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Summary

Marine nematodes that carry sulfur-oxidizing bacteria
on their cuticle (Stilbonematinae, Desmodoridae)
migrate between oxidized and reduced sand layers
thereby supplying their symbionts with oxygen and
sulfide. These symbionts, in turn, constitute the
worms’ major food source. Due to the accessibility,
abundance and relative simplicity of this association,
stilbonematids may be useful to understand symbio-
sis establishment. Nevertheless, only the symbiont of
Laxus oneistus has been found to constitute one
single phylotype within the Gammaproteobacteria.
Here, we characterized the symbionts of three yet
undescribed nematodes that were morphologically
identified as members of the genus Robbea. They
were collected at the island of Corsica, the Cayman
Islands and the Belize Barrier Reef. The surface of
these worms is covered by a single layer of morpho-
logically undistinguishable bacteria. 18S rDNA-based
phylogenetic analysis showed that all three species
belong to the Stilbonematinae, although they do not
form a distinct cluster within that subfamily. 16S
rDNA-based analysis of the symbionts placed them
interspersed in the cluster comprising the sulfur-
oxidizing symbionts of L. oneistus and of marine
gutless oligochaetes. Finally, the presence and phy-
logeny of the aprA gene indicated that the symbionts
of all three nematodes can use reduced sulfur com-
pounds as an energy source.

Introduction

Marine nematodes that live a few centimetres below the
surface of sandy bottoms may carry sulfur-oxidizing
bacteria (SOB) within their body as endosymbionts
[Astomonema (Ott et al., 1982; Vidakovic and Boucher
1987; Giere et al., 1995; Musat et al., 2007) and Parasto-
monema (Kito, 1989)] or on their surface as ectosym-
bionts. The latter belong to the subfamily Stilbonematinae
and consist of the genera Adelphus Ott 1997, Catanema
Cobb 1920, Eubostrichus Greef 1869, Laxus Cobb
1894, Leptonemella Cobb 1920, Robbea Gerlach 1956,
Squanema Gerlach 1963 and Stilbonema Cobb 1920
(reviewed in Ott et al., 2004a,b). The worms migrate
between oxygenated, upper sand layers and anoxic, sul-
fidic, deeper ones (Ott et al., 1991) allowing the bacteria
to obtain the oxygen they need as e- acceptor and the
sulfur compounds (e.g. hydrogen sulfide, thiosulfate) as
e- donor (Polz et al., 1992; Hentschel et al., 1999). Stable
carbon isotope incorporation experiments showed that
the ectosymbionts are the major components of their host
diet (Ott et al., 1991).

Symbionts are probably acquired from the environ-
ment because unhatched early embryos of Laxus
oneistus are symbiont-free (Silvia Bulgheresi and Joerg
A. Ott, in preparation). Environmental transmission
would also enable nematodes to re-establish their sym-
biotic coat every time they replace their cuticle with a
newly synthesized one. This process, known as molting
or ecdysis, occurs several times during worm develop-
ment. Moreover, Robbea sp.1 and sp.3 symbiont 16S
rDNAs were detected in sand and seawater by poly-
merase chain reaction (PCR) and fluorescence in situ
hybridization (FISH) with 16S rRNA-specific primers. As
for the mechanisms of symbiont recruitment from the
environment, we showed that the Ca2+-dependent
lectin Mermaid mediates symbiont–symbiont and worm–
symbiont attachment in L. oneistus (Bulgheresi et al.,
2006).

Up to the present study only the symbionts of L.
oneistus have been shown to belong to one single phylo-
type of Gammaproteobacteria closely related to the
endosymbionts of marine gutless oligochaetes (Polz
et al., 1994) and of Astomonema sp. (Musat et al., 2007).
Although a molecular characterization of the large, multi-
nucleated, filamentous symbiont of Eubostrichus dianae
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has been attempted, its 16S rDNA could not be amplified
by PCR (Polz et al., 1999).

In this study, we molecularly characterized three asso-
ciations involving stilbonematids which we assigned to the
genus Robbea (Gerlach, 1956; 1963) based on their mor-
phological characteristics. We collected Robbea sp.1 in
the Mediterranean Sea from a subtidal sand patch close
to a Posidonia oceanica seagrass meadow near Calvi
(Corsica, France), and Robbea sp.2 and Robbea sp.3 in
the Caribbean Sea from shallow back-reef sandbars at
Little Cayman Island (Cayman Islands) and Carrie Bow
Cay (Belize) respectively. We first analysed the phyloge-
netic position of the worms by making clone libraries of
their 18S rRNA genes. We then characterized the sym-
bionts associated with each species by cloning their
respective 16S rRNA genes. To confirm that the latter
were indeed derived from the ectosymbionts, we applied
FISH on whole worms. Finally, the cloning and phyloge-
netic analysis of a gene that is involved in sulfur metabo-
lism support the sulfur-oxidizing nature of the Robbea
symbionts.

Results and discussion

Morphological and 18S rDNA-based molecular
characterization of Robbea nematodes

The genus Robbea was established by Gerlach (1956). It
is characterized by a clearly set off and muscle-rich distal

part (corpus) of the tripartite pharynx. Moreover, all males,
except in Robbea caelestis, are provided by a row of
ventromedian suckers in the postpharyngeal region which
are supposed to be copulation-helping organs (J.A. Ott,
unpubl. data; Fig. 1A, C, E and G and asterisks in
Fig. 1F). The number of suckers is constant and species-
specific. Because each of the three nematodes charac-
terized in this study had a tripartite, muscle-rich pharynx
and carried a row of ventromedian suckers, we assigned
them to the genus Robbea. Nevertheless, they did not
form a monophyletic lineage within the Stilbonematinae
(Chromadorea) in our 18S rDNA-based phylogenetic
reconstruction (Fig. 2). It is therefore conceivable that
their distinctive morphological traits evolved several times
independently. Alternatively, supplementary sequence
information from the 28S or Internal Transcribed Spacers
(ITS) rDNA or from mitochondrial genes might be needed
to support the genus Robbea at the molecular level.

Robbea sp.3 and Stilbonema majum were the only
stilbonematids which showed the highest 18S rDNA
sequence similarity with one another, while co-occurring
in the same collection site, the Belize Barrier Reef. The
18S rDNAs of Robbea sp. 2, however, showed the highest
sequence similarity with that of stilbonematids collected in
an extremely distant geographical location.

Each nematode is covered by a single morphotype of
symbionts: Robbea sp.1 and sp.2 display coccoid bacte-
ria c. 1.5 mm wide (Fig. 1B and D respectively) whose
shape and arrangement are reminiscent of kernels on a

Fig. 1. Photomicrographs of the anterior
regions of fixed Robbea sp.1 (A), Robbea
sp.2 (C) and Robbea sp.3 (G) and scanning
electron microscopy (SEM) photographs of
their respective symbionts (B, D, H and I).
Black arrows point to the beginning of the
suckers’ row on each worm in (A), (C) and
(G), while white arrows point to dividing
symbionts in (B), (D) and (I). (E) and (F)
are SEM photographs of one individual
bacteria-free sucker, and two symbiont-coated
suckers (asterisks) of Robbea sp.3,
respectively. Scale bar is: 25 mm in (A) and
(C); 1.5 mm in (B) and (D); 3 mm in (E); 8 mm
in (F); 40 mm in (G); 2 mm in (H); 0.6 mm in (I).
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E                F
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corn cob. Robbea sp.3 is covered by spindle-shaped rods
c. 2 mm long (Fig. 1F). These assume different orienta-
tions with respect to the worm’s surface, with some stand-
ing perpendicularly, as observed for L. oneistus, and
some laying horizontally. In Robbea sp.1 and sp.2, the
symbionts appear to divide transversally (arrows in
Fig. 1B and D respectively). In Robbea sp.3 they divide
longitudinally (arrows in Fig. 1H and I), a special mode of
binary fission also exhibited by L. oneistus symbionts
(Polz et al., 1992; 1994). Concerning the length of the
microbial coat, only the anterior-most region of Robbea
sp.3 and the very tip of the tail are symbiont-free. In
Robbea sp.1 and Robbea sp.2, instead, the coat starts a
short distance behind the anterior end, coinciding with a
reduction in the worm diameter to accommodate the sym-
bionts. This last feature is also displayed by L. oneistus.
As in all other known stilbonematids, the Robbea sym-
bionts are densely packed and appear bright white in
incident light, probably due to inclusions of elemental
sulfur (Himmel et al., 2009).

Robbea symbionts belong to the marine nematode and
oligochaete symbionts cluster

Robbea symbiont 16S rDNA clones were randomly picked
and comparison of their complete sequences showed that
they could be assigned to three distinct clone groups
belonging to the Gammaproteobacteria, with a sequence
similarity within each clone group � 99.8%. In our 16S
rDNA-based phylogenetic reconstruction (Fig. 3) the
three obtained gammaproteobacterial 16S rDNAs clus-
tered with those of the symbionts of L. oneistus, of the
nematode Astomonema sp., and of all known marine
gutless oligochaetes (Inanidrilus and Olavius spp.). This

nematode–oligochaete symbiont cluster is most closely
related to the SOB from the family Chromatiaceae
(> 90%). It is intriguing that, although free-living, some of
these sulfur purple bacteria engage in symbiotic associa-
tions with unrelated bacteria in phototrophic consortia
(Tonolla et al., 2000; Overmann, 2002).

Our phylogenetic reconstruction shows that the
three Robbea symbionts (16S rDNA sequence identity
� 97.1%) do not form a distinct group within the
nematode–oligochaete sulfur-oxidizing symbionts cluster
(16S rDNA sequence identity � 95.4%). Moreover, nema-
tode symbionts cannot be consistently grouped according
to the geographical origin of their hosts and probably did
not speciate in concert with their hosts. Phylogenetic
incongruence between host and symbiont is typical of
horizontally transmitted symbioses (Moran and Baumann,
2000), and was also observed for marine gutless oli-
gochaetes and their sulfur-oxidizing symbionts (Dubilier
et al., 2001; Blazejak et al., 2006; Musat et al., 2007).

To confirm that the gammaproteobacterial 16S rDNA
sequences derived from the Robbea symbionts, we
carried out FISH with the symbiont-specific probes
Rca470, Rss457 and Rhs465, for Robbea sp.1, sp.2 and
sp.3 respectively (Table 1). All the bacteria attached to the
worms were triple stained by the eubacterial probe
EUB338, by the Gammaproteobacteria-specific probe
GAM42a and by the respective specific probe (Fig. 4). In
contrast, no FISH signal was detectable with the negative
control probe NON338 or with a Betaproteobacteria-
specific probe (data not shown). This indicates that the
bacteria covering each of the three Robbea species
belong to one single phylotype and that no additional
bacteria are present. This is consistent with the electron
microscopy analysis, which shows only one bacterial mor-

Fig. 2. 18S rDNA-based consensus phylogenetic tree based on maximum parsimony and Treepuzzle analysis showing the relationship of the
Robbea worms (in bold) with other Stilbonematinae and other Chromadorea. Treepuzzle support values are depicted above the respective
branches and maximum parsimony bootstrap values below the branches. Only Treepuzzle support values above 75% and parsimony
bootstrap values higher than 70% are displayed. The scale bar represents 10% estimated sequence divergence.
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photype on each Robbea worm, and with our highly
homogeneous 16S rDNA libraries.

aprA gene analysis of stilbonematid-associated bacteria

To gain evidence that Robbea symbionts are indeed SOB,
we cloned a fragment of the gene encoding for the alpha
subunit of the adenosine-5′-phosphosulfate (APS) reduc-
tase (aprA), an enzyme involved in sulfur metabolism. The
AprA protein reduces APS to sulfite in sulfate-reducing
bacteria (SRB), but also catalyses the reverse reaction in
SOB (Hipp et al., 1997; Sanchez et al., 2001; Friedrich,
2002). By using a set of aprA-specific primers, we PCR
amplified and cloned a ~1400-nt-long fragment from
Robbea- and L. oneistus-associated bacteria. Several
clones from each aprA library were randomly picked (see
Experimental procedures) and their predicted protein
sequences used for tree calculation (Fig. 5).

The AprA sequences of bacteria associated with
Robbea sp.2, sp.3 and L. oneistus clustered together with
those of the Bathymodiolus brevior symbiont, and of some
free-living sulfur-oxidizing gammaproteobacteria and
sulfur purple bacteria [AprA-lineage I; see Meyer and
Kuever (2007b) for a definition of AprA-lineages I and II];
Robbea sp.1-associated symbiont AprA, instead, clus-
tered with those of gutless oligochaete sulfur-oxidizing
symbionts (AprA-lineage II). Notably, Robbea sp.2 and
sp.3 symbionts cluster together in both the 16SrDNA- and
aprA-based trees.

In conclusion, all the AprA sequences obtained in this
study are most closely related to SOB AprAs. This sug-
gests that Robbea symbionts oxidize sulfur compounds
as an energy source.

Conclusions

We characterized three new nematode–bacteria associa-
tions with very different geographical origins – the island
of Corsica, the Cayman Islands and the Belize Barrier
Reef. Although we cannot exclude that the three Robbea
symbionts could stably associate with other marine organ-
isms, our data show that each Robbea sp. is always
coated by one characteristic symbiont phylotype. The
basis of this conclusion is that each 16S rDNA and each
aprA library was highly homogeneous and that the sym-
bionts of each species were reproducibly stained by a
symbiont 16S rDNA-specific FISH probe. Accordingly,
electron microscopic analysis revealed that individuals of
each Robbea sp. are always coated by the same, char-
acteristic bacterial morphotype.

Our 18S rDNA-based tree shows that all three nematode
species are stilbonematids, albeit additional worm nuclear
and/or mitochondrial DNAsequence information is needed
to confirm the genus Robbea at the molecular level.

Intriguingly, the 16S rDNAs of the stilbonematid
symbionts are tightly grouped with those of mouthless
oligochaetes. One explanation is that nematodes and oli-
gochaetes co-occur in shallow-water sandy bottoms and
they are all exposed to a similar pool of environmental
bacteria. This habitat potentially promoted the establish-
ment of these associations several times in the course of
the evolution and at many different geographical loca-
tions. In this scenario, nematodes and oligochaetes
recruited similar bacteria from this shared habitat as pro-
spective symbionts. Sequencing of one or more stilbone-
matid symbiont metagenome(s) might unveil molecular
adaptations shared by the oligochaete and nematode
sulfur-oxidizing symbionts.

Fig. 3. 16S rDNA-based phylogenetic tree based on Treepuzzle analysis showing the relationship of the Robbea symbionts (in bold) with
other stilbonematid and oligochaete symbionts, as well as other bacteria belonging to the Chromatiaceae and other vestimentiferan and
mussel symbionts. Treepuzzle support values are depicted above the respective branches and maximum parsimony bootstrap values below
the branches. Only Treepuzzle support values above 75% are displayed. The scale bar represents 10% estimated sequence divergence.
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The fact that Robbea-associated bacteria harbour
SOB-like aprA genes indicates that they gain energy from
oxidation of reduced sulfur compounds. Moreover, their
white appearance supports their capacity to store elemen-
tal sulfur. Migration of Robbea nematodes between deep
and superficial sand layers, as observed for L. oneistus
(Ott et al., 1991), would alternatively supply their sym-
bionts with reduced sulfur compounds and oxygen. In the
absence of oxygen, symbionts might use nitrate to respire
sulfide (Hentschel et al., 1999), while they could resort
to their sulfur stores when sulfide is unavailable in the
environment.

In turn, the Robbea worms might feed on their sym-
bionts. Stable isotope incorporation experiments and
electron microscope analysis of the gut microbiome indi-Ta
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Fig. 4. Fluorescence in situ hybridization (FISH) confocal
microscope photographs of Robbea sp.1 (A–D), Robbea sp.2
(E–H) and Robbea sp.3 (I–L) symbionts attached to the worm
surface. Each single symbiont is triple stained with a eubacteria-
specific probe (green), a Gammaproteobacteria-specific probe
(blue), and a symbiont-specific probe (red). (D), (H) and (L) are
overlay pictures of (A)–(C), (E)–(G) and (I)–(K), respectively.
Scale bar is 2 mm.
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cate this to be the case for other stilbonematids (Ott et al.,
1991). Cloning of other symbiont genes involved in sulfur
metabolism and carbon fixation, and transmission elec-
tron microscopy of the symbionts coupled with multi-
isotope imaging mass spectrometry will shed light on their
physiology.

The geographical distribution of the three Robbea nema-
todes characterized in this study appears to be restricted to
the respective collection sites. One future task will be to
investigate if the stilbonematid symbionts can be found
only in the host habitat, as in the case of tube worms
(Harmer et al. 2008) and lucinid mussels symbionts (Gros
et al., 2003) or, instead, are widely distributed throughout
the oceans and can survive without their hosts.

Another key question is how specific ectosymbionts are
recruited from the environment by different stilbonematid
species. In this respect, we plan to identify which reper-
toires of Mermaid isoforms are expressed by the Robbea
worms and to compare them with each other and with
those of L. oneistus. An exciting outcome could be that
expression of a characteristic lectin repertoire by each
stilbonematid species underpins acquisition and mainte-
nance of a specific bacterial coat.

Experimental procedures

Specimen collection

Robbea sp.1 was collected in July 2007 from a subtidal sand
patch close to a P. oceanica seagrass meadow in c. 2 m
depth in the harbour of the Station de Recherches Sous-
Marines et Océanographiques (STARESO), Calvi, France
(42°34′49″N, 8°43′27″W). Robbea sp.2 was collected in
October 2006 in c. 1 m depth from a shallow water back-reef
sand bar off Point of Sand Beach on Little Cayman, Cayman
Islands (19°42′08″N, 79°57′46″W). Robbea sp.3 was col-
lected in November 2007 in c. 1 m depth from a shallow water

back-reef sand bar off Carrie Bow Cay, Belize (16°48′11″N,
88°04′55″W). The worms were extracted from the sand by
shaking it in seawater and pouring the supernatant through a
63-mm-pore-size mesh screen. Single individuals were then
picked by hand under a dissecting microscope. Robbea sp.1
and Robbea sp.3 worms were fixed either in ethanol, for DNA
extraction, or in 1% osmium tetroxide in seawater, for FISH
(Rinke et al., 2006), and then stored in ethanol at -80°C.
Robbea sp.2 worms were flash frozen in liquid N2 and stored
at -80°C either unfixed (for DNA extraction) or upon methanol
fixation (for FISH).

Scanning electron microscopy

Worms were pre-fixed in a 2.5% glutaraldehyde, 0.1 M sodium
cacodylate, 2% sucrose solution, rinsed with 0.1 M sodium
cacodylate buffer, and post-fixed in a 1% osmium tetroxide,
0.1 M sodium cacodylate, 2% sucrose solution. After alcohol
dehydration, worms were gold sputter coated and viewed
through a Philips XL 20 scanning electron microscope.

DNA extraction and PCR amplification of 18S rDNA

We extracted and purified the DNA from single Robbea
worms as described previously (Schizas et al., 1997) and 2 ml
was used as a template for each PCR. A fragment of the
Robbea sp.1 18S rRNA gene was amplified by PCR with
the general eukaryotic primers 1f (5′-CTGGTTGATYCTG
CCAGT-3′; Winnepenninckx et al., 1995) and 2023r
(5′-GGTTCACCTACGGAAACC-3′; Pradillon et al., 2007).
Cycling conditions were 94°C for 4 min; 94°C for 45 s, 49°C
for 30 s, 72°C for 1 min 45 s 35¥; 72°C for 10 min. The PCR
product was 1779 nt. Robbea sp.2 18S rRNA was amplified
with the general eukaryotic primers 1f (see above) and 18SE
(5′-ATGATCCTTCCGCAGGTTCAC-3′; Perotto et al., 2000)
and Robbea sp.3 18S rRNA was amplified with primers 1f
and 2023r. Cycling conditions were: 95°C for 5 min; 95°C for
45 s, 48°C for 45 s, 72°C for 2 min 35¥; 72°C for 10 min. The
PCR product was 1755 nt for Robbea sp.2 and 1783 nt for
Robbea sp.3.

Fig. 5. Phylogenetic reconstruction based on Treepuzzle analysis of AprA sequences from the Robbea-associated bacteria (in bold). Only
support values above 75% are displayed. The scale bar represents 10% estimated sequence divergence.
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DNA extraction and PCR amplification of 16S rDNA

Symbionts were washed off a deep-frozen pellet of 500
Robbea sp.2 individuals with 50 ml of ddH2O. The 50 ml was
then transferred to a fresh 1.5 ml tube and incubated at 94°C
for 10 min. Five microlitres of this solution was directly used
as a template for PCR. For Robbea sp.1 and Robbea sp.3,
DNA was extracted from single worms as described (Schizas
et al., 1997), and 2 ml each was used as a template for PCR.
For all Robbea worms, PCR was performed using the eubac-
terial primers 616V (5′-AGAGTTTGATYMTGGCTC-3′;
Juretschko et al., 1998) and 1492R (5′-GGYTACCTTGTT
ACGACTT-3′; Kane et al., 1993). The PCR programme for
Robbea sp.2 and sp.3 was: 94°C for 5 min; 94°C for 45 s,
47°C for 45 s, 72°C for 1 min 30 s 35¥; 72°C for 10 min.
Cycling conditions for Robbea sp.1 were: 94°C for 4 min;
94°C for 45 s, 49°C for 30 s, 72°C for 1 min 45 s 35¥; 72°C
for 10 min. Each PCR product was 1499 nt.

DNA extraction and PCR amplification of APS
reductase (aprA) gene

We extracted and purified the DNA from single Robbea
worms as described previously (Schizas et al., 1997) and
2 ml was used as a template for each PCR. To amplify
a c. 1400 nt aprA (adenosine phosphosulfate reductase
alpha subunit) gene fragment we used the primers AprA-
1-FW (5′-TGGCAGATCATGATYMAYGG-3′) and AprA-10-RV
for Robbea sp.1-associated bacteria (5′-CKGWAGTAGWAR
CCRGGRTA-3′) and AprA-11-RV (5′-CKGYRRTAGTAKCCS
GGCCA-3′) for Robbea sp.2- and Robbea sp.3-associated
bacteria, as described (Meyer and Kuever, 2007a,b).

Cloning

All PCR products were gel purified and cloned into pCR2.1-
TOPO using the TOPO TA Cloning Kit (Invitrogen Life Tech-
nologies, Germany).

We randomly picked and fully sequenced: 8, 7 and 6 clones
of the 18S rDNA fragments obtained by Robbea sp.1
(EU768870), sp.2 (EU76887) and sp.3 (EU784735) respec-
tively; 13, 19 and 11 clones of the 16S rDNA fragments
obtained by Robbea sp.1 (EU711427), sp.2 (EU711426) and
sp.3 (EU711428) respectively; 24, 31 and 21 clones of the
aprA gene fragment from Robbea sp.1 (EU864035), sp.2
(EU864037) and sp.3 (EU864039), respectively. Sequences
were aligned and compared with CodonCode Aligner 1.6.3
software.

Phylogenetic analysis

For each Robbea species, the sequences of the symbiont
16S rDNA and the worm 18S rDNA were compared with
sequences in GenBank by using BLASTN, the AprA sequences
by using BLASTP (Altschul et al., 1990). Phylogenetic analysis
was carried out using the ARB program package (Ludwig
et al., 2004). We used TreePuzzle 5.0 to evaluate the phylo-
genetic position of each Robbea worm and its respective
symbiont. For 18S rDNA-based phylogenetic reconstruction,
we also used the maximum parsimony method and con-

structed a consensus tree. Similarity matrices were calcu-
lated using the similarity matrix option in the neighbour joining
field of the ARB software package.

For tree calculations, we applied a 50% conservation filter
and we used only sequences longer than 1450 bp for host
phylogeny and longer than 1325 bp for symbiont phylogeny.
Sequences of Priapulus caudatus (AF025927) and Halycrip-
tus spinulosus (AF342790) for the host 18S rDNA tree and
sequences of Alkalimnicola halodurans (AJ404972), Nitro-
coccus mobilis (L35510) and Methylohalobius crimeensis
(AJ581837) served as out-groups for the symbiont 16S rDNA
tree.

For the AprA protein tree, we aligned selected members of
SOB, sulfate-reducing prokaryotes (SRP) and the stilbone-
matid symbiont sequences using T-coffee (Notredame et al.,
2000). We applied a 50% conservation insertion deletion
(indel) filter for tree calculation and members of the AprA
lineage I (Meyer and Kuever, 2007b) served as out-groups.

Fluorescence in situ hybridization (FISH)

We designed FISH probes by using the ARB PROBE_DE-
SIGN tool (see Table 1) and confirmed their specificity by
comparing them with all available sequences in GenBank,
SILVA, Greengenes. Probes were fluorescently labelled on
their 5′ end (Thermo, Germany). FISH was performed
according to Manz and colleagues (1992). Briefly, fixed
nematodes (n = 30) of each Robbea sp. were incubated at
46°C in hybridization buffer containing the respective FISH
probes [0.9 M NaCl, 20 mM Tris·HCl (pH 8.0), 0.001% SDS;
refer to Table 1 for incubation time, formamide percentage
and probe concentration]. Unspecific bound probe was
subsequently removed by incubating at 48°C for 15 min in
appropriate washing buffer. Nematodes were mounted in
DAPI Vectashield (Vector Labs) and examined using a Leica
TCS-NT confocal laser scanning microscope.
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