed some basic statistical methods
for analyzing the competing risks data.

In biomedical studies it is important to study the covariate effects on the cumulative incidence
function (CIF) of a particular failure. The standard approach is to model cause-specific hazards
for all causes. The Cox proportional hazards model [6] is the most commonly used regression
model for all causes [7,8]. Shen and Cheng considered a special, additive risk model [I)] and
Scheike and Zhang used a flexible Cox-Aalen model [10]. This approach is valid when all
cause-specific hazards are modeled correctly. Since the cumulative incidence curve of a
particular cause is a function of all cause-specific hazards, one problem is that it may be hard
to evaluate the covariate effect on the cumulative incidence curve directly and it may be hard
to identify which specific covariate has a time-varying effect on the CIF, where the covariate
effect changes over time.

Recently, some new regression approaches have been considered and developed to model the
CIF direcdy. The first approach is based on earlier work by Gray [ll] and Pepe [12] to directly
model the subdistribution hazard function. Based on the subdistribution hazard function one
can directly interpret the covariace effect on the cumulative incidence curve. Fine and Gray
proposed a Cox-type proportional hazards model [13] and Sun et al. studied a more flexible
and general model for the subdistribution hazard function [14]. The second approach to model
the cumulative incidence curve directly is based on pseudovalues from a jackknife statistic
constructed from the estimated CIF [15,16]. The final approach of directly modeling the CIF
is based on binomial regression models using the inverse probability of censoring weighing
technique. Scheike, Zhang and Gerds [17] considered a fully non-parametric regression model
and a class of general semiparametric regression models, proposed score equations for the
regression coefficient estimators, and derived its consistent variance estimators [17].

2. Cause-specific hazard approach
Let T1, …, TK be the potential unobservable failure times of total K type failures. For the
competing risks data, we observe time to the first failure, T = min(T1, …, TK) and indicator the
type of failure, ε = k, if T =Tk. For right censored competing risks data one observes the study
time (failure time or censoring time) Xi = min(Ti, Ci) for each subject, where Ti and Ci are the
failure time and censoring time for the ith individual, the event indicator Δi =I (Ti ≤ Ci), where
I(.) is an indicator function, Δi =1 if {Ti ≤ Ci} and Δi =0 if {Ci <Ti}, and the cause of K type
failures ε ∈ {1, …, K}, for i=1, …, n. For simplicity, we assume two competing risks (K=2).
The summary curve of the cumulative incidence function (CIF) of cause 1 is the probability
that an event of type 1 occurs at or before time t, F1(t) =P(T ≤ t, ε =1). The cause-specific
hazard function of the kth type failure is defined as

(1)

It is the rate at which a specific cause of event is occurring at presence of other competing
risks. The CIF of cause 1, F1(t) is a function of cause-specific hazard rates of both causes,
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(2)

where  is the cumulative cause-specific hazard function and

. To estimate F1(t), let 0 =t0 < t1 < … <tD be the distinct event time points.
At time ti, let  and  be the number of subjects failed of cause 1 and cause 2, respective, and
let Yi be the number at risk prior to time ti. The non-parametric estimator of F̂1(t) is given by

(3)

where  is the Nelson-Aalen [18,19] estimator for the cumulative cause-

specific hazard function and  is the Kaplan-Meier [20] estimator
for overall survival distribution. Based on martingale central limit theory [21,22] the variance
of F̂1(t) can be consistently estimated [22]. Note that one minus Kaplan-Meier estimator
treating failure of other cause as censored observation, it estimates [1 − exp{−Λ1(t)}] which
is the marginal probability in a counterfactual world where it is impossible to fail from other
causes [1]. This quantity is hard to interpret and it overestimates the cumulative incidence rate
of cause 1 when competing events are not independent [4]. However, it reduces to a cumulative
incidence function estimator when there is a single type of failure.

In medical studies researchers need to compare the treatment effect of a particular failure for
competing risks data. The weighted log-rank test, which compares the cause-specific hazard
rates between groups, is most commonly used in analyzing time-to-event data. It is important
to know that the log-rank test does not compare the CIF directly since the CIF is a function of
both cause-specific hazard rates. Gray [11] proposed a weighted log-rank test testing the
equivalence of the subdistribution hazard function between two treatment groups, where the
subdistribution hazard function of cause 1 is given by  (see

Section 3 for detail). Since , the proposed test directly compares
the CIFs between treatment groups [ll]. The CIF estimators and direct testing procedures are
available in cmprsk and timereg R-packages created by Robert Gray [101] and Thomas Scheike
[102], respectively.

Bone marrow transplant data: an example
For illustration purposes, we consider a data set of myelodysplasia (MDS) patients treated with
HLA-identical sibling bone marrow transplantation (BMT). This is a Center for International
Blood and Marrow Transplant Research (CIBMTR) study [23]. The study has two competing
risks: treatment related death (TRM) defined as death in complete remission and relapse
defined as recurrence of MDS. 408 patients with complete information were included in this
example (161 patients died in complete remission and 87 patients relapsed).

The CIBMTR study indicated that CIF of TRM were different for patients with low and high
platelet counts (< 100×109/L (n=280) versus ≥ 100×109/L (n=128)). Table 1 shows the one
minus Kaplan-Meier estimator treating relapse as censored event and the CIF estimator with
p-value of Gray’s test using cuminc function of comprsk package for TRM by high and low
platelet counts, respectively. It shows that (1 − Kaplan-Meier) estimator overestimates the CIF
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and Gray’s test indicates that patients with high platelet counts have a lower cumulative
incidence rate of TRM. It is important to know that CIF is a proper summary statistic for the
competing risks data and Gray’s test should be used if we are interested in comparing the
difference of CIF between treatment groups.

The plot.cuminc function of cmprsk package plots the estimated CIF by treatment groups and
the output of cuminc function can be used to compute the pointwise confidence interval at a
fixed time point. The CIF of TRM by platelet counts is given in Figure 1. Table 1 and Figure
1 showed that patients with high platelet counts (≥ 100×109/L) had a lower cumulative
incidence rate of treatment related mortality than patients have low platelet counts.

Cox model for the cause-specific hazard function
For competing risks data researchers often want to examine and model the effects of covariates
for a specific cause of failure. The standard approach is to model the cause-specific hazard
functions for both causes [21]. Various models have been considered and adopted. First,
Prentice et al [7] and Cheng, Fine and Wei [8] considered the commonly used Cox proportional
hazards models for both causes,

(4)

where k(=1,2) represents the type of failure, λk0(t) is the baseline hazard function, Z is a p-
dimensional vector of covariates, and βk is the vector of regression coefficients. Cox model
can be fitted using standard survival analysis techniques with the modification that subjects
failed from causes other than the cause of interest are treated as censored observations. Most
statistical softwares, such as SAS, SPSS, and S-Plus, can be used to fit the cause-specific Cox
proportional hazards model. Andersen et al. [21] study the estimator of the predicted CIF for
a given set value of covariates, F1(t | z) =P(T ≤ t, ε =1 | z) and derived a variance estimator
under the Markov model assumption. It is not clear how to construct the confidence band
analytically based on the large sample properties. Cheng, Fine and Wei [8] suggested a plug-
in estimator for F1(t | z) by

(5)

where Λ̂k0(t) is the estimator of the cumulative baseline hazard function ,
and derived a variance estimator for F̂1(t | z) [8, P227–228]. Without covariates this plug-in
estimator (2.5) is asymptotically equivalent to the non-parametric estimator given in (2.3).
Cheng, fine and Wei [8] also proposed to construct the confidence band for F1(t | z) over a
given time period [t1, t2] based on a simulated method [8].

The predicted cumulative incidence probability is not a simple function of estimated
parameters. It is not available currently in standard statistical packages. SAS macros for
estimating the predicted cumulative incidence functions and its variance estimation based on
a Cox regression model for the competing risks data has been developed by Rosthøj, Andersen
and Abildstrom [24]. Two SAS marcos are available at [103]: cuminc computes the predicted
CIF for both causes and cumincv computes the predicted CIF and its variance estimations.

Applied to example BMT data—We apply SAS macros to fit the BMT example data.
Based on cause-specific hazard regression analysis, the early CIBMTR study [23] showed that
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two sets of different risk factors associated with TRM and relapse, respectively. Since the CIF
of TRM is a function of cause-specific hazards of TRM and relapse. It is hard to identify which
risk factors were significantly associated with the CIF of TRM. One approach is to include all
risk factors for each cause of failure. For illustration purpose we fit same Cox model with
covariates were significantly associated with TRM, i.e. age (continuous variable, standardized
and centered at mean of 35 years old and ranged from 2 to 64 years old), platelet counts (1 for
≥ 100 ×109/L and 0 for < 100×109/L) and GVHD prophylaxis (1 for T-cell depletion BMT and
0 for Non-T-cell depletion BMT) for TRM and relapse. The SAS macro cumincv predicts the
CIF for TRM and its variance estimation. It computes the predicted CIF of TRM for a 35 years
old patient and received a Non-T-cell depleted marrow transplant for GVHD prophylaxis by
low and high platelet counts (Table 2).

Cox-Aalen model for the cause-specific hazard function
Shen and Cheng studied F1(t | z) based on a special additive model [9], which was first proposed
by Lin and Ying for survival data [25]:

The Cox proportional hazards model and the Lin and Ying’s additive model do not allow the
covariates to have time-varying effect.

As an alternative to the Cox model, Aalen proposed an additive hazards model [26]:,

(6)

These are two most commonly used regression models in survival analysis. Although the Cox
model can be generalized to allow some covariates to have time-varying effects, but it is hard
to estimate the fully nonparametric time-dependent regression coefficient functions. In
practice, one may consider using a piecewise constant stepwise function to model the time-
varying effect. One advantage of Aalen’s additive model is that it allows the covariates to have
time-varying effects and that is easy to estimate. It is well known that additive model may not
give monotone estimated survival probabilities and care needs to be considered when this
happens [2]. Recently, Scheike and Zhang [10,27] proposed a flexible additive-multiplicative
model which combines the Cox proportional model and Aalen’s additive model (denoted as
Cox-Aalen model),

(7)

where Xi is (p+1)-dimensional covariates with first element to be 1 for all subjects and Zi is
q-dimensional covariates. Here, some covariates Xi have additive and time-varying effects,
and other covariates, Zi have constant multiplicative effects. The proposed model reduces to
a Cox model when Xi =1 and it leads to an Aalen’s additive model when Zi = 0. Scheike and
Zhang [27] proposed some goodness of fit tests to determine which covariates to be included
in additive part and multiplicative part of the mixed model, respectively. In practice, they
suggested that the covariate could be included in the additive part of the model if it has a time-
varying effect. Scheike and Zhang proposed asymptotically unbiased estimators for the
regression coefficients and derived its variance estimators [27, P78–81]. When X is a vector
of discrete covariates the mixed Cox-Aalen model leads to a stratified Cox model which is
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available in most statistical packages. The timereg package has a cox.aalen R-function which
can be used to fit a general mixed Cox-Aalen model.

Scheike and Zhang studied the predicted cumulative incidence curve based on flexible Cox-
Aalen model [10],

(8)

Where

and

We derived the variance estimator for F̂k(t | x, z,) and showed that proposed mixed Cox-Aalen
model fits the data better than a standard Cox proportional hazards model when some covariates
have time-varying effects.

Applied to example BMT data—Fitting a Cox model for the cause-specific hazard
function, it assumes that all covariates have constant effects. The proportionality assumption
can be tested by adding a time-dependent covariate which is available in most statistical
packages. For the BMT data, the test gives a p-value of 0.04 for the covariate of platelet counts
which indicates that there is evidence to suggest that patient platelet counts has a time-varying
effect on the cause-specific hazard of TRM, and test indicates that proportionality assumption
holds for relapse for all three covariates. We fit a mixed Cox-Aalen model for TRM where the
platelet counts was included in the additive part of the model to facilitate the time-varying
effect and fit a regular Cox model for relapse. Table 3 gives the predicted CIF of TRM at 1
and 3 years since transplant for a 35 years old patient and received a Non-T-cell depleted
marrow transplant for GVHD prophylaxis by low and high platelet counts. Since Cox-Aalen
model is a more flexible model allowing the platelet counts having time-varying effect, it
should fit this BMT data better than the Cox proportional hazards model.

Modeling the cumulative incidence function by cause-specific hazard functions approach is
valid as long as the cause-specific hazards are correctly modeled for all causes. The Cox-Aalen
model is a flexible model for this approach.

Subdistribution hazard approach
One approach of directly modeling the cumulative incidence function is based on Gray’s
[11] subdistribution hazard technique, where the subdistribution hazard of cause 1 is given by:

(9)
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There is a direct relationship between the cumulative incidence function and subdistribution
hazard function:

(10)

one can interpret the covariate effect on the CIF directly. Fine and Gray proposed a Cox type
proportional subdistribution hazards model [13]:

(11)

where  is an unknown baseline subdistribution hazard function. Gray stated that  is
the hazard function for an improper random variable T* = T ×I(ε = 1) + ∞ × I(ε = 2). Thus,
subjects failed from cause 2 should be considered at risk for all time. With complete data (no
censoring), we set Ti = ∞ if ith individual failed from cause 2, then standard partial likelihood
method can be applied and most standard statistical packages can be used to fit the Fine and
Gray’s proportional subdistribution hazards model.

For right-censored incomplete competing risks data, Fine and Gray suggested using inverse
probability of censoring weighting technique (IPCW) to fit the subdistribution hazards model
and derived the variance estimators [13].

Recently, Gray developed a cmprsk R-library which is available to the public and its crr
function can be used to fit the proportional subdistribution hazards model. The crr function
allows the model to have time-dependent covariates, which can be used to test the
proportionality by adding a time-dependent covariate: . The
significant p-value of testing β2 = 0 indicates that the covariate Z has a time-varying effect on
the cumulative incidence function of F1(t | Z). The predict.crr function computes and
plot.predict.crr function plots the predicted cumulative incidence function for a given set of
covariate values z. However, its variance estimates are not available in cmprsk R-package.

When some covariates have time-varying effects, similarly we can consider fitting a flexible
Cox-Aalen subdistribution hazards model,

(12)

where x is (p+1)-dimensional covariates with first element to be 1 for all subjects and z is q-
dimensional covariates.

Applied to example BMT data
The crr function has been applied to the BMT example data. The result shows a time-varying
effect for the platelet counts (p=0.05). It indicates that the proportional subdistribution hazards
model may not be the correct model for this data. When the proportional subdistribution hazards
model does not fit the data well, Sun et al. considered an alternative flexible model [14]. Here,
we fit a flexible Cox-Aalen subdistribution hazards model to the BMT data where platelet
counts was included in the additive part of the model to facilitate its time-varying effect. The
regression parameter estimators are β ̂(Age) = 0.34, SE = 0.08, p <0.0001 and β ̂(T-Dept) = −
0.61, SE = 0.27, p = 0.02. Due to the direct relationship between CIF and subdistribution hazard
function, we can conclude that older patient had a higher incidence rate of TRM and T-cell
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depleted BMT for GVHD prophylaxis had a lower incidence rate of TRM. Based on Cox-
Aalen subdistribution hazards model we can estimate the predicted CIF of TRM for a given
set of covariate values.

Modeling CIF
Fine and Gray proposed to directly model the cumulative incidence function of a competing
risks data by modeling the subdistribution hazard function [13]. Recently, some alternative
new approaches have been proposed to model the cumulative incidence function directly by

(13)

where φ is a known link function. One approached is based on pseudo-value approach proposed
by Andersen, Klein and Rosthøj [28] and another approached is based on binomial regression
modeling studied by Scheike, Zhang and Gerds [17]. In this section, we introduce these
approaches through the BMT example data.

Pseudovalue approach
Recently, Andersen, Klein and Rosthøj proposed a quite general technique to regression model
for censored survival data [28]. This technique is based on the pseudo-value approach which
has been applied to the competing risks data [15,16]. Consider a prefixed grid of time points,
t1, …, tM. In practice, it has been suggested using five to ten time points equally spaced on the
event scale works well in most cases [15,16] or some fixed time points which are interested to
the researchers, such as one and three years after the treatment in BMT example data. At grid
time point, tj, the cumulative incidence function can be estimated by a standard non-parametric
estimator given in (2.3) based on the complete data set, F̂1(tj) and based on the sample of size

n − 1 obtained by deleting the ith observation, . The pseudo-value of the ith subject at
time tj is defined as

(14)

Let θij = F1(tj | Zi) be the conditional CIF which needs to be modeled. Klein and Andersen
[14] considered to model θij by φ(θij) = αj +βTZi, where φ is a known link function, and
suggested some common link functions such as logit link function of φ(θ) = log{θ/(1 − θ)}
and the complementary log-log link function of φ(θ) = log{− log(1 − θ)}. The regression
parameters, αj and β, can be estimated by solving a pseudo-score equation and its covariance
matrix can be estimated by a sandwich variance estimator [15]. The complementary log-log
link function leads to the proportional subdistribution hazards model proposed by Fine and
Gray [13]. For the survival data, the logit link gives to a proportional odds model on the
cumulative hazards model. Klein et al. [29] developed a SAS macro and an R functions to
compute pseudo-values for right censored competing risks data [29], available at [104]. The
SAS macro computes the pseudovalues for each subject at each grid time point. A SAS Proc
GENMOD procedure can then be used to fit the regression model. Detailed examples on how
to compute the pseudovalues and how to fit the regression model can be found at [104]. The
SAS Proc GENMOD procedure reports the regression parameter estimate, standard error,
95% confidence interval and p-value of testing β =0. It also gives detailed R-codes for fitting
the regression model using pseudo-value approach.
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Applied to example BMT data—We now apply pseudo-value approach to the bone marrow
transplant example data focusing on the competing risk of TRM. We pre-set a grid of 3 time
points of {12, 36, 60}-months since transplant and fit the regression model with three variables:
Z1=platelet counts (binary variable); Z2=patient age (continuous variable) and Z3=GVHD
prophylaxis (binary variable). First, we fit a regression model, φ(θij) = αj + β1Zi1 + β2Zi2 +
β3Zi3, with complementary log-log link function. The fitted model is equivalent to the Fine
and Gray’s proportional subdistribution hazards model. Two approaches give similar results
as expected (Model I of Table 4).

Since patient platelet counts had a time-varying effect, we have considered a flexible Cox-
Aalen subdistribution hazards model in Section 3. Here, we fit an equivalent model, φ(θij) =
αj + β1jZi1 + β2Zi2 + β3Zi3, allowing platelet counts (Z1) having time-varying effect. Both
approaches give quite close estimating results as well (Model II of Table 4).

Direct binomial modeling approach
Recently, Scheike, Zhang and Gerds proposed to directly model the cumulative incidence
function through:

(15)

where φ(·) is a known link function, A(t) is an unspecified (p+1) dimensional regression
coefficient functions and Z = (1, Z1, …, Zp). They proposed a regression analysis using the
inverse probability of censoring weighted response. With log link function, φ(x) = log(1 − x)
the proposed model leads to the Aalen’s generalized additive model. Note that this is a very
general regression model allowing covariates to have time-varying effects. Some goodness-
of-fit tests have been studied to test the time-varying effects; however in practice it is suffice
to plot and visually examine the estimated regression function with the confidence bands.
Scheike, Zhang and Gerds also studied a class of semiparametric models:

(16)

where g is a known function. With g(β, Z, t) = exp{βTZ} the multiplicative semiparametric
model gives a Cox-Aalen model which includes the Cox model and Aalen’s additive model as
special models. With g(β, Z, t) = βTZt the additive semiparametric model leads to a partially
semiparametric additive model [30]. Scheike, Zhang and Gerds proposed score equations to
estimate A(t) and β simultaneously and derived variance estimations for the estimated
regression parameters and the predicted CIF for a given set of covariate values [17].

Applied to example BMT data—We now revisit the bone marrow transplant data using
binomial modeling approach. These models can be fitted using the timereg package in version
1.0–5 and the comp.risk function which is available at
http://staff.pubhealth.ku.dk/~ts/timereg.html. First, we fit a multiplicative parametric model,
log{1 − F1(t | Z1, Z2, Z3)} = A0(t) exp{β1Z1 + β2Z2 +β3Z3}, where X1, X2, X3 are platelet counts,
age and GVHD prophylaxis, respectively. This model is equivalent to the Fine and Gray’s
proportional subdistribution hazards model. Both approaches give close estimating results
(Model I of Table 5). To see if any covariate has a time-varying effect, we fit a fully
nonparametric model with the log link function, log{1 − F1(t | X1, X2, X3)} =A0(t) + A1(t)X1 +
A2(t)X2 + A3(t)X3. Figure 2 shows the estimated regression functions and their 95% confidence
bands. The plots indicate that age had very strong time-varying effect, platelet counts had mild
time-varying effect and the GVHD prophylaxis had a constant effect. It should be noted that
effects of age are different with the subdistribution hazard approach and the binomial modeling
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approach. With the subdistribution hazard of TRM, age passes the proportionality test (p=0.86)
and, in Section 4.1, we have modeled its effect as constant. With the binomial modeling
approach, the plot in Figure 2 shows that age only had a significant effect on TRM within first
8 months of transplant and no effect thereafter.

Finally, we fit a flexible model, log{1 − F1(t | X1, X2, X3)} ={A0(t) + A1(t)X1 + A2(t)X2}exp
{βX3} to accommodate the time-varying effect. The estimated β ̂(T-Dept) = −0.64, SE = 0.29,
p = 0.03 is close to the estimated result based on subdistribution hazard approach (Model II of
Table 5). The predicted cumulative incidence function of TRM for a 35 years old patient who
received a non-T-cell depleted BMT for GVHD prophylaxis by low and high platelet counts
are given in Figure 3. This flexible binomial Cox-Aalen model fits the BMT data well since it
allows platelet counts and age to have time-varying effects.

5. Expert commentary
In biomedical studies one often needs to analyze censored competing risks data. The cumulative
incidence curve of a particular cause of failure is a proper summary curve in analyzing the
competing risks data and the Gray’s test should be considered if one interested in comparing
the cumulative incidence functions between groups. Recently, new statistical methods have
been developed to study and model the covariate effect on the CIF directly.

Five-year view
We reviewed standard nonparametric estimator for the cumulative incidence function based
on cause-specific hazard function for all causes and reviewed some available statistic packages
for estimating the cumulative incidence function. A common question in medical researches
is to assess covariate effect on a cumulative incidence function. The standard approach is to
construct regression models for all cause-specific hazard rate functions and then model a
cumulative incidence curve as a function of all cause-specific hazards. This is valid as long as
the cause-specific hazards are correctly modeled for all causes. Various new methods have
been proposed in recent years, emphasizing on directly assessing covariate effect on a
cumulative incidence function. For the new methods, estimation of a cumulative incidence
function is constructed through modeling a subdistribution hazard function, pseudo-values
from a jackknife statistics, or a binomial regression model. We reviewed the standard and new
regression methods for modeling a cumulative incidence function, and give the sources of
computer packages/programs that implement these regression models. In medical studies the
predicted cumulative incidence probability of given set value of covariates often is important
to the researchers.

These recently developed statistical methods and models have not been utilized frequently in
many medical studies. These new statistical techniques are not available in most commonly
used statistical packages, such as SAS, SPLUS and S-PLUS. In the next 5 years, more user
friendly statistical programs need to be developed.

Key issues
• Competing risks data often occurs in medical studies.

• Cumulative incidence function is a proper summary statistics for analyzing competing
risks data.

• Cumulative incidence function is estimated by modeling the cause-specific hazard
function of all causes.

• Gray’s test compare the cumulative incidence function directly.
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• Modeling the covariate effect through modeling the cause-specific hazard function
of all causes; modeling the subdistribution hazard function of a specific cause;
modeling the cumulative incidence function directly using pseudo-value approach
and direct binomial regression approach.
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Figure 1.
Cumulative Incidence of TRM by Patient Platelet Counts
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Figure 2.
Cumulative Regression Function Estimation For TRM (Binomial Nonparametric Model)
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Figure 3.
Predicted CIF of TRM for a 35 Years Old Patient with Non-T-Depleted BMT by Platelet Counts
(Binomial Cox-Aalen Model)
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Table 2
Fitting a Cox proportional hazards model, the predicted CIF (SE) of TRM for a 35 years old patient and received a
Non-T-cell depleted marrow transplant for GVHD prophylaxis by low and high platelet counts.

Time Low Platelet Counts High Platelet Counts
1yr 0.41 (0.03) 0.28 (0.02)
3yr 0.46 (0.03) 0.32 (0.02)
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Table 3
Fitting a mixed Cox-Aalen model, the predicted CIF (SE) of TRM for a 35 years old patient and received a Non-T-cell
depleted marrow transplant for GVHD prophylaxis by low and high platelet counts.

Time Low Platelet Counts High Platelet Counts
1yr 0.42 (0.03) 0.26 (0.04)
3yr 0.46 (0.03) 0.32 (0.05)
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