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Microarray technology provides an opportunity to view transcriptions at genomic level under different conditions controlled
by an experiment. From an array experiment using a human cancer cell line that is engineered to differ in expression of tumor
antigen, integrin a6f34, few hundreds of differentially expressed genes are selected and are clustered using one of several standard
algorithms. The set of genes in a cluster is expected to have similar expression patterns and are most likely to be coregulated and
thereby expected to have similar function. The highly expressed set of upregulated genes become candidates for further evaluation
as potential biomarkers. Besides these benefits, microarray experiment by itself does not help us to understand or discover potential
pathways or to identify important set of genes for potential drug targets. In this paper we discuss about integrating protein-
to-protein interaction information, pathway information with array expression data set to identify a set of “important” genes,
and potential signal transduction networks that help to target and reverse the oncogenic phenotype induced by tumor antigen
such as integrin a634. We will illustrate the proposed method with our recent microarray experiment conducted for identifying
transcriptional targets of integrin w634 for cancer progression.

Copyright © 2009 R. Loganantharaj and J. Chung. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
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1. Introduction

A micro-array experiment is conducted to study expression
profiles of genes in a specimen under different experimental
conditions, or over several different time periods. It serves
many purposes that include (1) developing a predictive com-
putational model which can be used to predict biomarkers
and targets for cancer therapy, (2) gaining some insight on
gene regulation when a microarray experiment is conducted
in different time points, (3) gaining insight on the genes that
may be involved in a situation or disease under investigation,
(4) understanding or refining protein-in-protein interaction
networks, and (5) annotating uncharacterized genes. In
a recent review article on the applications of microarray,
Troyanskaya [1] provides some details on the items 2, 4, and
5. Statistical tests are conducted to filter valid signals first and
then a subset of genes called differentially expressed genes
is selected based on their relative strength or weakness of

expression levels with respect to their reference expression
values. The differentially expressed probes, which roughly
correspond to genes, are reduced to few hundreds while the
total number of probes of an experiment is in the order of 20
to 50 thousands.

The set of highly expressed genes are considered to
be candidates for biomarkers in a microarray experiment.
It is quite difficult to single out the best biomarkers
by viewing expression level alone partially due to noise
or some association by “guilt” By integrating microarray
expression data with other information pertaining to the
protein behavior we can improve the quality of decision
on biomarkers as has been proposed by Camargo and
Azuaje in [2]. Similarly we vcan gain better insight into
gene regulation by associating gene expression with protein
interaction network with known cancer related pathways.

A significant volume of works has been done that relates
or combines microarray data sets and protein-to-protein
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TaBLE 1: The high ranking 14 up regulated genes based on the fold
changes. For each gene in the list the connectivity in the protein
interaction network G is given. None of the ranked upregulated
genes are hub nodes.

Genes Fold changes Connectivity in G
IL8 5.63 11
S100A3 4.86 4
SOX4 4.54 2
SLCO4A1 4.12 2
MAGEH1 3.77 9
AKRIC1 3.72 2
MADI1L1 3.45 21
1L24 3.35 1
HSPA6 3.25 13
NRCAM 3.18 10
COLo6A1 3.07 5
ASPH 3.03 2
TUSC3 2.98 1
PEGI10 2.87 1

interaction networks. Based on the expected outcome, these
works may be characterized into (1) annotating unchar-
acterized genes, (2) refining protein-to-protein interaction
network, (3) predicting protein to protein interaction, and
(4) refining potential biomarkers from array expression.
Integrating protein interaction network information with
expression data sets along with other information pertaining
to a gene has been used [3-7] for annotating uncharacterized
protein. In the recent work of Nariai et al. [6], probabilistic
approach has been used to integrate protein to protein
interaction, array expression, protein motif, gene knockout
phenotype data, and protein localization data for predicting
the function of an uncharacterized genes.

Microarray expressions data has also been used for
refining protein to protein interaction networks. Zhu et al.
[8] have used coexpressed genes from microarray data set
to filter the neighbors of protein in an interaction network
to enhance the degree of functional consensus among the
neighbors.

Array expression data sets are used for predicting protein
to protein interaction [9, 10]. Recently Soong et al. [10]
have used microarray expression to predict protein to protein
interaction. A pair of proteins is represented by a feature
vector consisting of a concatenation of expression modes or
profiles of those proteins along with the Pearson correlation
of the expression profiles of these two proteins. They have
demonstrated the predictability of using support vector
machine with protein to protein interaction of yeast data sets
from DIP [11] and 349 yeast microarray expression data sets
from GEO [12].

Camargo et al. [12] have integrated array expression data
set with expression data for refining potential biomarkers.
Their work has some overlapping with our current approach
in selecting hub nodes from interaction network and com-
bining with array expression data sets. Their focus, however,
was only on refining the biomarkers derived from array
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expression as opposed to providing insight into potential
signal transduction pathways or any other intermediate
activities that are not revealed in an array expression.

We take a different approach that compliments the
strength of interaction data sets and array expression data
sets. The array data sets capture the expression levels at
different experimental conditions (or time points) while the
information on interaction networks represents experimen-
tally determined and as well as predicted interaction between
pairs of proteins in a two-dimensional space without paying
attention to the context, the temporal relations, or the
process. By bringing two different types of modalities of
information together, we believe we can discover some
important genes that may have played important roles in the
final observation of the array expression.

Suppose we consider a binary case of studying the
expression pattern of a cell line of healthy and sick subjects.
Examining the differentially expressed genes provides infor-
mation on which genes are up-or downregulated, and their
expression levels. This information alone does not provide
insight into deciding interesting set of genes that are either
taking part of the progression or the cause of the disease
under consideration. We will show how to integrate gene
expression with expression patterns with protein to protein
interaction, and known genes in disease pathways to gain
insight onto a small subset of interesting genes relevant to
the disease under investigation.

To illustrate and to apply the idea of integrating microar-
ray data with protein to protein interaction network, and
disease related pathways, we use our recent microarray
study for identifying transcriptional targets of integrin a634
for cancer progression. Jun Chung and his associates have
used the affymetrix HG-U133A_2 to identify transcriptional
targets of integrin a6f4. The goal of the study is to
identify a64 transcriptional targets important for breast
cancer progression. The a6f34 integrin, an epithelial-specific
integrin, functions as a receptor for the members of the
laminin family of extra cellular matrix proteins [13, 14].
While the primary known function of a6f34 is to contribute
to tissue integrity through its ability to mediate the formation
of hemidesmosomes (HDs), there is growing evidence
suggesting that this integrin also plays a pivotal role in
functions associated with cancer progression [13, 14]. For
example, high expression of this integrin in women with
breast cancer has been shown to correlate significantly with
mortality and disease states [13, 14]. However, therapeutic
targets of breast cancer that overexpress a6f4 are not yet
well characterized. For this reason, it is essential to elucidate
the mechanism by which @64 contributes to breast cancer
progression.

We describe the data set, methods, and approaches in
Section 2. It is followed by results in Section 3. In Section 4,
we summarize and discuss the results.

2. Materials and Methods

2.1. Data. We are focusing on genes of Homo sapiens and
their expressions for this experiment. From Affymetrix site
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TaBLE 2: The high ranking 14 downregulated genes. For each gene
in the list, the connectivity in the protein interaction network G is
given. The 5 hub nodes among the ranked down regulated genes are
underlined.

Genes Fold change (inverse) Connectivity in G
HBE1 9.10 1
H1FO 7.70 7
AZGP1 7.64 3
SNCA 5.24 44
GLUL 5.13 31
TPM1 4.62 17
IGFBP7 4.54 10
MYLK 4.25 28
KCNS3 4.23 1
NGFRAP1 4.12 15
DGKI 3.97 1
ILIRAP 3.92 14
THBS1 3.70 36
MAP1B 3.65 1

at http://www.affymetrix.com/, we have downloaded the
annotations (HG-U133A _2.na22.annot) for the genes that
are tested in a microarray experiment.

The gene expression data is from our recent microarray
experiment using the affymetrix HG-U133A_2 to identify
transcriptional targets of integrin a6f4. Our study here
describes the gene expression profile obtained from MDA-
MB-435 mock transfectants (w634 negative human cancer
cell line) and MDA-MB-435 34 integrin transfectants (a634
positive human cancer cell lines). Out of oligonucleotide
probe sets representing approximately 22 277 genes, expres-
sion of 4 integrin in MDA-MB-435 cells up regulated 149
genes by twofold or higher. 193 genes are down regulated
by over two fold change. We anticipate that microarray data
will lead to not only the identification of a6f34 target genes
that are important for breast cancer cell growth, survival, and
invasion, but also the discovery of signaling pathways leading
to the expression of these genes.

The protein to protein interaction databases include
MIPS [15], DIP [11], BIND [16, 17], GRID and 12D [18].
Noise is often a factor in many protein to protein interaction
dataset. To minimize the noise and its impacts on the final
outcome, we apply ensemble-based method for selecting
the interaction. That is, by applying majority voting on
interacting pairs from different the database, we can improve
the accuracy and minimize the errors in their interaction
information. 12D provides experimentally determined and
predicted protein to protein interaction with easy to use
interface, and thus we have downloaded 12D [18] for homo
sapiens genome.

2.2. Data Preprocessing. Suppose we are gathering protein
to protein interaction from different sources each with their
own accuracy. By combining the results of independent
test or source that has prediction accuracy over 50%, we
can obtain prediction accuracy better than any one method

alone. Suppose we have n independent sources each with
some predefined fixed prediction accuracy, say p. Without
loss of generality, let us assume # is an odd number. By
accepting the decision of majority predictors among #, the
combined accuracy is given by the following formula:

n .

prediction_accuracy = » ( ,)pi(l -p)" (1)
i=k \ !

where k = [(n/2).

Suppose nine independent predictors each with pre-
diction accuracy 0.65 are combined by majority votes, the
combined prediction accuracy becomes 0.83.

12D [18] collects and maintains protein to protein
interaction from various sources and we have downloaded
the interaction information pertaining to Homo Sapiens.
By applying the majority votes, we have minimized some
plausible noise in the data set.

The microarray experiment was repeated three times
and in each repetition the expressions of genes under the
following two conditions are measured: (1) integrin negative
cell line (control), and (2) integrin positive cell line. Out of
the 22277 genes we have selected only 8512 genes that have
valid signal in all measurements. The average of the log ratio
between the integrin positive and the control expression in
all the repetitions is taken as the expression of a gene. From
the expressions, we could create different expression patterns
based on the values such as up regulated fold changes over
2 to 3, 3 to 4, and over 4. Among the down regulated
genes, we may have the similar groups. For simplicity, we
have taken only two patterns, namely, up regulated and
down regulated genes. The up regulated genes are those that
have fold changes (log of the ratio 2) over 1 and the down
regulated are those that have the fold changes (log of the ratio
0.5) less than —1.

2.3. Methods. We have downloaded human protein to pro-
tein interaction networks from 12D, which have 13 560 genes
that have connectivity from 1 to 694. The connectivity or
degree of a node is defined as the number of edges connected
to the network and we consider each edge as bidirectional
connection. As expected, the interaction follows the scale free
distribution. For the purpose of integrating the interaction
network with the microarray expression data set, we have
extracted a subnetworks from the whole networks that
interact with the differentially expressed genes from the
experiment. The selected sub networks, which we refer to as
G, have 2186 genes including the 190 differentially expressed
genes, and 3130 edges. A view of Graph G is shown in
Figure 1 as created by Navigator [19]. The up and down
regulated genes are shown in red and green, respectively, and
the size of each node corresponds to the degree of interaction
of that node in the graph.

In a typical microarray analysis, the differentially
expressed genes are ranked based on their fold changes and
the first few of them as taken as important. We feel that using
expression fold change alone to determine the importance
of a gene is quite weak. We take a different approach in this
paper for discovering a set of important genes under a given


http://www.affymetrix.com/

Journal of Biomedicine and Biotechnology

FIGURE 1: A view of protein to protein interaction associated with the differentially expressed genes. We refer to this graph as G.

experimental condition. We create the subgraphs, say G, of
protein to protein interaction networks that is associated
with the differentially expressed genes from the microarray
experiment. It is generally believed that the connectivity of
nodes in G roughly reflects the importance of the gene in
the interaction [20]. We found that even the network G has
the property of a typical scale free network indicating only a
small fraction of the node has large connectivity.

2.3.1. Selecting a Set of Important Genes Based on Topological
Structure. In the recent work, Jeong et al. [20] and Twe
et al. [21] have suggested that essential proteins are over
represented among those proteins having high degree of
connectivity, which can be attributed to the central role
in mediating interactions among numerous, less connected
proteins. Hub nodes in an interaction network are defined
as a set of nodes with very high degree of interaction with
neighbors and the corresponding threshold for connectivity
is defined quite arbitrarily. Vallabhajosyula et al. [22] have
studied the issue on selecting hub nodes and the impacts
on their functional significance, but unfortunately they were
unable to provide and prescriptive definition or method on
selecting hub nodes. They, however, stated that the nodes
with relatively high degree of interaction are likely to have
very high functional significance. In the literature, we found
that people have applied varying criteria in selecting the
threshold for hub nodes; for example, Batada et al. [23] have
defined hub nodes as those connect to over 90% or 95% of
the nodes in the network. Biasing from the finding in [22]
that the top few percentage of nodes with high degree of

interaction has better functional significance, we selected the
hub nodes; those that are in the top 3% of the nodes ranked
based on the decreasing order of connectivity.

We also believe that important genes must also play a
role in the stability of the network, that is, removal of such
node will break the network into disconnected subnetworks.
An articulation node in a graph plays the role of connecting
or keeping the graph together and the removal of such node
separates the graph into subgraphs. Thus the hub genes that
play articulation role in an interaction network seem to have
more functional significance.

A minimum spanning tree is acyclic graph that connects
all the nodes in a network such that the summation of cost in
all the edges is minimal and thus eliminates redundant paths
among the nodes. A node with high degree of connectivity
in minimum spanning tree will indeed play an important
role. In a protein interaction network the edge cost is taken
to be 1 and we construct a minimal spanning tree using
Kruskal’s algorithm [24]. We selected the hub nodes from
the minimum spanning tree and consider them as important
genes too.

As described above, three set of potentially important
nodes can be selected from the following different methods:
(1) hub nodes from the interaction networks, (2) hub nodes
from the set of articulation nodes, and (3) hub nodes from
the minimum spanning tree. The nodes satisfying condition
2 are indeed a subset of those satisfying condition 1 and
hence we have only two distinct conditions, namely, 2 and
3. We define a set of important genes; those that satisfy either
conditions 2 or 3.
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FIGURE 2: The minimum spanning tree of the network associated with cancer pathway genes. The backbone of the tree is shown. Up-and

down regulated genes are shown in red and green color.

2.3.2. Important Genes Based on Pathways and Interaction.
Pandey Lab at the Johns Hopkins University and the
Institute of Bioinformatics [25] maintains experimentally
determined ten cancer signaling pathways for Homo Sapiens,
namely, EGFR1, TGE beta Receptor, TNF, alpha/NF-kB,
a6P4 Integrin, ID, Hedgehog, Notch, Wnt, AR, and Kit
Receptor. We have obtained the genes in each of the ten
cancer pathways and extracted sub network, say G, from
the interaction network that interacts with any genes in the
cancer pathway. The important nodes of G, include the ones
from the three following methods or sources.

(1) Hub nodes of Gp.
(2) Hub nodes of the articulation nodes of Gy,.

(3) Hub nodes of the minimum spanning tree created
from G,.

The nodes satisfying condition 2 are indeed a subset
of those satisfying condition 1 and hence we have only
two distinct conditions, namely, 2 and 3. The important
nodes related to cancer pathway are those that satisfy either
condition 2 or 3.

Besides examining the important nodes in each graph, we
can examine the cliques or near cliques for similar functional
association of genes. Han et al. [26] along with many other
researchers have used cliques or near cliques in an interaction
network to find functional group of genes. A clique is a fully
connected subgraph of a graph and find cliques in a network
is computationally intractable. For many practical purposes,
near cliques are computed.

3. Results

From the microarray experiment, we have two different
expression patterns, namely, up-and downregulated genes.
The up regulated genes are those that have valid signal across
three trials and have expression level over 2 times that of the
reference gene. Similarly the down regulated genes are those
that have valid signal across three trials and have inverse
expression level over 2 with respect to the reference gene.
We list the first 14 up and down regulated genes of our
experiment in Table 1. We combined the gene expression
with gene interaction by selecting subset of the interaction
graph that associates with all the differentially expressed
genes. The selected subgraphs, which we refer to as G, have
2186 genes including the 190 differentially expressed genes,
and 3130 edges. Note that there is no single hub node among
the 14 high ranking up regulated nodes of G. On the other
hand, there are 5 hub nodes among the high ranking down
regulated nodes. There seems to be no correlation among the
hub nodes of an interacting graph with highly up or down
regulated genes.

From the graph G, we select the set of important genes
based on topological structure, which involves selecting the
hub nodes and following the procedures described in the
previous section. The cutoff connectivity for the hub nodes
in G is 16 and there are 60 hub genes out of 2186 genes. Out
of the 60 hub nodes, 49 are from the differentially expressed
genes (12 of them are up regulated and the rest are down
regulated). The graph G has 200 articulation genes and out of
which 60 satisfy the hub condition (degree 16 or above). The
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BCL2L1

F1GURE 3: The cliques or near cliques from the cancer pathway related network G;,. The up-and downregulated genes are shown in red and

green, respectively.

minimum spanning tree of G was constructed assuming the
edge cost is 1. The nodes with connectivity 9 or better in the
minimum spanning tree satisfy the hub node property. The
minimum spanning tree has 77 hub genes and out of which
17 of them are up regulated and 46 are down regulated. In
agreement with conditions 2 and 3 in Section 2, 57 genes are
selected as important ones out of which 12 are up regulated
and 35 are down regulated. These genes are listed in Table 3.

To discover the important genes related to cancer, we
have extracted a sub network, which we call G, from
G such that each node in G, is directly associating with
any one of the genes in cancer pathways that include
EGFRI1, TGE beta Receptor, TNF, alpha/NF-kB, Alpha6
Beta4, Integrin, ID, Hedgehog, Notch, Wnt, AR, and Kit
Receptor pathways. The genes in these curated pathways
for human are downloaded from their web portal [25]. We
found 24 nodes in the network with connectivity 12 or
better satisfy the hub node property. The pathway related
network G, has 132 articulation genes out of which 23 are
hub genes. The minimum spanning tree of G, is constructed
and the backbone of the minimum spanning tree is shown
in Figure 2. The minimum spanning tree has 200 genes and
17 out of these genes have connectivity 4 or better satisfy the
hub node property. By combining all these three set of hub
genes using ensemble method, we have created the important
genes related to pathways and are presented in Table 4.

Besides examining the important genes in Gy, the cancer
pathway related network, we searched for cliques or near
cliques in the network to examine functionally related genes.
The cliques from the network Gy, is shown in Figure 3.

Let us examine the interaction among important genes
based on topological structure (from Table 3) and between
the highly expressed genes from Table 1. The interaction is
shown in Figure 4.

The direct interaction among the genes identified as
important nodes due to the known cancer pathways is shown
in Figure 5.

4. Summary and Discussion

In this paper we have presented a general method for inte-
grating microarray expression with other complementary
information related to gene function so that we can under-
stand and infer information about the set of genes that we
are interested. Particularly we focused on integrating protein
interaction information and pathway related information
with microarray expression. We have applied the proposed
general methodology to our recent microarray experiment
to discover potential drug target that may lead to novel
anticancer therapeutics.

Quite a large body of research works is done in
integrating expression data with interaction network and
other data sets. Many of the works fall into one or some
combination of the following categories: (1) annotating
uncharacterized genes, (2) refining protein to protein inter-
action network, (3) predicting protein to protein interaction,
and (4) refining potential biomarkers from array expression.
The presented work here has some overlaps with the recent
work of Camargo et al. [2], which involved in integrating
expression data set with expression data set for refining
potential biomarkers of array expression and to annotate
uncharacterized genes. They have used hub genes of the
interaction network to refine biomarkers of the expression
data sets.

The interaction network of Homo sapiens is scale free,
that is there are few nodes having very high degree of
interaction and facilitate other nodes in mediating their
functions. Even the subnetwork of the interaction network
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RBL2
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D2
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SOD2 RRM2
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MYLK

FIGURE 4: The interaction between the top 14 up regulated genes from Table 1 with the set of important genes based on network topology
(Table 3). The red one represents the gene from Table 1. The green colored ones are down regulated and the red and purple ones are up

regulated.

TNFRSFIA

BID

RRM2
SOD2
GRB10
ETS1
MREIIA
ATM
CHEK1

FIGURE 5: The interaction between the top 14 up regulated genes from Table 1 with the set of important genes based on pathway (Table 4).
The red one represents the gene from Table 1. The green colored ones are down regulated and the red and purple ones are up regulated.

that has direct interaction with differentially expressed genes
is found to be having the properties of scale free network.
Hub nodes in an interaction network are defined as a set of
nodes with very high degree of interaction with neighbors
and the corresponding threshold for connectivity is defined
quite arbitrarily. Biasing from the finding in [22] that the
top few percentage of nodes with high degree of interaction
has better functional significance, we selected the hub nodes;
those that are in the top 3% of the nodes ranked based on the
decreasing order of connectivity.

From the Homo sapiens interaction network, we have
extracted a sub network called G that is associated with the
differential expressed genes of our microarray experiment.
Hub nodes in an interaction network are important and we
selected the first set of hub nodes from G. A set of articulation
nodes, which plays the role of stability of the network, is also
important. We selected a set of articulation nodes from G. We
have constructed a minimum spanning tree from G and we
have selected a set of hub nodes from the minimum spanning
tree. We created important set of genes based on topological



TasLE 3: The important set of genes based on topological structure
of interaction network. Selecting the nodes that satisfy condition 2
(the articulation nodes among the hub nodes of the network) and
condition 3 (the hub nodes of the minimum spanning tree). The
inverse of fold changes for down regulated genes is shown. Thus the
table includes the genes that are not considered in the experiment
or neither up-or downregulated.

Gene Regulation Fold change
CPNE1 Up 2.63
CTSB Up 2.78
CTSD Up 2.00
MADILI Up 3.45
MEF2C Up 2.21
PCM1 Up 2.01
PRKAR2B Up 2.80
PSMD7 Up 2.01
PTPN1 Up 2.06
RBL2 Up 2.62
RGS20 Up 2.20
SOD2 Up 2.10
ADSL Down 2.23
ATM Down 2.09
BID Down 2.09
CASP1 Down 3.07
CBLB Down 2.32
CCNB2 Down 2.32
CDC7 Down 2.17
CHEK1 Down 2.06
CTTN Down 2.63
DDX17 Down 2.13
DGCR14 Down 2.04
ETS1 Down 2.50
FOS Down 2.94
GLUL Down 5.13
GNAQ Down 2.39
ID2 Down 2.86
MACF1 Down 2.05
MREI1A Down 2.61
MYLK Down 4.25
NEDD4 Down 2.01
PAFAHI1B2 Down 2.57
PPFIA1 Down 2.41
PRKAB2 Down 2.56
PRSS23 Down 2.47
RAB27A Down 2.74
RAB8B Down 2.27
RPL31 Down 2.08
RRM2 Down 2.32
SMARCBI1 Down 2.14
SNCA Down 5.24
TGFB2 Down 2.06
THBS1 Down 3.70
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TasLE 3: Continued.

Gene

Regulation

Fold change

TNFRSF1A
TPM1
XRCC6
DDX19B
*GRINL1B
*HIST2H3PS2
*NA

*RET
*RPL35A
**SMC2
**SMC4
**TPI1
**TUBA4A

Down
Down
Down

Down

2.13
4.62
2.08
2.09

*These genes are neither up-or downregulated, nor considered in the

experiment.

**These genes are from interaction network that satisfy conditions 2 and 3.

TaBLE 4: The important genes of network associated with genes
in cancer pathways. These genes are obtained by combining three
sets of hub genes from interaction network, articulation nodes,
and from the minimum spanning tree of G,. We show the specific
pathway a gene is involved with.

Genes Regulation Pathway
CTSB Up

CTSD Up Tgf beta,ar
PSMD7 Up

PTPNI1 Up

RBL2 Up Tgf beta
SOD2 Up Tnf_alpha
ATM Down

BID Down Tnf_alpha
CASP1 Down Tnf_beta
CBLB Down

CCNB2 Down Tgf beta
CHEK1 Down

ETS1 Down Tgf beta,tnf_alpha
FOS Down Whnt,ar,kit
GRB10 Down ar

D2 Down Tgf beta,ar
MREI11A Down

NEDD4 Down Tgf beta
RRM2 Down Egfrl

SNCA Down

TGFB2 Down Egfrl,tgf_beta,tnf _alpha,ar
THBS1 Down Tgf_beta, tnf_alpha, id,wnt
TNFRSF1A Down Tgf_beta,notch,kit
XRCC6 Down
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structure of the interaction network. The hub nodes alone in
isolation do not reveal any useful information. Similarly the
highly ranked up or down regulated genes by themselves do
not provide any clue into any potential signaling pathways
either.

On the other hand, when we combine the set of
important genes based on the interaction topology from
Table 3 and the set of highly expressed genes from Table 1, we
started to get some insight into potential signal transduction
pattern as shown in Figure 4. The highly expressed gene from
the experiment NRCAM, neuronal cell adhesion molecule,
is directly interacting with another gene NA (neurocantho-
cytosis) which is recognized as an important gene from the
topology and mediating the down regulation of the following
set of tumor suppression genes, CHEK1 [27], XRCC6 [28],
SMARCB [29], and ATM [30]. The gene NA acts as a
hub gene among the set of important genes and it directly
interacts with SMARCB and XRCC4, which directly interacts
with CHEK1 which in turn directly interacting with ATM. It
is notable that down regulation of these tumor suppressor
genes by integrin a6f4 has a significant implication in
cancer biology. Poor prognosis has been associated with
over expression of integrin a64 and our analysis revealed
that loss of these tumor suppressor genes could attribute to
malignant phenotype of cancer cells.

Impact of this study lies in the identification and
targeting molecular aberrations specific to cancer cells. Many
recent studies with targeting a single agent turned out to be
a disappointment. This could partly be due to the inability
to identify signaling network or loop which is positively or
negatively regulated around the single target. To meet this
important challenge, a number recent studies are analyzing
cancer cell lines and tissue samples to measure alterations
at the gene, RNA, and protein level to identify markers and
targets for the therapy. While these studies will produce a
large amount of data whose analysis is critical in order to
understand cancer at the molecular level. For example, a
similar microarray analysis of MDA-MB-435 cells that are
engineered to differ in integrin a6f4 expression by Chen
et al. leads to the identification of couple of invasion and
metastasis related genes such as ENPP2 [31] and S100A4
[32]. What makes our study unique from these works is
that we are in a position to identify genes and proteins
that are functionally connected to drive malignant properties
rather than focusing a single gene because targeting these
sub networks will inhibit cancer cell functions important
for progression. For example, we found the potentially
important a6f34 target genes associated with cancer pathway
as summarized in Table 4. Those genes are associated with
TGEF- [33], TNF-« [34], and EGFR1 pathways [35], whose
roles in cancer progression have been well established.

In summary, the integration of interaction network with
expression of a6f4 integrin in MDA-MB-435 cancer cells
reveals the importance of NRCAM, which we would not have
discovered with the expression information alone. Further,
the interaction network in Figure4 helps us to under-
stand how the tumor suppression genes CHEK1, XRCC6,
SMARCB, ATM, CHEKI1 were down regulated by integrin
a6B4. Finally, we envision the discovery of interaction

network triggered from tumor antigen such as integrin a634
will lead to the development of novel anticancer therapeutics
by targeting signaling molecules associated with interaction
network.
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