
On semiparametric efficient inference for two-stage outcome-
dependent sampling with a continuous outcome

Rui Song, Haibo Zhou, and Michael R. Kosorok
Departments of Biostatistics, University of North Carolina Chapel Hill, North Carolina 27599-7420,
U.S.A.
Rui Song: rsong@bios.unc.edu; Haibo Zhou: zhou@bios.unc.edu; Michael R. Kosorok: kosorok@unc.edu

Summary
Outcome-dependent sampling designs have been shown to be a cost effective way to enhance study
efficiency. We show that the outcome-dependent sampling design with a continuous outcome can
be viewed as an extension of the two-stage case-control designs to the continuous-outcome case. We
further show that the two-stage outcome-dependent sampling has a natural link with the missing-
data and biased-sampling framework. Through the use of semiparametric inference and missing-data
techniques, we show that a certain semiparametric maximum likelihood estimator is computationally
convenient and achieves the semiparametric efficient information bound. We demonstrate this both
theoretically and through simulation.
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1. INTRODUCTION
The case-control design, in which one over-samples the diseased individuals, is the most well
known outcome-dependent sampling scheme for binary outcomes (Cornfield, 1951; Prentice
& Pyke, 1979). The principal idea of an outcome-dependent sampling design is to concentrate
resources on where there is the greatest amount of information. The two-stage case-control
design is an extension of the simple case-control design that has been shown to improve
statistical efficiency and reduce study costs in epidemiology studies (White, 1982). In the first
stage of a typical two-stage design, information about the outcome Y is available for a study
population or its random sample. Information about an exposure variable X is only available
on a subset of the first-stage population; which is termed the second-stage. The second-stage
sampling usually depends on the outcome. There is a large literature on analyzing data from
two-stage designs; see Breslow & Cain (1988), Zhao & Lipsitz (1992), Weinberg & Wacholder
(1993), Wacholder & Weinberg (1994), Lawless et al. (1999), Breslow et al. (2003) and Wang
& Zhou (2006).

For outcome-dependent sampling with a continuous response, Zhou et al. (2002; 2007)
considered an empirical likelihood approach for studies with only second-stage data. For the
two-stage design, Chatterjee et al. (2003) proposed a pseudoscore estimator and Weaver &
Zhou (2005) proposed a maximum estimated likelihood estimator. Both methods are
computationally easy at the expense of efficiency. Lawless et al. (1999) recommended
discretization of the continuous response to achieve an easily calculable maximum profile
likelihood estimator. As discussed in Chatterjee et al. (2003), such a simplification entails a
loss of information and a decrease in the external validity of the analyses, because the results
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may be sensitive to the choice of cutpoints. In summary, these existing methods are based on
some approximations to the likelihood function. As far as we know, no one has developed fully
efficient estimation for two-stage outcome-dependent sampling designs with a continuous
response, because of the challenge in terms of both theory and computation. In this note, we
develop a semiparametric maximum likelihood estimator that achieves full efficiency for this
setting, and we point out that the two-stage outcome-dependent sampling estimate has a natural
connection with the missing data and biased sampling literature. The connection occurs
because the covariates can be viewed as missing by design, with the sampling probability of
the covariates depending on the outcome.

2. TWO-STAGE OUTCOME-DEPENDENT SAMPLING WITH A CONTINUOUS
OUTCOME

We consider the outcome-dependent sampling setting of Weaver & Zhou (2005) and recast it
into a two-stage outcome-dependent sampling design. This design with a continuous outcome
can be considered as a direct extension of White (1982) and Breslow & Cain (1988). The two-
stage outcome-dependent sampling design for a continuous outcome (Weaver & Zhou, 2005)
allows researchers to sample in the second-stage a simple random sample and some
supplementary outcome-dependent samples from the first-stage population. In this setting, the
response Y is observed for all in the first-stage, but the exposure variable X is only observed
for those in the second-stage, i.e., the simple random sample and the supplementary outcome-
dependent samples, in which the selection probability of the supplementary outcome-
dependent sampling samples depends on Y. We assume that the joint density of (Y,X) is f(Y|
X;θ)g(X) with respect to a dominating measure ν × μ on  × , where f(·|·) is known up to a
d-dimensional parameter θ of interest and g(·) is an unknown probability density function.

To fix notation, we further assume that the base population consists of n individuals (Y,X), and
the domain of Y is a union of K mutually exclusive intervals, Ck = (ck−1, ck] for k = 1,…,K,
with ck, k = 0, 1,…,K, being prespecified constants satisfying c0 = −∞ < c1 < c2 < … < cK =
∞. Thus Y partitions the study population into K strata such that, for k = 1,…, K, the {Y ∈

Ck} stratum has Nk individuals, and we define  Conditional on n, (N1, … ,NK)
follows a multinomial distribution with size n and probabilities (π1, …, πK), where πk ≡ Pr(Y
∈ Ck) is the proportion of the population falling into the kth stratum, for k = 1, …, K. Among
the n individuals, n0 are obtained from the simple random sample, and nk out of Nk individuals
in stratum k, k = 1, …, K, are selected as the second-stage outcome-dependent supplemantary
samples.

We consider two types of stage-two outcome-dependent sampling in this article: Bernoulli
sampling and Negative Binomial sampling. With Bernoulli sampling, all subjects which are
in the kth stratum, but not included in the simple random sample, are independently sampled
with probability pk such that, conditional on Nk and n0k, Enk = (Nk − n0k)pk. In this sampling
scheme, the sample size n is fixed and the second-stage outcome-dependent sample sizes
{n1, …, nK} are random. With Negative Binomial sampling, all subjects which are in the kth
stratum, but not included in the simple random sample, are sampled with the probability of
success pk, until a total of nk subjects have been selected. In this sampling scheme, the sample
size n is random and the values nk, k = 1, …, K, are prespecified.

Although assuming the existence of a simple random sample is not necessary for the theoretical
aspect, in practice it ensures the availability of the exposure variable X for every stratum of the
response Y. Moreover, it is a prevailing choice for epidemiologists to include a simple random
sample in their studies. This will afford them the flexibility to study other endpoints and to
validate their models.
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Let  be the total size of the second-stage sample for which we observe (Y,X),
and let nV̄ = n − nV be the number of individuals in the first-stage population for whom only
Y is observed. Define the sampling indicator for the ith individual, i = 1, …, n, as

Then V ≡ {i : Ri = 1} represents the index set of all complete observations, and V̄ ≡ {i : Ri =
0} represents the index set of all incomplete observations, such that nV = |V|, nV ̄ = |V̄| and n =
|V ∪ V̄|. Furthermore, we define Vk ≡ {i : Ri = 1, Yi ∈ Ck}, V̄k ≡ {i : Ri = 0, Yi ∈ Ck} and Nk ≡
|Vk ∪ V̄k|, k = 1,…, K. Thus, the data structure of two-stage outcome-dependent sampling with
a continuous Y can be summarized as follows: in the first stage, we sample Yi, for i ∈ Vk +
V̄k; in the second stage, we sample Xi, given Yi ∈ Ck, for i ∈ Vk.

In both sampling schemes, conditional on the sample size n and the first-stage sample, the
individual (Xi, Yi) falling into kth stratum is selected for full observation, giving Ri = 1, with
prespecified probability pk. Hence we have a ‘missing at random’ structure: Pr(Ri = 1|Yi ∈
Ck) = pk, k = 1, …, K. Thus we cast the two-stage outcome-dependent sampling design into a
general missing-data framework.

With derivation based on integrating a multinomial law, as in Weaver & Zhou (2005), the
likelihood function from the two-stage outcome-dependent sampling with Bernoulli sampling
has the form

(1)

where g(·) and G(·) are the probability function and the cumulative distribution function for
X respectively, and fY (·; θ,G) is the probability density function of Y. Taking steps similar to
those in the Appendix B of Scott & Wild (2001), we can show that the likelihood function from
the two-stage outcome-dependent sampling with Negative Binomial sampling takes the same
form even though the second-stage outcome-dependent sample sizes {n1, …, nK} are chosen
without replacement.

To obtain the maximum likelihood estimators of (θ,G), we will maximize the log-likelihood
by replacing the term g(Xi) in equation (1) by its point-mass equivalent, G{Xi}, and similarly
for dG(u). The loglikelihood in (1) can also be written in terms of missing-data notation:
ℙn{Rlog fθ(Y|X; θ)+Rlog G{X}+(1 − R) log fY (Y; θ,G)}, where ℙn is the empirical measure
of the observations; that is, for every measurable function f,

.

When Y is discrete, van der Vaart & Wellner (2001) give some examples in which the maximum
likelihood estimator of the full likelihood (θ̌n, Ǧn) of (θ, G) does not exist; this is because the
strata are defined by continuous covariates. However, this is not the case in outcome-dependent
sampling since the sampling probability here depends only on the outcome, not on the
covariates. The existence of the maximum likelihood estimator can be shown in the same way
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as in Murphy & van der Vaart (2001). In general, however, the maximum likelihood estimator
(θ ̌n, Ǧn) is not unique (van der Vaart & Wellner, 1992), since Ǧn need not be concentrated on
{Xi : Ri = 1}. Here we consider the restricted maximum likelihood estimator (θ̂n, Ĝn) of the
empirical likelihood, where G is concentrated on {Xi : Ri = 1}. The asymptotic equivalence of
these two types of estimator can be established in the same way as in van der Vaart & Wellner
(2001) and Zhang & Rockette (2005).

3. STATISTICAL INFERENCE
To maximize the loglikelihood over {gi, i ∈ V}, the probability concentrated on i ∈ V, we
consider the Lagrangian function

where λ is the Lagrange multiplier corresponding to the normalizing restriction on the {gi, i ∈
V}. We take the derivative of H with respect to gi and set it equal to 0:

(2)

Multiplying both sides of (2) by gi, summing over i, and taking the restrictions into account,
we obtain

and thus λ = n. Substituting back into (2) and solving for gi yields the restricted maximum
likelihood estimator

(3)

In the outcome-dependent sampling literature, Zhou et al. (2002) implement the empirical
likelihood method of Qin (1993) to simplify the computation. In our setting, it is unlikely that
this approach can be adapted, because of the nature of the continuous outcome: the number of
constraints increases as the sample size increases, and hence the number of parameters is the
same as the sample size. This poses a challenge for the computation of the proposed estimator.
We recommend maximizing the restricted loglikelihood using the following mixed Newton's
method.

Step 1. Start with an initial estimate θ0 and  i ∈ V.

Step 2. Plug in θ0 and  into the right-hand side of the score equations (3), solve the equations
iteratively using the fixed-point algorithm until it converges, and call the solution 
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Step 3. Plug  into the likelihood and maximize the parametric likelihood using Newton's
method to update θc.

Step 4. Repeat steps 2 and 3 until convergence.

We found that the algorithm works well. The fixed-point algorithm is easy to solve and is
particularly useful for cases with large sample sizes where the method avoids computing the
inverse of a huge matrix, as required in the usual Newton method.

To obtain the variance estimator of θ̂n, we will use the profile likelihood approach proposed
by Murphy & van der Vaart (2000) for a general semiparametric model. The smoothness
conditions of Theorem 1 in Murphy & van der Vaart (2000) can be verified and the profile
likelihood function pLn(θ) ≡ maxG∈  Ln(θ, G) can be shown to approximate a nondegenerate
parabolic function around θ ̂n. Moreover the inverse of the curvature of the profile loglikelihood
function at θ̂n can be used to estimate consistently the asymptotic variance of θ̂n.

Using empirical process techniques and semiparametric inference, we establish the model
identifiability, consistency and the weak convergence results. The identifiability of (θ,G) is
summarized in the Appendix. Using a Wald-type argument, together with the identifiability
result, we establish the following consistency result.

Theorem 1
Suppose that assumptions A2–A4 hold as given in the Appendix. Then |θ̂n − θ0| + suph∈  |
(Ĝn − G0)h| → 0, almost surely, for every Glivenko-Cantelli class  that is bounded in
L1(G0), where L1(G0) refers to the class of integrable functions under G0.

To derive the weak convergence result, let ψ ≡ (θ,G), and l̇(y; ψ) ≡ ḟ(y; ψ)/f(y; ψ). The score
operator for ψ takes the form Un(ψ)(h) = ℙnU(ψ)(h), where U(ψ)(h) ≡ U1(ψ)(h1) + U2(ψ)(h2),
and U1(ψ)(h1) ≡ l̇θ(r, z)h1 = {rl̇θ(y|x; θ) + (1 − r)l̇(y; ψ)}h1, U2(ψ)(h2) = rh2(x) + (1 − r)E
{h2(X)|Y = y}, where h1 ∈ ℝd, h2 belongs to a class of square integrable functions, and ∫
h2dG0 = 0.

The adjoint operator of U2(ψ)(h) can be computed as

where qk = 1 − pk, and

We note that the score operator shares the same form as the score in the general ‘missing at
random’ framework, whereas its adjoint operator has a special feature of the outcome-
dependent sampling design. To obtain the information operator, we can differentiate the
expectation of the score operator using the map t ↦ ψ + tψ1, where ψ, ψ1 ∈ Θ × . The
information operator σψ(h) = Pσ ̂ψ(h), where σ̂ψ(h) takes a 2 × 2 ‘matrix’ form, with

. It can be shown
that σψ0(h) is continuously invertible and onto.
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The following theorem establishes the asymptotic distribution of ψ̂n.

Theorem 2
Under assumptions A1–A8 as given in the Appendix, √n(ψ̂n − ψ0) is asymptotically linear,

with influence function  h ∈ 1, converging weakly in the uniform norm
to a tight, zero-mean Gaussian process ℤ with covariance E{l̃(g)l̃(h)}, for all g, h ∈ ℝd ×

1, where , α > max(d/2, 1), is the class of α-smooth functions; see § 2·7·1 of van
der Vaart & Wellner (1996).

Remark 1
Since √n(ψ̂n − ψ0) is asymptotically linear, with influence function contained in the closed
linear span of the tangent space, ψ̂n is regular and hence efficient, by Theorems 5.2.3 and 5.2.1
of Bickel et al. (1998). The information bounds thus share the same form as that in Nan et al.
(2004) after some algebra.

4. NUMERICAL RESULTS
We carried out simulations to evaluate the behaviour of the proposed estimators with that of
Weaver & Zhou (2005) and Chatterjee et al. (2003). The data were generated from a linear
regression model of the form Y = β0+β1X+β2Z+σϵ, where X ~ N(0, 1), Z ~ Ber(0·45) and ϵ ~
N0, 1); that is, given X and Z, Y ~ N(β0 + β1X + β2Z, σ2). We fix β0 = 1, β2 = −0·5 and σ2 = 1.
We investigated the effect of strengthening the regression relationship between Y and X by
allowing β1 to take successively the values 0, 0·5 and 1. Parameter and standard error estimates
were obtained for each of 2000 independently generated datasets. All simulations were
conducted using programs written in Matlab. The results are summarized in Table 1.

The study population size was set to n = 2000. For Table 1(a), the outcome-dependent sampling
design consisted of a simple random sample with n0 = 200, supplemented with additional
samples from individuals with Y values in the tails of the marginal distribution, with cutpoints
μY ± σY, where μY and σY represent respectively the mean and standard deviation of Y. We
took the Bernoulli sampling for the second-stage outcome-dependent sampling. All 1800
subjects which were not included in the simple random sample were independently sampled
with probability (0·185, 0, 0·185) from the three strata respectively. This yields the average
second-stage outcome-dependent sample sizes to be n1 = n3 = 50, n2 = 0 and a validation
sampling fraction ρV of about 0·15. In the second setting, presented in Table 1(b), we set the
simple random sample n0 to be 50 and increased the second-stage outcome-dependent sampling
probability of X in the two tails to be one; that is, we tried to include all samples in the tails
while keeping very few samples in the middle, where the proportion is small. This sampling
scheme yields the average second-stage outcome-dependent sample sizes to be n1 = n3 = 290,
n2 = 0 and a validation sampling fraction ρV of about 0·32. Table 1 contains the results for
β0 and β1 of three simulation settings corresponding to different values of β1 and includes the
finite-sample properties of the restricted maximum likelihood estimator, as well as the finite-
sample relative efficiencies, i.e., ratios of empirical variances of the estimators, for the
pseudoscore estimator and the maximum estimated likelihood estimator, all calculated relative
to the restricted maximum likelihood estimator.

All estimators exhibits negligible bias for all four model parameters, the means of the standard
error estimates agree very well with the sample standard errors of the 2000 simulations, and
the confidence intervals attain coverage close to the nominal 95% level; the corresponding
results for the pseudoscore estimator and maximum estimated likelihood estimator are not
shown. In both settings, the restricted maximum likelihood estimator is the most efficient of
the three estimators, as expected; as the regression effect of X gets stronger, the efficiency gains
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of the restricted maximum likelihood estimator over the competing estimators becomes larger.
When β1 = 0, the behaviour of these inefficient estimators is almost as good as that of the
restricted maximum likelihood estimator. This is because the nonvalidation observations do
not contain any information about X, although they still contain information about Z, and so
we would not expect to see much gain in efficiency for the maximum likelihood estimator
which can use more information contained in nonvalidation observations than can the other
estimators.

The efficiency gains of the restricted maximum likelihood estimator are also associated with
the validation sample proportion. For the same outcome-dependent sampling scheme, the
efficiency gain of the restricted maximum likelihood estimator increases while the validation
sample proportions of the two tails increase. In the extreme case of Table 1(b), the restricted
maximum likelihood estimator has substantial efficiency gains when the regression effect of
X is not zero. When the sampling proportion is not particularly ‘extreme’, such as with the
sample validation proportion of the first setting (0·267, 0·1, 0·267), the restricted maximum
likelihood estimator does not appear to lead to huge gains in efficiency over the maximum
estimated likelihood estimator and the pseudoscore estimator. Nevertheless, the restricted
maximum likelihood estimator never performs worse than either of the others.
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APPENDIX

Technical details
First we present assumptions needed in section 3.

Assumption A1
The true parameters (θ0;G0) are identifiable in the model

where Θ is a compact metric space, and  ≡ {G : G is a distribution on  with density g with
respect to μ}.

Assumption A2
The space X ∈  is a semimetric space that has a completion that is compact and contains 
as a Borel set.

Assumption A3
The maps (θ, x) ↦ f(y|x; θ) are uniformly continuous.

Assumption A4
We assume that P0[supθ∈Θ log{f(y|x; θ)/f(y|x; θ0)}] < ∞, and f(y|x; θ) > 0 for all y ∈  and x ∈

.

Assumption A5
The set  is a bounded subset of ℝd with nonempty interior.
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Assumption A6

We assume that , as θ → θ0,
G → G0.

Assumption A7
The function x ↦ f(y|x; θ) is continuously differentiable for each y. For all x, x′ ∈  and
constants D and α > 0,

and

Assumption A8
The map θ ↦ log f(y|x; θ) is three times differentiable with respect to θ, and the third-order
derivatives are bounded by integrable functions of (Y;X) for θ ∈ Θ0, where Θ0 is a subset of
Θ, and θ0 ∈ Θ0.

Identifiability result
Suppose that Assumption A1 holds. Then (θ;G) is identifiable in the model  = {Pθ,G :
dPθ,G/d(ν × μ) = p(·; θ,G), θ ∈ Θ, G ∈ }, where p(·; θ,G) is given by (1). This result can be
proved by verifying the definition. Details can be found in a technical report available from
the authors.

Proof of Theorem 1
If Ĝθ denotes the maximizer of G ↦ Ln(θ,G), the score function takes the form ℙn Rh = Ĝθ
{sn (x; θ, Ĝθ)h}, where

With the asymptotic tightness of Ĝn not hard to verify, and with the Glivenko-Cantelli
properties of the involved functions, shown in our technical report, we can establish the
consistency by the Helly selection theorem.

Proof of Theorem 2
The proof mainly involves checking the conditions of Theorem 3.3.1 of van der Vaart &
Wellner (1996). A critical step is to show that σ ψ0 is continuously invertible and onto, which
can be established by using Lemma 25.93 of van der Vaart (1998).
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