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Abstract
Manual state scoring of physiological recordings in sleep studies is time-consuming, resulting in a
data backlog, research delays and increased personnel costs. We developed MATLAB-based
software to automate scoring of sleep/waking states in rats, potentially extendable to other animals,
from a variety of recording systems. The software contains two programs, Sleep Scorer and Auto-
Scorer, for manual and automated scoring. Auto-Scorer is a logic-based program that displays power
spectral densities of an electromyographic signal and σ, δ, and θ frequency bands of an
electroencephalographic signal, along with the δ/θ ratio and σ ×θ, for every epoch. The user defines
thresholds from the training file state definitions which the Auto-Scorer uses with logic to
discriminate the state of every epoch in the file. Auto-Scorer was evaluated by comparing its output
to manually scored files from 6 rats under 2 experimental conditions by 3 users. Each user generated
a training file, set thresholds, and autoscored the 12 files into 4 states (waking, non-REM, transition-
to-REM, and REM sleep) in ¼ the time required to manually score the file. Overall performance
comparisons between Auto-Scorer and manual scoring resulted in a mean agreement of 80.24 +/−
7.87%, comparable to the average agreement among 3 manual scorers (83.03 +/− 4.00%). There was
no significant difference between user-user and user-Auto-Scorer agreement ratios. These results
support the use of our open-source Auto-Scorer, coupled with user review, to rapidly and accurately
score sleep/waking states from rat recordings.

1. Introduction
In behavioral neuroscience research involving sleep, there is a need for automated state scoring
to correctly identify how the experimental manipulations impact the state of the animal,
including humans. Continuous recordings of physiological signals such as
electroencephalography (EEG) and electromyography (EMG) over many hours result in large
quantities of data to be analyzed. Sleep/waking states can be categorized on multiple levels
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starting with the discrimination that the animal is awake or asleep. These states can then be
further divided based on user-defined features, e.g., sleep can be separated into REM (rapid
eye movement) and non-REM sleep. While a standard exists for scoring sleep in humans
(Rechtschaffen and Kales, 1968), the execution of that standard widely varies from person to
person and from laboratory to laboratory. For example, researchers score the different sleep
and waking states in epochs ranging from 1 s to 30 s (Gottesmann et al., 1977; Mistlberger et
al., 1987). The case becomes even more heterogeneous for sleep state assessments in animal
models (e.g., rat, mouse, or cat); the number of states as well as their characterization varies
depending upon the aims of the research. In addition, the types of signals gathered to score
those states, such as EEG and EMG, vary widely depending on the hypotheses and methods
chosen, each for their own good reasons. Furthermore, manual state analysis is time-consuming
and can result in a backlog of data causing delays in the research process.

Since the 1960s (Lubin et al., 1969), researchers have been developing automated scoring
programs using logic-based algorithms with time or frequency domain parameters (Neuhaus
and Borbely, 1978; van Luijtelaar and Coenen, 1984), pattern recognition algorithms (Martin
et al., 1972), support vector machines (Crisler et al., 2007), or artificial neural networks
(Grözinger et al., 2001; Mamelak et al., 1991; Robert et al., 2002; Robert et al., 1999, 1998;
Robert et al., 1996; Roberts and Tarassenko, 1992; Schaltenbrand et al., 1996; Sinha, 2008).
The literature suggests that artificial intelligence would be the best approach for accurately
scoring sleep/waking states by being able to adapt to the varying scoring requirements of
different researchers. However, a customizable logic-based autoscoring program is well-suited
for a researcher who would like more control over the decision-making process for scoring
states rather than exclusive reliance on the program. A researcher who has some experience
programming can also gain control of, for example, the logic decision tree and data format.

Here, we describe software that can facilitate the scoring of behavioral states by automating
the scoring process of EEG and EMG data. The program is MATLAB-based, open-sourced
and accessible to those with minimal programming experience. It is also capable of accepting
recorded data in a variety of formats, e.g., delimited text files, Excel files (Microsoft),
proprietary files such as Neuralynx’s Cheetah files, binary files and ASCII format files.

2. Materials and methods
In this section, we present the software components with instructions on their use. Additionally,
the logic used in the automatic scoring component is described and data analysis procedures
defined. The Results section presents performance comparisons between manual and
autoscoring of data from 12 experiments. Finally, Auto-Scorer is compared to published
automated sleep/waking scoring systems, and its strengths and limitations are discussed.

2.1. Rat experiments
Data for software testing were taken from an experiment gathering signals during baseline
sleep/waking conditions from rats and following REM deprivation as part of a separate study
in our research group. Six adult male Fisher 344 rats (325–400g) were implanted with one EEG
screw electrode in the skull above the left hemisphere of the frontal cortex and one over the
parietal cortex of the right hemisphere, one nuchal EMG electrode, and a single electrode
implanted into the hippocampal fissure of the left hemisphere. The two screw electrodes were
referenced to each other, while the deep hippocampal electrode was referenced to a sinus
ground. Rats were allowed 1 week to recover after surgery. Recordings were taken in freely-
behaving rats using tethers (Plastics One, Roanoke, VA) connecting the head-cap to the data
acquisition hardware. Signals were passed through a digital amplifier (Neuralynx, Tucson, AZ)
and digitizing board (Neuralynx Cheetah EDT board) and recorded with a 1 kHz sampling rate
for 8 hours. REM deprivation was accomplished using the multiple platform over water
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technique, originally developed by Jouvet and colleagues (Jouvet et al., 1964; Mendelson et
al., 1974), for 24 hours. Food and water were freely accessible during these experiments.

2.2. Sleep Scorer program description
The graphical user interface (GUI)-based software includes two components. First, a program
called Sleep Scorer enables the user to pre-score representative epochs of 5 different sleep/
waking states (active waking (AW), quiet waking (QW), non-REM or quiet sleep (QS),
transition-to-REM (TR), and REM sleep (REM)). The second component, Auto-Scorer, is used
to visualize the representative epochs and set thresholds based on power spectrum densities of
the EMG signal and σ (sigma), δ (delta), and θ (theta) frequency bands of the EEG signal and
on the well-established measures of δ-θ ratio and the σ × θ product. A logic-based algorithm
is then implemented within Auto-Scorer which scores all epochs of the record.

The Sleep Scorer program has high-pass, low-pass, and notch filters for up to four
electrophysiological signals that the user can enable and define (GUI shown in Figure 1). For
both manually scoring the data in Sleep Scorer and autoscoring with Auto-Scorer, the EMG
signal was passed through a 30 Hz high-pass Cauer filter, and the EEG signals were passed
through a 30Hz low-pass Cauer filter. Cauer (elliptic) filters were chosen since they are
equiripple in the stop- and pass-bands (i.e., the filter waveform has the same small oscillations
on both sides of the cut-off frequency) and provide sharper roll-off characteristics than
Chebyshev and Butterworth filters. The signals were then down-sampled to 250 Hz (user-
defined), which was more than sufficient to avoid aliasing (i.e., lacking the necessary number
of data points to reconstruct the signal) the signals of interest. In addition, the values for the
EMG power and the σ, δ, θ, and β bands of the EEG power spectral density (PSD) in the epoch
currently in view is optionally displayed below the signal charts (Figure 1). The filter settings
for σ, δ, θ, and β bands in the present experiments were 0.4–3.9 Hz, 4–9 Hz, 10–14 Hz, and
15–20 Hz, respectively. The filter settings and down-sampling value are automatically saved
with the manually scored epochs and are read by the Auto-Scorer in order to process the signals
in the same manner as done in Sleep Scorer before autoscoring.

A history bar lets the user to see the scores for the 5 previous epochs and 4 subsequent epochs,
allowing the user to evaluate or re-evaluate an epoch, in light of the flow of states (Figure 1).
The user-selectable epoch length was chosen for demonstration purposes here to be 10 s for
both manual and autoscoring—which is a typical epoch length for scoring sleep/waking states
in rats (Benington et al., 1994;Ruigt et al., 1989a;Van Gelder et al., 1991;Witting et al.,
1996). A longer epoch such as 30 s would lead to an underestimation of REM sleep since the
average REM episode duration in a rat is approximately 120 s and is often as short as 10 or 20
s. A shorter duration epoch, such as 2 s, could bias results toward short duration episodes
(Robert et al., 1999) which may or may not be physiologically meaningful. However, since
users may desire to use different epoch lengths than 10 s for their own experimental aims, the
program provides a drop-down menu to change the epoch length. The user must make sure to
set the epoch length the same as that used to manually score the training file in Sleep Scorer.

2.3. Auto-Scorer program description
After manually scoring representative epochs of each of the 5 states, the training data (i.e.,
scored states and their PSD values—see Figure 2 for the process flow) are then loaded into
Auto-Scorer (Figure 3), which displays two 3-D graphs and a GUI for manipulating them
(Figure 4). The scored states of the epochs are distinguished using 5 distinct colors: yellow =
AW, green = QW, blue = QS, turquoise = TR, and red = REM. In addition, the un-scored
epochs are plotted in gray (Figure 4a–b and Figure 5a–f). The Auto-Scorer algorithm processes
one EMG and one EEG signal, but it could be expanded to accept additional inputs by the user
since it is open-sourced. For the performance evaluation presented here, we used the
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hippocampal EEG signal. The first graph shows EMG power versus δ-θ ratio versus σ × θ
(Figure 4a). The PSDs of the σ, δ, and θ bands are displayed on the second graph (Figure 4b).
The user then sets threshold values, based on the literature and as elucidated below, in order
for the algorithm to distinguish the different states. The PSD values of the aforementioned
parameters for all epochs of the record are stored in a file named by the user in a pop-up box.

The guidelines used for setting the thresholds in our experiments are as follows. The σ × θ
parameter is used to separate sleep states from waking states with the stipulation that all sleep
epochs must have values above the threshold setting (Figure 5a). The δ/θ threshold is used to
initially separate REM (below threshold) from Quiet Sleep, optimally setting the threshold
above the unscored epochs that appear to form a cluster with REM while keeping most of the
Transition-to-REM sleep above the threshold if possible (Figure 5b). As seen in Figure 5c, the
EMG threshold is set to separate sleep from waking epochs while ignoring transition-to-REM
states. The overall goal for setting the σ, δ, and θ thresholds is to identify and isolate Quiet
Waking (Figure 5d–f): the δ threshold is set to separate Quiet Sleep (above threshold) from
Quiet Waking (below threshold) with cutoff set closer to Quiet Waking (Figure 5d), the θ
threshold is used to divide Quiet Waking from REM (above the bulk of Quiet Waking; Figure
5e). The σ threshold was set above the bulk of Quiet Waking (Figure 5f). The ‘Threshold’
settings box (Figure 3) also displays the ‘2 ×SD + σ’ and ‘3 × SD + σ’ (SD = standard deviation),
automatically calculated when the training file is loaded into Auto-Scorer, and ‘Unhooked’ (set
for most data files to 0.001 and used as an additional σ × θ threshold—see Figure 6).

Once the threshold values have been set, Auto-Scorer then scores the entire data set of the
recording under study. The auto-scoring software’s algorithm runs on power density input to
Boolean logic (Figure 6). The logical decisions are based on previously published research and
our scorers’ observations, and were implemented to improve the agreement between human
scorers and the autoscoring software. An extra state labeled as intermediate waking was
introduced into the algorithm to allow the user to score epochs that were not clearly determined
to be Active or Quiet Waking. Out of the total amount of waking epochs scored, the average
percent scored by Auto-Scorer as intermediate waking epochs was a mere 0.2%.

2.4. Data analysis
Auto-Scorer was evaluated by comparing its results to 12 fully scored files from 3 users and
determining if its reliability was significantly different from that of user-to-user agreement.
Each user generated auto-scored files by inputting their thresholds taken from the training data
set. Each autoscored file was then compared to the user’s manually scored file. We chose the
most widely used measure of performance for automated systems, percent agreement, to
evaluate Auto-Scorer (Benington et al., 1994; Costa-Miserachs et al., 2003; Crisler et al.,
2007; Ferri et al., 1989; Mamelak et al., 1991; Martin et al., 1972; Nielsen et al., 1997; Norman
et al., 2000; Robert et al., 1996; Ruigt et al., 1989a; Ruigt et al., 1989b; Svetnik et al., 2007;
Van Gelder et al., 1991; Witting et al., 1996). Active Waking and Quiet Waking were combined
into one waking state for the final analysis for two reasons. First, the average pair-wise
agreement among users for Quiet Waking was 40.4 +/− 16.9%—with the other user scoring
the mismatched epoch most often as Active Waking. Second, waking is most often reported
as one state in the literature.

A decision tracking system was implemented in order to determine where in the logic the final
state was scored for each epoch. This enabled fine-tuning of the logic if weak decisions were
found.

Hypothesis testing to compare performance of Auto-Scorer with manual scoring was carried
out using Student’s t test. Two-tailed t tests were performed on the two subsets of experimental
data— control and post-REM deprived. In addition, we performed two-tailed paired t tests to
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determine if any differences in the proportion of time spent in each sleep/waking state existed
between manual scoring and autoscoring within each group (control and post-REM deprived)
for the data used to evaluate the Auto-Scorer.

3. Results
The time required for manually scoring 8 hour recordings ranged between 2–4 hours depending
on the quality of the recorded signals, whereas the time required for creating a training file,
setting thresholds and running Auto-Scorer was under one hour and as little as 30 minutes for
the same 8 hour file. Thus, the time spent scoring using this automated system is approximately
one-fourth the time required for manual scoring.

Overall performance comparisons were made between Auto-Scorer and manual scoring for 12
rat experiments using 4 scored states (Waking, non-REM sleep, transition-to-REM, and REM
sleep), resulting in a mean agreement of 80.24 +/− 7.87% when consistently following
guidelines for threshold settings. This is comparable to the average pair-wise agreement
between 3 manual scorers for the 12 experiments (83.03 +/− 4.00%). The results of the t tests
showed that there are not significant differences between user-user and user-Auto-Scorer
agreement ratios. The p-values for the control and post-RD groups were 0.15 and 0.24,
respectively (n=18, 6 experiments × 3 user-user or user-Auto-Scorer pairs).

Considering the agreement with manual scoring for individual sleep/waking states (Figure 7),
Auto-Scorer had the lowest agreement on scoring TR at 25.3+/−12.1%. However, the
agreement between users was also low (54.3+/−20.8%) and was expected since TR is more
transient. Waking had the highest agreement between users (83.0+/−4.0%) and between Auto-
Scorer to manual scoring (80.2+/−7.9%).

The proportion of time spent in a given sleep/waking state is of interest when comparing results
of different experimental conditions. The results of the two-tailed paired t tests showed that
there were no significant differences in the proportion of time spent in a given state between
manual scoring and autoscoring in both the control (p-values: Waking= 0.192, non-
REM=0.393, REM=0.439) and post-REM deprived (p-values: Waking= 0.224, non-
REM=0.635, REM=0.818) groups.

4. Discussion
The Auto-Scorer program requires 30–60 minutes to score a day’s sleep recording and can be
done in three steps: (1) the user creates a training file (requires the most time, typically); (2)
the user sets threshold values (requires about 5 minutes); and (3) Auto-Scorer scores all epochs
of the file based on set thresholds and Boolean logic (requires less than a minute on a typical
PC). Researchers can use Sleep Scorer and Auto-Scorer to shorten the time to a quarter of what
is required manually for stage scoring of sleep data.

Performance of Auto-Scorer compares well to other automated systems (Table 1) (Benington
et al., 1994;Costa-Miserachs et al., 2003;Crisler et al., 2007;Ferri et al., 1989;Mamelak et al.,
1991;Martin et al., 1972;Nielsen et al., 1997;Norman et al., 2000;Robert et al., 1999;Ruigt et
al., 1989a;Ruigt et al., 1989b;Svetnik et al., 2007;Van Gelder et al., 1991;Witting et al.,
1996). In most of the published automated programs that have higher agreement, researchers
only compared epochs where all users agreed on the state, or they perform manual changes of
epoch states on parts of the autoscored file before computing the agreement. In addition, the
average inter-observer agreement is consistent with previously published studies (Table 1).

The user-user and user-algorithm agreement by Benington et al (1994) appears to be higher
than our results. This could be due to the threshold validation step that they use to optimize
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the results of their algorithm when compared to manual scoring. Also, it is not clear how many
scored epochs of each state they use to set threshold values. Mamelak et al (1991) also report
better performance using an artificial neural network approach. While we do not discount the
advantages of a system that learns and can adapt to new situations, they used 960 manually
scored epochs to train the network. This may be of benefit if several days of data recorded from
one animal could be scored using the network. However, performance over days would
probably decrease if the implanted sensors move slightly or recordings degrade due to
neuroinflammatory responses. The aim of our program is to score a small number of epochs
of each state in order to set the threshold values. Threshold settings can be created for each file
since the time required to create the training file is short, and this enables us to avoid potential
changes in recording characteristics that can occur over time.

The low performance in scoring Transition-to-REM was expected for both Auto-Scorer-user
and user-user agreement. TR is not generally included in sleep studies, probably because it is
so brief and comprises such a small percentage of the total sleep state. However, its regulation
may be important for some processes (Datta, 2000), and efforts to standardize its identification
and quantification are worthwhile. The high agreement in scoring waking, both among users
and between manual and autoscoring, was also anticipated since waking tends to have a clearly
higher EMG power than in sleep and a prominently lower σ × θ value (low power in both σ
and θ bands) than Non-REM (high σ) and REM (high θ) sleep. Non-REM sleep agreement
ratios are high. Using these parietal/hippocampal EEG signals, the Non-REM state is most
confused with quiet waking because the hippocampal source displays large slow waves during
quiet waking as well as quiet sleep. REM sleep is most often confused with TR since that state
also tends to have high θ values and low neck EMG power.

Many auto-scoring programs, including the one presented here, are customized for a specific
experimental design, animal or human subject, sensor types and location. To expand the use
of an automated sleep scoring program it needs to be adaptable to these variations. Intelligent
systems using artificial neural networks show the most promise in adapting to the varying needs
of researchers. However, customizable logic-based programs with easily accessible code can
be uniquely beneficial in sleep research. They allow the researcher to modify the logic
algorithm to particular needs in order to improve agreement between autoscoring and manual
scoring for a specific protocol and data format.

The MATLAB program files developed here contain extensive descriptions (comments) of the
code, and pertinent code for the logic are grouped together for the user to more easily make
modifications. Thus, this open source software can be modified by end-users with little
programming experience.

As long as the format of the acquired data can be imported into MATLAB either by one of its
many import functions or by a conversion program from the hardware manufacturer, such as
Neuralynx’s free download MATLAB functions, the programs are independent of the data
acquisition system. For example, data acquired using the AD recording system (M. Wilson
and L. Frank, MIT) has also been converted and imported to our software for scoring. Data
acquired using a monitoring system with a proprietary format can be converted into ASCII
format with a defined delimiting parameter (e.g., comma, space, tab, etc.) if the company
provides a conversion program. The data can then be imported to Sleep Scorer and Auto-
Scorer using the ‘dlmread()’ function built into MATLAB.

In conclusion, we have presented the programs Sleep Scorer and Auto-Scorer that together can
automatically score epochs of EMG and EEG signals as sleep/waking states. This set of
programs addresses the time-consuming nature of state scoring and the need for flexibility
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among research protocols, and displays performance on par with other automated programs
and user-user agreement rates.
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Figure 1.
Sleep Scorer graphical user interface used for manually scoring and correcting files. The top
2 horizontal panels show example EMG and EEG signals, respectively. The third and fourth
panels show the EEG signal in panel 2 using different filter ranges.
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Figure 2.
Process flow for data analysis prior to importing to Auto-Scorer.
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Figure 3.
Main graphical user interface for the Auto-Scorer. Data files are loaded and thresholds are
entered for auto-scoring.
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Figure 4.
User interface for determining rule-based threshold settings and visualizing auto-scored states.
(a) 3D graph of states for 10 s epochs based on EMG power, sigma power*theta power, and
the ratio of delta power to theta power. (b) Epochs graphed by delta, theta, and sigma powers.
(c) GUI for manipulating the graphs in (a) and (b). The scored states of the epochs are
distinguished using 5 distinct colors: yellow = AW, green = QW, blue = QS, turquoise = TR,
and red = RE. In addition, the unscored epochs for the recording are plotted as light gray dots.
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Figure 5.
a–f Threshold settings illustrated by black lines on 2D graphs of a user’s training data set. All
users followed the guidelines described in section 2.3. The scored states of the epochs are
distinguished using 5 distinct colors: yellow = AW, green = QW, blue = QS, turquoise = TR,
and red = RE. In addition, the as yet unscored epochs from the recording are plotted as light
gray dots.
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Figure 6.
A schematic diagram of the Boolean logic used in the Auto-Scorer algorithm is shown. Filled
parallelograms represent the assigned state for the 10 s epoch. Diamonds represent logical
decisions with true/false passing out the right/bottom side of the diamond. Rectangles represent
a step when the state was changed. Heavy outlined parallelograms represent final state
assignment.
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Figure 7.
Average pair-wise agreement for the 3 users and Auto-Scorer for 12 experiments. Error bars
represent +/−1 standard error of the mean.
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