
Refining Homology Models by Combining Replica-Exchange
Molecular Dynamics and Statistical Potentials

Jiang Zhu†,1, Hao Fan‡,$,1, Xavier Periole‡, Barry Honig†,*, and Alan E. Mark‡,§,*

† Howard Hughes Medical Institute and Columbia University, Department of Biochemistry and
Molecular Biophysics, Center for Computational Biology and Bioinformatics Columbia University,
1130 St. Nicholas Avenue, Room 815, New York, NY 10032, USA ‡ Groningen Biomolecular
Sciences and Biotechnology Institute (GBB), Department of Biophysical Chemistry, University of
Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands § School of Molecular and
Microbial Sciences, and the Institute for Molecular Biosciences, University of Queensland, St
Lucia, QLD 4072, Australia

Abstract
A protocol is presented for the global refinement of homology models of proteins. It combines the
advantages of temperature-based replica-exchange molecular dynamics (REMD) for
conformational sampling and the use of statistical potentials for model selection. The protocol was
tested using 21 models. Of these 14 were models of 10 small proteins for which high-resolution
crystal structures were available, the remainder were targets of the recent CASPR exercise. It was
found that REMD in combination with currently available force fields could sample near-native
conformational states starting from high-quality homology models. Conformations in which the
backbone RMSD of secondary structure elements (SSE-RMSD) was lower than the starting value
by 0.5 to 1.0 Å were found for 15 out of the 21 cases (average 0.82 Å). Furthermore, when a
simple scoring function consisting of two statistical potentials was used to rank the structures, one
or more structures with SSE-RMSD of at least 0.2 Å lower than the starting value was found
among the 5 best ranked structures in 11 out of the 21 cases. The average improvement in SSE-
RMSD for the best models was 0.42 Å. However, none of the scoring functions tested identified
the structures with the lowest SSE-RMSD as the best models although all identified the native
conformation as the one with lowest energy. This suggests that while the proposed protocol
proved effective for the refinement of high-quality models of small proteins scoring functions
remain one of the major limiting factors in structure refinement. This and other aspects by which
the methodology could be further improved are discussed.
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INTRODUCTION
To understand the function of a protein at the atomic level the availability of an accurate
three-dimensional model is essential. Where an experimentally determined structure is
unavailable, structure prediction techniques can often provide sufficient information for
many purposes. Despite the substantial progress in ab initio structure prediction,1,2
homology modeling is still the most reliable and widely used approach to obtain high-
quality structural models for a given target protein assuming that a suitable template
structure can be identified by sequence similarity.3–7 However, the extent to which current
homology models can be used with confidence is unclear.6 This is in part due to alignment
errors, but primarily due to the lack of effective methods that can be used to refine the
structural models obtained.8–10

Alignment quality has improved significantly over recent years with the introduction of the
PSI-BLAST11 technique and methods that combine profile-profile sequence
comparisons12–19 and structural information.20–35 Nevertheless, problems associated with
insertions, deletions and misalignments remain common especially when there is only a
remote relationship between the query and the template sequence. These in turn lead to
errors in the homology model, including errors in the packing of side chains, poorly defined
conformations of loops, and distortions or shifts in secondary structure elements (SSEs). A
number of recent studies began to address the alignment errors either by exploring
alternative alignments36–38 or by searching for reasonable conformations during the model
building step.39 In addition to errors stemming from the alignment procedure, there are also
unavoidable errors in any homology model due to the fact that the query sequence and the
template are by definition different. In principle, this means that all homology models must
be refined. It appears optimal to divide the structure refinement process into two stages
depending on the type of error to be addressed. First, local structural errors involving side
chains, loops and SSEs are detected and removed while the overall structure of the backbone
is kept fixed. Second, the protein backbone, which normally is taken directly from the
template, is adjusted in an effort to improve the global fold.

Global structural refinement requires both an efficient means to sample conformational
space and a means to accurately identify near-native structures.40 While energy
minimization (EM) has been used in a number of studies to optimize the initial model,41–43
molecular dynamics (MD) simulation is the most commonly used sampling technique in
refinement studies. In contrast a wide variety of different approaches have been used to
attempt to select near-native conformations. For example, Lee et al44 were able to select a
near-native structure (1.8 Å Cα RMSD) from a MD-generated ensemble starting from a
model of 2.8 Å RMSD with respect to the experimental structure using a MM-PBSA free
energy function. Lu and Skolnick45 used repeated cycles involving short MD simulations
followed by scoring using a statistical potential to refine low-resolution ab initio models of
30 small proteins. Fan and Mark46,47 studied the utility of extended MD simulations in
water and a combination of MD together with a heuristic chaperon approach for the
refinement of model structures generated using ROSETTA. Flohil et al48 used a simple
knowledge-based algorithm to select structures from a series of restrained MD simulations
in an attempt to refine three homology models from CASP3. Krieger et al49 optimized an
all-atom force field that was used to refine 25 models which on average moved 0.1 Å closer
to their native structures.

Despite occasional successes, the main conclusions that can be drawn from these studies are
that 1) only conformations close to the initial structure are sampled using standard MD
techniques (unless long time scales used) and that 2) the ability of the currently available
scoring functions to distinguish near-native from compact non-native structures must be
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improved.47 Most recently, Chen and Brooks50 applied the replica-exchange molecular
dynamics (REMD) technique with a generalized Born (GB) solvent model51,52 to the
refinement of 5 CASPR (the Continuous CASP Model Refinement Experiment) models.
Alternative refinement procedures that do not depend on MD as the search engine have also
been developed primarily in the context of ab initio structure prediction. Baker and co-
workers2 for example reported encouraging results for 5 of 16 small proteins using a
refinement protocol in which multiple rounds of random torsion-angle perturbation and
Monte Carlo (MC) relaxation were performed on low-resolution models built from a set of
sequence homologues of the target protein using the standard fragment insertion approach
from ROSETTA.53 Another method based on fragment assembly and MC simulation is
TASSER,54 which has been applied to the refinement of NMR structures55 and dimeric
structural models.56 Recently, these ab initio approaches have also been applied to the
refinement of homology models. Misura et al57 attempted to refine a series of homology
models using a version of ROSETTA in combination with evolutionarily derived distance
constraints. They found that in 22 out of 39 cases a model that is closer to the native
structure than the template over the aligned regions could be found within the 10 lowest-
energy models. However, this method was very computationally intensive with the
refinement of one model requiring 90 CPU days. In addition to the approaches outlined
above, a number of methods that employ statistical potentials or empirical scoring functions
to select the near-native models from an ensemble of homology models have been
developed.37,38,43,58,59

In this article, we investigate the utility of a refinement protocol that combines replica-
exchange molecular dynamics (REMD) as the primary sampling technique with series of
different statistical potentials to select the best models. Temperature-based REMD has been
shown to lead to enhanced sampling with respect to standard MD simulation techniques and
has been extensively used in peptide folding simulations as well as for the refinement of
NMR models.60–64 In particular we have shown that the efficiency of temperature-based
REMD results from a combination of enhanced sampling and conformational sorting among
the temperature range.65 Statistical potentials are widely used in various applications such
as decoy discrimination,66–69 model evaluation70–74 and loop prediction.75,76 In a
previous study, we applied a recently developed statistical potential (DFIRE)68 to the
refinement of segments of proteins with considerable success.77 The refinement protocol
proposed in this study has been tested using models generated for 10 small proteins. In total
14 models were generated with duplicate models being generated for 4 of the 10 proteins.
The backbone RMSD of SSEs (SSE-RMSD) for these models ranged from 1.76 to 2.73 Å.
Another 7 models from the Continuous CASP Model Refinement Experiment (CASPR)
were also included in the analysis. This extended the range of SSE-RMSD values to between
1.33 and 4.14 Å. Overall we find that REMD was the most effective of the range of
sampling strategies investigated and that a simple combination of two statistical potentials
appeared to be as accurate as two ROSETTA-based scoring functions.53

MATERIALS AND METHODS
Test sets

Two sets of models have been used to test the refinement protocol. The first set was
specifically generated for this study in order to effectively test the refinement protocol. For
these models it was required that a high-resolution crystal structure be available for the
target structure, that a suitable template structure be available, that the proteins be of
manageable size, and that the native structure is stable in the force field used. In order to
generate these models the following five-step procedure was used. First, 68 proteins were
selected from a database of 974 high-resolution (< 1.60 Å) crystal structures.77 Proteins
were selected if they had between 70 and 100 residues and there were no gaps or missing
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atoms in the structures. Second, a list of templates was identified for each protein and
sequence alignments generated using HMAP,32 a fold-recognition method that combines
sequence and secondary structure profiles. Third, a structural model was built for each
template using Nest,78 a model building program that combines rigid-body assembly and
torsion-space optimization. Fourth, the models were compared to the corresponding
experimental structures and only models for which the SSE-RMSD was in the range 1.0 to
3.0 Å were retained. After this stage only models for 17 proteins of the original 68 remained.
Finally, a 5 ns MD simulation at 300K starting from the experimentally determined (native)
structure was performed for each of these 17 proteins. The GROMACS package79–81 was
used to perform the MD simulations and the protocol is described in detail below in the
section on “Conformational sampling”. Only models for those proteins for which the
secondary structure elements were very stable in the simulations (SSE-RMSD < 1.5 Å) were
retained (see Table I). For these 10 proteins the SSE-RMSD of the models ranged from 1.5
to 3.0 Å with respect to the native structure. For most proteins only one model was obtained,
however, for four proteins 1cy5, 1mfg, 1r6j and 1wm3 two models were obtained giving 14
models in total. The second set of models against which the protocol was tested consisted of
7 CASPR targets obtained from http://predictioncenter.org/caspR. These proteins range in
size from 70 to 138 residues. The coordinates for side chains not present in the crystal
structures of the CASPR targets were generated using SCAP82 and gaps in the structure
modelled using LOOPY.83 Together, the two sets provided a total of 21 models for 17
proteins (Table I). As can be seen from Figure 1 these proteins have different topologies,
secondary structure compositions and shapes. Only one protein, 1k5n, contained any
disulfide bonds. In this case, the disulfide bond in the crystal structure was satisfied in the
predicted model.

Refinement Protocol
The refinement protocol consisted of three phases: 1) the identification and correction of
local structural errors, 2) the sampling of conformational space around the original model
using REMD (or other MD procedures), and 3) the selection of native-like structures using a
variety of statistical potentials and scoring functions.

Local structural evaluation and correction—The purpose of this step was to identify
and correct local structural errors that occurred in side chains, loops and SSEs. First, the
local quality of the model was assessed using two statistical potentials and an empirical
energy function each of which provide a normalized quality score per residue. These were
the DFIRE potential,68 an inverse Born radius (IBR)-based environmental potential (Zhu
and Honig, in preparation) and a tabulated soft-core van der Waals potential.84 The per-
residue quality score was plotted against residue number and structural details were
inspected visually for residues with scores above 2.0. Side chains, loops and segments
deemed to be problematic were remodelled without reference to the native structure. Side
chains were repacked using SCAP,82 loops remodelled using LOOPY83 and alternative
SSE conformations were generated using SegSam.77 The local quality of the resulting
structures was then revaluated to ensure an improvement in the quality of the model. Finally,
the entire model structure was energy minimized (EM) using minimize.x within the TINKER
package.85 For this minimization an all-atom OPLS force field was used together with an
implicit solvation model that combines mAGB model86,87 and a surface term.88

Conformational sampling—After local refinement, the 21 models were simulated using
REMD in explicit water using a modified version of the GROMACS package.79–81 In the
REMD scheme,61 a number of independent simulations (replicas) are performed
simultaneously at temperatures ranging from T1 to TM, where M is the number of replicas.
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At regular intervals, the temperatures of neighbouring replicas i and j are exchanged
according to the following Metropolis criterion:

(1)

where β is the reciprocal temperature, 1/kBT, with kB the Boltzmann constant T, the
temperature (K) and E is the potential energy of the system. By allowing replicas to explore
a range of temperature space, REMD enables the system to cross energy barriers and access
regions of conformational space that would be rarely sampled at standard temperatures.

The GROMOS96 43a1 force field89,90 was used in all simulations. The protonation state of
the ionizable amino acids was set appropriate for pH 7.0 assuming standard pKas. No
counter-ions were added to neutralize the system. Each model was solvated in a rhombic
dodecahedron box using the SPC water model.91 The minimum distance between the solute
and the wall of the unit cell was 10 Å. A twin-range method was used to calculate the non-
bonded interactions. Interactions within the short-range cutoff of 9 Å were updated every
step while interactions within the long-range cutoff (14 Å) were updated every 5 steps
together with the pairlist. A reaction field correction92 was applied to the electrostatic
interactions beyond 14 Å, using a dielectric constant for water of 78. Covalent bonds in the
proteins were constrained using the LINCS algorithm93 and the geometry of the water
molecules was constrained using the SETTLE algorithm.94 A time step of 2 fs was used.
The protein-water system was first minimized using the steepest descent method and then
equilibrated by performing a 100 ps MD simulation with positional restraints on the heavy
atoms of the protein. The restrained MD simulations were performed at a constant
temperature of 300 K and a constant pressure of 1 bar by coupling to an external heat and an
isotropic pressure bath.95 In the REMD simulations, the target temperatures for the replicas
were determined between 280 and 320 K, using the method proposed by Garcia and
Sanbonmatsu.62 For each protein model, the solvated system was equilibrated at five
temperatures, T = 275, 287, 300, 312 and 325 K. The averaged energies E from the five
simulations were fitted by a polynomial of T. Finally eq. 1 was solved iteratively between
280 and 320 K using P(exchange) ≈ 0.20. The 21 protein models with different numbers of
replicas (Table III) were subjected to 5 ns REMD at constant (N, V, T) with exchanges
attempted every 1 ps. Snapshots were stored every 2.5 ps, which led to a total of 2000
conformations per replica (temperature). The conformations corresponding to the 5 lowest
temperatures (e.g. for 1fm0 T = 276.4, 279.5, 282.6, 285.7, 288.9; for 1vm0 T = 276.4,
278.0, 279.5, 281.1, 282.7) were subjected to further analysis.

Two additional sampling protocols based on conventional MD were also tested in addition
to the REMD approach and served as controls. The first was a single long simulation 50 ns
in length. The second was a series of short independent simulations (10×5 ns). The control
simulations were performed at 300K using the same parameter settings as those used in the
REMD simulations. Different initial velocities were, however, generated for each
simulation.

Model selection using statistical potentials—The main scoring function used for
model selection, RAPDF/HB, was a combination of two statistical potentials: a modified
version of the RAPDF potential that uses the conditional probability reference state
proposed by Samudrala et al66 together with the distance binning procedure of DFIRE by
Zhou et al,68 and a modified version of the orientation-dependent hydrogen bonding
potential of Kortemme et al.96 Both RAPDF and DFIRE are atom-based, distance-
dependent pairwise potentials that can be used to evaluate atom-atom interactions within a
given protein structure. In our implementation of the hydrogen bonding potential, 13
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hydrogen bonding patterns were explicitly defined according to the secondary structure type
and location (backbone or side chain) of the donor and acceptor. A potential-of-mean-force
(PMF) table was then derived for each of these patterns based on the statistics of a database
of high-resolution crystal structures. Note, these statistical potentials do not distinguish
between cysteines that are protonated and those that form disulfide bonds. The physical
energy functions used in this study do distinguish between these two cases. The
contributions of the two scores were combined using a scaling factor of 1.0 for the RAPDF
score and a factor of 5.0 for the hydrogen bonding score. These weight factors were chosen
so that the two terms made a comparable contribution to the final score. They were not
optimized to give the best performance on this dataset.

Two alternative scoring functions were taken from the ROSETTA package and tested for
comparison
(http://depts.washington.edu/ventures/UW_Technology/Express_Licenses/Rosetta). The all-
atom form of the ROSETTA scoring function53 contains seven terms, including rama
(Ramachandran torsion preferences), LJ (Lennard-Jones interactions), hb (hydrogen
bonding), solv (solvation), pair (residue pair interactions such as electrostatics and
disulfides), dun (rotamer self-energy) and ref (unfolded state reference energy). One of the
functions tested was the default ROSETTA score containing all the energy terms as
described by Kuhlman et al. (ROSETTA_soft).97 In this function, the softened Lennard-
Jones (LJ) potential option was used to compensate for the differences between the atom
radii used in the MD simulations (GROMOS96 43a1) and those used in ROSETTA
(CHARMM2298). As an alternative, a subscore of the ROSETTA scoring function
(“bk_tot” in the ROSETTA output) was used to evaluate the models (ROSETTA_sub). This
function contains the same energy terms as in ROSETTA_soft except for the rama and ref
terms. In addition, the normal as opposed to the softened LJ potential was used. The
standard weighting factors were used for all terms in this function.

In the model selection, only conformations present in the 5 lowest temperatures (starting
from ~280 K) of the REMD simulation were subjected to the model selection by the
RAPDF/HB, ROSETTA_soft and ROSETTA_sub scores. The SSE-RMSD was used to
evaluate the relative effectiveness of the three scores in selecting the most appropriate
models. Note that the secondary structure elements were as defined as in the corresponding
crystal structure.

RESULTS
Local structural evaluation and correction

In Table II the SSE-RMSD values and the percentage of problematic residues before and
after local structure correction are listed. In general, local structure correction did not have a
major effect on the SSE-RMSD (± 0.1 Å) but significantly reduced the percentage of
residues with a quality score greater than 2.0. In cases where a high percentage of residues
(> 30%) were problematic such as for 1opd, 1xmt, 1tvg and 1xg8, the SSE-RMSD of the
model did increase after local structure correction and energy minimization. This reflects the
low quality of the models and the difficulty of performing manual adjustments in such cases.
For the models of 1gxu and 1whz, which had ~30% problematic residues, the SSE-RMSD
was improved after model correction and minimization. These two models also show
marked improvement after conformational sampling using REMD and model selection. In
most cases the secondary structure elements were held fixed during the process of local
structural correction. However, for the models 1opd and 1xg8, in which 61.18% and 83.33%
of the residues were considered problematic, respectively, SegSam77 was used to generate
alternative conformations for those secondary structure elements that contained a high
percentage of residues with quality scores > 2.0. Conformations with improved quality
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scores were selected but, as indicated by the SSE-RMSD values in Table II, such
adjustments resulted in a deterioration of the model in a global sense.

To illustrate how the local structural errors were identified and corrected the potential scores
for the model of 1urr are plotted in Figure 2 before and after local structure correction. Two
spatially related regions, residues 22 to 24 and residues 47 to 49, were considered
problematic. As can be seen in Figure 3a residue R23 (charged) is buried within the protein
in contact with two hydrophobic residues, F22 and V47. After repacking (Figure 2b), R23′ is
exposed to water and is roughly in the same position and orientation as in the native
conformation. In addition, there is a small rotation of the benzene ring of F22 resulting in
the orientation of both F22 and V47 becoming more native-like. Another region, residues 67
to 70 is marked by high van der Waals scores but not recognized by the other two potentials,
suggesting a simple violation in local geometry. Therefore, no reconstruction but only the
minimization was performed which resulted in a large improvement in the van der Waals
scores.

Conformational sampling with REMD
The main criterion used to evaluate the sampling efficiency was the SSE-RMSD with
respect to the native structure (see Table III). For 15 out of the 21 cases investigated the
lowest SSE-RMSD (RMSDmin) was more than 0.5 Å lower than that of the starting structure
(RMSDinit). On average the improvement of SSE-RMSD was 0.82 Å. This suggests that
REMD is an effective method to obtain near-native conformations. Conformations that were
more than 0.2 Å closer to the native structure than the starting structure were found for all
models except 1vla. The structure 1vla corresponds to the hydroperoxide resistance protein
OsmC. OsmC is a domain-swapped dimer in which the two monomers are arranged head-to-
head.99–101 In the absence of the second monomer there is a significant change in the
orientation of the N-terminal domain with respect to the large C-terminal domain.

The range of SSE-RMSD values observed as indicated by the difference between the values
of RMSDmin and RMSDmax shows that a wide variety of conformational states were
sampled in the REMD simulations. The percentage of conformations closer to the native
state than the initial model varied greatly between the different models. In one case (1fm0)
the majority of the conformations sampled (~64%) were closer to the native structure than
the starting structure. However, on average only 22.3% of the conformations sampled had
SSE-RMSD values lower than that of the starting structure. For 5 of the 21 cases less than
10% of the conformations sampled were closer to the native state than the original model.

Factors affecting REMD sampling
The model of 1mfg-1 was used to illustrate possible effects of the simulation protocol on the
sampling efficiency. This model was selected because of its poor enrichment in lower SSE-
RMSD conformations (3.0%). Three REMD protocols were tested. First, to determine the
reproducibility of the results the simulations were rerun with different initial random atomic
velocities. The temperature series were the same as in the original REMD simulation. In the
second and third protocols, four additional replicas were used to either extend the range of
temperature or reduce the temperature gap between replicas. The temperature series for
these two protocols were derived using the same rules as for the standard protocol. The
lowest SSE-RMSD found using the three protocols were 2.13, 2.16 and 2.03 Å, while the
enrichment of lower SSE-RMSD conformations was 4.4, 7.1 and 8.0% respectively. The
increase in the number of replicas appears to have had the greatest effect on sampling.

To illustrate possible effects of the initial conformation and the secondary structure
composition of the protein on the extent of sampling in a REMD simulation, a series of
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simulations were performed starting from the native structures of three proteins, 1cy5, 1urr
and 1k5n, using the same protocol that was used during the refinement of models. The three
proteins simulated have distinct secondary structure compositions. As can be seen from
Table I and Figure 1, 1cy5 is an all α protein, 1urr is an α+β protein and 1k5n is an all β
protein. In addition, 1k5n has a disulfide bond that holds the two planar β-sheets tightly
against each other. The mean SSE-RMSD values were 1.47, 0.94 and 0.84 Å, and the
standard deviation of SSE-RMSD value was 0.69, 0.24 and 0.14 Å for 1cy5, 1urr and 1k5n,
respectively. For 1cy5 and 1urr the range of conformations sampled is much smaller when
starting from the native conformation than when starting from the model (see Table III). In
the case of 1k5n, the sampling is clearly affected by the disulfide bond in both the native
structure and the model. The effect of the secondary structure composition, if any, was
small. The results suggest that on the time scale investigated the conformations sampled
using REMD are largely determined by the initial conformation of the system.

Comparison of REMD and other MD-based protocols
The efficiency of two other MD sampling protocols was also investigated. The sampling
protocols consisted of either a single long simulation or multiple short simulations. Table IV
compares the results obtained using these approaches to those obtained using REMD with
respect to two measures – the lowest SSE-RMSD and the enrichment of conformations with
SSE-RMSD values lower than that of the original model. In the case of the single 50 ns
simulation, the results were poor. Less than 2% of the conformations sampled had lower
SSE-RMSD values than the initial model. Only in five cases 1gxu, 1mfg_2, 1r6j_2, 1wm3_2
and 1whz were a significant number of conformations with SSE-RMSD values lower than
the original model sampled. Interestingly, in all of these five cases the starting SSE-RMSD
was below 2.0 Å. Performing multiple short MD simulations was significantly better than a
single long trajectory. In 14 of the 21 cases, the lowest SSE-RMSD found in the multiple
simulations was more than 0.5 Å lower than the starting value and on average 17.1% of
conformations sampled had a SSE-RMSD less than the starting model. A two-way analysis
of variance (ANOVA) was used to examine if the differences in the results obtained using
multiple MD and REMD were statistically significant. It was found that in terms of the
lowest SSE-RMSD sampled the difference was not statistically significant (P=0.65).
However, in terms of the enrichment, the probability of the results coming from the same
distribution was only 5.0% (P=0.05) suggesting that REMD was still a more effective
approach.

In Figure 4 the SSE-RMSD is plotted as a function of the simulation time for three MD-
based sampling protocols. 1opd and 1whz were selected as illustrative examples because
they differ markedly in the quality of the initial models. 1opd has relatively low quality with
a SSE-RMSD value of 3.22 Å while 1whz is a near-native model with a SSE-RMSD of 1.69
Å. As can be seen from Figure 4, the three protocols exhibit very distinct patterns. The
apparent discontinuities in the RMSD in the REMD trajectory (lowest temperature)
correspond to exchanges of the replica (conformation) with the one present at the next
higher temperature. In the case of 1opd, low-RMSD conformations (<2.5 Å) are only
sampled between 1 and 2 ns. In the case of 1whz near-native conformations are sampled
throughout the simulation. In addition to the frequent exchange of conformations, a slow
increase of SSE-RMSD was observed for 1mfg_1, 1wm3_2, 1vla and 1xg8, for which the
percentage of lower-RMSD conformations is below 10% (results not shown). In the single
long MD simulation, conformations tended to drift away from sampling near-native states
after a few to tens of nanoseconds. This was observed for all models except 1mfg_2. In this
case the SSE-RMSD decreased significantly from 1.75 to 0.87 Å during the last 10 ns
simulation. Using multiple short MD simulations the range of SSE-RMSD values explored
was comparable to the REMD simulations. However, an ANOVA analysis suggested that
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statistically REMD was still better than multiple short MD simulations with respect to the
enrichment in lower-RMSD conformations.

Selection of the best models
Table V shows the SSE-RMSD of “the best model” ranked by different scoring functions.
The best model was selected using the following procedure: First, the best scoring model in
each of the 5 lowest-temperature REMD trajectories was determined. Then taking these five
models the one with the lowest SSE-RMSD was selected as the best model. Using the
combination of two statistical potentials (RAPDF/HB) 11 models were selected with a SSE-
RMSD of at least 0.2 Å lower than the starting value. In addition less improvement (< 0.2
Å) was observed in 6 models. Using the ROSETTA_soft score, 7 models were selected with
SSE-RMSD decreased by more than 0.2 Å and 6 models with less decrease of SSE-RMSD.
ROSETTA_sub score yielded better results than ROSETTA_soft: 9 models were improved
by at least 0.2 Å and 7 models by less than 0.2 Å. On average, the improvement of the SSE-
RMSD with respect to the starting value was 0.21, 0.05 and 0.24 Å for RAPDF/HB,
ROSETTA_soft and ROSETTA_sub, respectively. A two-way ANOVA test shows that the
results from the three scores do not differ significantly (P=0.12). This suggests that a simple
combination of two statistical potentials is as effective as the ROSETTA energy function in
terms of model selection.

Based on the initial ranking generated using the RAPDF/HB function, the 100 top-scoring
REMD snapshots for each of five replicas used (500 structures in total) were selected and
subjected to the 1000 steps of energy minimization using L-BFGS truncated-Newton
optimization algorithm in conjunction with the OPLS all-atom force field and mAGB/SA
solvation model.86,87 The minimized structures were re-ranked by the RAPDF/HB
function. The SSE-RMSD of the best model selected by the same procedure as described
above is listed for each model in Table V. Using the RAPDF/HB score in the final selection,
the SSE-RMSD was improved for 14 models with respect to that before the minimization.
However, the number of models that have at least 0.2 Å SSE-RMSD improvement remained
the same, 11, after the minimization.

Correlation between scoring functions and SSE-RMSD
Figure 5 shows the RAPDF/HB, ROSETTA_soft and ROSETTA_sub scores plotted against
the SSE-RMSD for the conformations taken from the REMD simulation at the lowest
temperature investigated. Four models are presented to illustrate the types of correlation
observed. Although the different scoring functions appear similarly effective for model
selection, RAPDF/HB shows a better correlation with SSE-RMSD than do the two
ROSETTA functions. Furthermore, the correlation shown by ROSETTA_soft appears better
than ROSETTA_sub. In the case of 1opd (a low-quality model) the correlation is relatively
poor for all scoring functions except RAPDF/HB. In the latter case a gap in the energy
separates the two conformations with the lowest RMSD from the remainder. However, a
number of high-RMSD conformations became energetically more favorable after energy
minimization. This led to the selection of a structure with a SSE-RMSD of 3.27 Å using
RAPDF/HB. In the case of 1mfg_1, 1r6j_1, 1r6j_2, 1xmt and 1tvg negative correlations
between the energy and RMSD are observed. The case of 1r6j_2 is shown in Figure 5.
Although it is unclear what causes the correlations to be negative, this problem certainly has
affected the results of model selection (Table V). The case of 1vla deserves special mention
as this protein was refined as a monomer but in fact forms a domain-swapped dimer. From
Table IV it can be seen that using the three MD sampling protocols tested no conformations
with lower SSE-RMSDs than the starting model were sampled. Nevertheless, from Figure 5
it can be seen that there is in fact a very weak correlation between the RAPDF/HB score and
the SSE-RMSD (correlation coefficient 0.28). No correlation was found using the
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ROSETTA functions. The final example, 1whz, shows the highest correlation coefficient,
0.63, of all the models tested. From Table V it can be seen that after energy minimization
there was a further improvement in the SSE-RMSD from 0.91 to 0.79 Å for this model.
Positive correlations were observed for the majority of the models using the RAPDF/HB
function. After 1whz the best correlation between the energy and the SSE-RMSD was
observed for 1fm0, which also yielded the best sampling result in terms of percentage of
low-RMSD conformations.

Scoring of the native conformations
As shown in Table III, for 15 out of the 21 models the lowest SSE-RMSD sampled by
REMD is on average 0.82 Å lower than that of the starting structure. However, as shown in
Table V the scoring functions investigated here had only very limited ability to identify
conformations with the lowest SSE-RMSD values. This raises the question of whether these
scoring functions could recognize the native structure. In order to address this issue, the
RAPDF/HB score for native structure of each of the 17 proteins was calculated and
compared to the score obtained for the REMD conformation that had the lowest SSE-RMSD
and that had the lowest RAPDF/HB score (Table VI). In all cases the native structure had a
significantly lower score than any of the structures sampled in the REMD simulations. This
demonstrates that the RAPDF/HB score could in principle be used to identify near-native
structures. However, the structures with the lowest SSE-RMSD values were not ranked as
the most native-like structure by the potential. A similar analysis performed using the
ROSETTA functions yielded similar results (data not shown). Statistical potentials such as
RAPDF/HB and ROSETTA are derived from high-resolution crystal structures. These
structures are often solved using data obtained at cryogenic temperatures. In addition the
rotameric states of the side chains, bond angles and dihedral angles are usually constrained
to ideal or equilibrium values. As a consequence, these potentials are weighted toward fine
details of side chain packing and hydrogen bond geometries and perform less well when
scoring conformations from molecular dynamics simulations which contain thermal noise
and which should satisfy the experimental data only as an average over a representative
ensemble. It should also be noted that in this work the analysis is based on conformations
with low SSE-RMSD values whereas the scoring of the structures was based on the entire
molecule. Thus while the secondary structure elements in the conformations selected were
native-like, other regions of the protein may have transiently adopted less favorable
conformations. There are other possibilities such as the native well on the conformational
free energy landscape not being directly accessible from these particular near-native models.
In this case the use of alternative sampling methods such as soft-core van der Waals
potentials during the REMD simulations or Hamiltonian REMD102–104 may be more
effective than the temperature REMD alone.

DISCUSSION
The questions that can be addressed using protein structure prediction techniques depend on
the quality of predicted models.6 Although there has been significant progress in structure
prediction techniques over the last decade, two crucial problems – structure refinement and
model assessment have still not been solved. As mentioned above, it seems reasonable to
partition the structure refinement process into two phases: local refinement which primarily
involves the correction of errors in side chain packing or within loops and secondary
structure elements (SSE) and global refinement which aims at resolving differences in the
overall fold of the molecules. These two phases require different strategies and techniques
and are normally performed sequentially.105

The problem of detecting local structural errors was addressed more than a decade ago with
statistical potentials such as Verify3D70,71 and Prosa.72,73 Since then, a number of
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statistical potentials have been developed to evaluate protein structures in atomic detail.66–
69,74 Recently machine-learning techniques have been used to combine various features
such as structural properties106 and statistical potentials107 as input to predict local model
quality. In the current work the local quality of the model was first assessed using three
normalized, residue-based scoring functions, of which two are based on recently derived
statistical potentials68 (Zhu and Honig, in preparation). These three scoring functions used
in combination appear to be sufficient to identify and address most of the local errors in the
models tested. The local structural errors identified in the models were associated with the
packing of side chains, loops and SSEs. The first two types of error could be readily
corrected using existing methods.82,83 The errors within SSEs were more difficult to
address as changes in the secondary structure elements directly affected the global fold. In
this work a combination of local sampling77 with manual adjustment was used in an attempt
to correct apparent errors in SSEs. In general these changes only lowered the overall quality
of the model. This work together with other recent studies on the SSE refinement,
77,108,109 suggest that an automated procedure is preferable to manual adjustment during
local structural refinement.

The global refinement of structural models of proteins remains a major challenge. Although
progress has been marginal, a number of recent studies have attempted to address this
problem using different approaches.46,47,57,110 There are two fundamental challenges in
global refinement: 1) efficiently sampling the available conformational space and 2)
selecting near-native conformations. In this study temperature-based REMD60,61 was the
primary method used to sample the conformational space surrounding the initial model.
REMD allows exchanges between systems simulated at a range of temperatures. In principle
this enables the system to cross energy barriers that would not be possible to cross at lower
temperatures. Of equal importance on short time scales, REMD acts to sort a range of
independent simulations giving increased weight to low-energy conformations.64 The
sampling efficiency of REMD was compared to a single extended simulation and a series of
short simulations of equivalent length. Although REMD performed best of the three
strategies investigated it was only marginally more efficient than performing multiple short
MD simulations. This suggests that on the time scale simulated the potential for REMD to
enhance barrier crossings was not significant. One possibility to improve the sampling
efficiency might be to include more high-temperature replicas, in this case however it is
necessary to also include structural restraints to avoid complete unfolding as proposed by
Chen and Brooks.50 In their work, REMD simulations on a broader range of temperature
(270 – 600K) were used together with dihedral and distance restraints to maintain the
secondary structure elements and overall topology during the refinement. Another
possibility may be to use models based on alternative sequence alignments generated from
various procedures as replicas in the REMD simulation. REMD provides a general
framework through which a range of alternative sampling approaches can be incorporated
into refinement calculations,111,112 however further studies are required to demonstrate
that REMD truly enhances the sampling of native-like conformations given the limitations
in the available force fields.113,114

Even if near-native conformations can be sampled efficiently, the question of how to
identify the near-native conformations from a large ensemble of low-energy alternatives
remains. Scoring functions must be both fast and accurate. Thus while energy functions
based on molecular mechanics force fields in combination with an implicit description of
solvation effects might in principle be of sufficient accuracy to discriminate native from
non-native conformations,115 such approaches require extensive optimization of protein
structures prior to scoring, which is computationally expensive. Statistical potentials in
contrast are fast and simple to implement but can be sensitive to slight deviations from ideal
geometries. In this study we compared a combination of two statistical potentials (RAPDF/
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HB)66,96 to alternative functions from ROSETTA. The use of RAPDF as the primary
scoring function was based on the observation that RAPDF was more effective at
discriminating native from non-native structures obtained from the MD simulations while
DFIRE was more effective at discriminating between models generated in the course of
structure prediction and modeling.77,107,116 We believe this difference stems from the
differences in their respective reference state, which relates to how a random distribution is
defined in the derivation of the statistical potential. Our results also suggest that the selection
function must be compatible with the sampling protocol in order to achieve the best
performance. Incorporation of the hydrogen bonding potential was highly effective in
improving the RMSD results. Together, the RAPDF and hydrogen bonding potentials
constituted a simple but effective scoring function which could potentially be used as the
basis to develop a more sophisticated scoring function. The results from the two ROSETTA
functions examined are varied, ROSETTA_soft showed the better correlation between
energy and RMSD but was less effective in selecting the conformations with the lowest
RMSD. In this function, the rama term that accounts for the preference of backbone
dihedrals and the softened LJ term that accounts for atomic clashes in modeling appeared to
yield inappropriate rankings when applied to conformations generated using MD
simulations.

Although each of the scoring functions could discriminate the native structure from
alternative models, none of the scoring functions tested could reliably identify near-native
structures sampled during the REMD simulations. One explanation for this could be the
sensitivity of these potentials to thermal noise inherent in MD-generated structures. Another
contributing factor could be that the scoring functions were applied to the whole structures
while the structural comparisons were based on the SSE-RMSD which considers only a
subset of backbone atoms. Intuitively a global quality measure that can take into account
both backbone and side chain information117 may lead to better correlations, while the use
of coarse-grained statistical potentials that simplify side chains118 may be an alternative
approach. Independent of the scoring function, it is also possible to improve the model
selection by using a structure-clustering algorithm, which has been found to be useful in a
number of studies in ab initio structure prediction119,120 and local structural refinement.77
In our study, EM was found to improve the RMSD results for only 60% of the models. This
might be due to the inconsistency of using a physical energy function to optimize the
structures but a statistical potential to rank the minimized structures. The physical energy
function used also contains an electrostatic solvation term86,87 that will affect the structural
packing of charged and polar residues during minimization. However, none of the statistical
potentials used include such solvation effects explicitly.

In addition to conformational sampling and model selection, other factors may also play a
role in structure refinement. One factor is whether the protein forms part of a larger
complex. In this case, the model should be refined in the multimeric state. However, this can
be extremely challenging and has yet to be properly addressed in structure prediction.
Recently, Grimm et al reported a benchmark study of dimeric threading and structure
refinement,56 in which three model dimers under optimal conditions were refined. In each
case the two models were connected by a 30-glycine linker so that methodology developed
for single proteins (TASSER54) could be applied. In our study, the refinement of the
isolated monomer of 1vla, which in reality forms a domain-swapping dimer, was the only
case in which conformations with lower SSE-RMSD values than the initial model were not
sampled during the REMD simulations. Similarly, the scoring functions, which have been
primarily developed for single isolated proteins may have to be re-evaluated for use with
proteins removed from multimeric complexes. Another factor that affects refinement, in
particular the selection step, is the overall quality of the model. In our study, the REMD
protocol was an equally effective sampling protocol for both sets of models. In contrast the

Zhu et al. Page 12

Proteins. Author manuscript; available in PMC 2009 October 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



scoring functions appeared to perform better on the non-CASPR models, for which the
structure was of higher quality. Overall the refinement of small, globular and near-native
models was more successful than the refinement of irregularly shaped larger models with
relatively low quality. This was particularly evident when the RAPDF/HB function was used
for selection. The only two successful examples in the CASPR data set were 1xe1 and 1whz,
which both are small, globular structures with low starting RMSD values.

In summary, we have presented a simple but effective strategy for refining homology
models. A number of fundamental issues in structure refinement, such as conformational
sampling and model selection, have been investigated by testing alternative methods on a
data set of 21 models with various qualities. We believe that the experience gained from this
study will greatly facilitate the design of more effective strategies for global refinement.
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Figure 1.
A cartoon representation of the crystal structures of the 17 proteins used to test the global
refinement protocol. PDB entry names 1a. 1cy5; 1b. 1fm0; 1c. 1gxu; 1d. 1k5n; 1e. 1mfg; 1f.
1opd; 1g. 1r6j; 1h. 1urr; 1i. 1wm3; 1j. 1xmt; 1k. 1xe1; 1l. 1vm0; 1m. 1vla; 1n. 1whz; 1o.
1tvg; 1p. 1xg8; and 1q. 1o13.
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Figure 2.
The per-residue local quality score of the model for protein 1urr (PDB entry name) is plotted
as a function of residue number. Three normalized, residue-based scoring functions are used
in the local quality assessment including the DFIRE potential, inverse Born radius (IBR)-
based environmental potential and tabulated soft-core van der Waals potential. The local
quality scores before and after side chain repacking are shown in magenta and black,
respectively. The dotted line in blue denotes the cutoff used for the local quality score, a
value of 2.0.
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Figure 3.
The superposition of the native structure for protein 1urr (PDB entry name) and the model
structure before and after side chain repacking is shown in 2a and 2b, respectively. The
residues 22 to 24 and 47 to 49 are represented as a stick model, while the protein body is
represented as a cartoon model in shadow. In the stick model the carbon atoms of native
structure are in yellow while the carbon atoms of model structure are in cyan. In the cartoon
model the native structure is in gray while the model structure is in green. The residue name
and residue number are only labeled for those of native structure except for R23, for which
the corresponding residue in the model structure is labeled as R23′.
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Figure 4.
A plot of the SSE-RMSD as a function of simulation time for the three MD-based sampling
protocols and two models, 1opd and 1whz. The REMD trajectory at the lowest temperature
is plotted in 4a and 4d, respectively. The single 50ns MD trajectory is plotted in 4b and 4e,
respectively. The first five of the ten 5 ns MD trajectories are plotted in 4c and 4f,
respectively.
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Figure 5.
The correlation of selection function score and SSE-RMSD for three scoring functions and
four models, 1opd, 1r6j_2, 1vla and 1whz. The correlation of RAPDF/HB score and SSE-
RMSD is plotted in 5a, 5d, 5g and 5j, respectively. The correlation of ROSETTA_soft score
and SSE-RMSD is plotted in 5b, 5e, 5h and 5k, respectively. The correlation of
ROSETTA_sub score and SSE-RMSD is plotted in 5c, 5f, 5i and 5l, respectively.
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Table VI

RAPDF/HB scores of native structure and conformations sampled by REMD.

Models Enative Emin Elrms

a. Small, globular protein data set

1cy5_1 −4054 −3124 −3055

1cy5_2 −4054 −3268 −2989

1fm0 −2848 −2307 −2130

1gxu −3297 −2542 −2314

1k5n −3084 −2319 −1982

1mfg_1 −2633 −2330 −1901

1mfg_2 −2633 −2294 −2002

1opd −2850 −2216 −1970

1r6j_1 −2539 −2052 −1938

1r6j_2 −2539 −1902 −1666

1urr −3156 −2529 −2074

1wm3_1 −2588 −2066 −1568

1wm3_2 −2588 −1963 −1746

1xmt −3357 −2227 −1656

b. CASPR data set

1xe1 −2458 −1934 −1794

1vm0 −3642 −2874 −2514

1vla −4843 −3930 −3639

1whz −2894 −2333 −2056

1tvg −3703 −2923 −2253

1xg8 −3122 −2084 −1670

1o13 −3740 −2771 −2264

The items listed include the model name, RAPDF/HB score of the native structure for this model, the lowest RAPDF/HB score of REMD-
generated structure and RAPDF/HB score of the lowest SSE-RMSD structure sampled in the REMD simulation.
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