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ABSTRACT

We demonstrate a new, efficient and easy-to-use
method for enzymatic synthesis of (stereo-)specific
and segmental 13C/15N/2H isotope-labeled single-
stranded DNA in amounts sufficient for NMR, based
on the highly efficient self-primed PCR. To achieve
this, new approaches are introduced and combined.
(i) Asymmetric endonuclease double digestion of
tandem-repeated PCR product. (ii) T4 DNA ligase
mediated ligation of two ssDNA segments. (iii)
In vitro dNTP synthesis, consisting of in vitro rNTP
synthesis followed by enzymatic stereo-selective
reduction of the C2’ of the rNTP, and a one-pot
add-up synthesis of dTTP from dUTP. The method
is demonstrated on two ssDNAs: (i) a 36-nt three-
way junction, selectively 13C9/15N3/2H(1’,200,3’,4’,5’,500)-
dC labeled and (ii) a 39-nt triple-repeat three-way
junction, selectively 13C9/15N3/2H(1’,200,3’,4’,5’,500)-dC
and 13C9/15N2/2H(1’,200,3’,4’,5’,500)-dT labeled in segment
C20-C39. Their NMR spectra show the spectral sim-
plification, while the stereo-selective 2H-labeling in
the deoxyribose of the dC-residues, straightfor-
wardly provided assignment of their C1’–H2’ and
C2’–H2’ resonances. The labeling protocols can be
extended to larger ssDNA molecules and to more
than two segments.

INTRODUCTION

Isotope labeling has contributed markedly to the success
of multi-dimensional hetero-nuclear NMR spectroscopy
in structure and dynamics investigations of proteins

(1–5), RNAs (6–28), DNAs (28–37), and their complexes
(38–41). For proteins and RNAs, isotope labeling has
become standard practice. In sharp contrast, for (larger)
ds/ssDNAs application of isotope-labeling still lags
far behind, largely due to a lack of comparably simple,
flexible and cost-efficient methods for their synthesis.
Labeling of DNA by chemical synthesis is versatile and

been used to produce ds/ssDNAs, labeled uniformly
(29,36) or selectively/site-specifically (32,34,37,42–44)
with 13C/15N isotopes or segmentally (30,31) with
13C/2H isotopes, using tailor-made phosphoramidites.
However, their synthesis requires specialized chemical
expertise, is labor intensive and costly. Enzymatic synthe-
sis has therefore been more popular in the field of
DNA structural biology, and in vivo (45,46) and in vitro
(45,47–57) methods have been developed.
In the in vivo methods plasmids are amplified in E. coli

cells grown on labeled minimal medium (45,46). The plas-
mids contain multiple repeats of the desired sequence with
each repeat flanked by an endonuclease-sensitive site.
After enzymatic digestion single double-stranded (ds)
DNA fragments are released. Although this method
circumvents the requirement of isotope-labeled dNTPs,
it restricts the types of labeling (see below) and is relatively
inefficient.
Enzymatic in vitro synthesis of isotope-labeled ssDNA

was first achieved by Zimmer and Crothers by means of a
template-driven fill-in reaction (47). This method employs
a DNA polymerase I fill-in reaction on the single-stranded
region of a hairpin-primed DNA template, using isotope-
labeled dNTPs as building blocks. A ribonucleoside is
placed at the 30-terminus of the hairpin, so that upon alka-
line hydrolysis the synthesized isotope-labeled ssDNA is
released. Modifications leading to improved efficiency
have been reported (48,49), while Mer and Chazin (50)
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described a modification that allows for segmental isotope
labeling. The template-driven fill-in reaction is relatively
straightforward. A drawback is the need for stoichio-
metric amounts of expensive modified DNA template.
A second in vitro method is Endonuclease-Sensitive

Repeat Amplification (ESRA) (45,55). It is based on a
self-primed PCR amplification, originally called
Concatemer Chain-Reaction (51,52), in which a dsDNA
template of tandem repeats is elongated using (isotope-
labeled) dNTPs by means of PCR in a number of cycles
of heating, annealing and extension. This amplification
produces long dsDNAs consisting of multimeric
repeats of the target sequence. Endonuclease-sensitive
sites flank the individual dsDNA repeats (45), so that
restriction enzyme digestion releases the target dsDNA.
Improvements have been reported in terms of sequence
flexibility (56) and length of produced target dsDNA
(57). It has also been proposed to attain PCR amplifica-
tion of tandem repeats in a plasmid (53,54). However,
this PCR protocol is more involved and most importantly,
not self-primed and thus requires stoichiometric amounts
of primer. The principal advantages of the self-primed
PCR amplification are its simplicity and high efficiency.
A single dsDNA template leads to copious amounts
of isotope-labeled dsDNA targets, instead of one DNA
target per template molecule as in the template-driven
fill-in reaction. Drawbacks are that only dsDNA can be
produced and that the existing protocol does not allow for
segmental labeling.
Both in vitro methods need isotope-labeled dNTPs as

building blocks. For RNA, isotope labeling—via in vitro
synthesis—is common practice, because the required
rNTP building blocks are readily available with a variety
of labeling patterns; the rNTPs can either be uniformly
labeled with 2H/13C/15N isotopes (6,7,10,11,14), when
extracted from bacterial cells, or (stereo-)selectively
labeled with 2H/13C/15N isotopes (9,12,13,15,17,27),
when produced via in vitro synthesis. However, for
dNTPs the situation is less favorable. The dNTP produc-
tion methods involve extraction of isotope-labeled
dNMPs from genomic (bacterial) DNA (14,47,48,58),
which leads to limited yields as compared to rNTPs
(RNA) and restricts the labeling to mainly uniformly
in 13C, 15N, and/or 2H. The in vitro synthesis of (stereo-)
selectively 2H/13C/15N-labeled rNTPs is at present not
available for dNTPs.
In conclusion, the ESRA stands out for its simplicity

and efficiency among the existing methods for production
of isotope-labeled DNA. However, ESRA has three main
drawbacks: (i) only dsDNA can be produced, (ii) segmen-
tal labeling is not possible and (iii) existing production
methods for the required dNTPs have limitations in
terms of available amounts and variety in labeling pattern.
In this contribution, we present a new, efficient and

easy-to-use method for the large-scale in vitro synthesis
of isotope-labeled DNA. It is based on ESRA and we
introduce new approaches to resolve the above-mentioned
drawbacks. Synthesis of ssDNA, instead of only dsDNA,
is now possible by introducing asymmetrical digestion of
PCR products. The labeling can either be overall or seg-
mental. In the residues, the labeling can be uniform, or

(stereo-)selective with 2H/13C/15N isotopes, depending on
the dNTPs employed. Our method includes a protocol for
the efficient synthesis of dNTPs obtained by reduction of
in vitro synthesized rNTPs, thereby connecting the versa-
tility of RNA labeling to DNA. The method is demon-
strated via the synthesis and NMR of a 36-nt three-way
junction ssDNA (59) and a 39-nt triple-repeat three-way
junction ssDNA (60,61).

MATERIALS AND METHODS

Folding simulations of PCR primers and DNA segments
for the (segmental) labeling of ssDNA

Predictions of the thermodynamic stability of intramolec-
ular folds, self-complementary duplexes and the (desired)
hybrids of the used DNA sequences were obtained using
DINAMelt (62). In the DINAMelt simulations for the
PCR sequences, the DNA concentration was 0.1mM and
salt concentrations 10mM NaCl and 2mM Mg2+, com-
parable to the conditions during PCR amplifications.
In the DINAMelt simulations for the ligation, the DNA
concentration was 10 mM and the NaCl and Mg2+-con-
centrations were each 10mM, matching the conditions
during DNA ligation.

Synthesis of 13C9/
15N3/

2H(1’,200,3’,4’,5’,500)-dCTP and
13C9/

15N2/
2H(1’,200,3’,4’,5’,500)-dTTP

For calculation of yields, here and below, all concentra-
tions of purified intermediate and final products were
determined by UV absorption unless otherwise stated.
Prior to dTTP and dCTP synthesis, UTP residues were
in vitro synthesized from 450 mmol 13C6/

2H7-D-glucose
and 440 mmol 13C4/

15N2-uracil (Cambridge Isotope
Laboratories, Andover, MA, USA) using enzymes of the
glycolysis and pentose phosphate pathway (9,12,13,63)
(see Supplementary Data for a detailed description).
13C9/

15N3/
2H(10,30,40,50,500)-CTP residues were synthesized in

a 120ml reaction mixture containing 0.5mM (60mmol)
13C9/

15N2/
2H(10,30,40,50,500)-UTP, 10mM 15NH4Cl and 7.5

units CTP synthase (64) (Supplementary Data). The
UTP and CTP were separated from their ATP cofactor
on an Akta Basic equipped with a HiLoad Q Sepharose
HP column (GE Healthcare) using a linear gradient
from 50–350mM NaCl in Milli-Q water (Millipore) at
pH 9. Nucleotide containing fractions were desalted on
a Sephadex G10 column (ø2.5� 30 cm), lyophilized and
dissolved to 100mM in Milli-Q water.

Fifty-nine micromoles CTP and 60 mmol UTP were
exchanged with D2O by lyophilization for three times in
1ml D2O. A 5� concentrate of reduction buffer (20mM
HEPES (pH 7.5), 30mM DTT, 0.5mM EDTA and 1M
NaAc) was exchanged with D2O by vacuum concentration
to dryness for three times in D2O, subsequently dissolved
in D2O and the pD adjusted to 7.5 with 10M NaOD. D2O
exchanged CTP and UTP were added to a final concen-
tration of 1mM in separate reactions and 5 ml of 20mg/ml
ribonucleotide triphosphate reductase (RTPR) (65,66)
(Supplementary Data) along with 10 ml of 5mM coenzyme
B12 in D2O were added per ml of reduction buffer and
incubated for 1 h at 378C in the dark. The reduction
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progress was checked by reversed phase chromatography
(RPC) on a PepRPC 15 HR10/10 column (GE Health-
care) by applying a 20ml linear gradient from 50mM
TEAA (pH 7) to 40% 50mM TEAA (pH 7)+30% acet-
onitril. The reaction mixtures were purified over a Dowex
1x2 anion exchange column (Sigma-Aldrich, Zwijndrecht,
The Netherlands) using a linear gradient from 0 to 1M
NaCl. Nucleotide containing fractions were desalted and
concentrated to 5mM in Milli-Q water and stored at
�208C.

dTTP was synthesized in a one-pot add-up reaction
from dUTP. All reactions were checked by RPC applying
a 20ml linear gradient from 0.2M KH2PO4 (pH 4) to 40%
0.2M K2HPO4 (pH 4)+30% methanol. Twenty milliliter
of 1.3mM dUTP in 20mM Tris–HCl (pH 8.1 at
258C)+5mM MgCl2 was incubated at 858C for 1 h in
the presence of 125 ng/ml His6-tagged Pfu dUTPase (67)
(Supplementary Data). The reaction mixture was
adjusted to 0.25mM dUMP in 40mM Tris–HCl (pH
7.5), 50mM MgCl2, 100mM b-mercaptoethanol, 2.3mM
formaldehyde and 2mM (6R,S)-5,10-methylene-5,6,7,8-
tetrahydrofolic acid (Schircks Laboratories, Switzerland).
His6-tagged E. coli thymidylate synthase (68) (Supplemen-
tary Data) was added to 50 mg/ml and incubated overnight
at 378C. The reaction mixture was again adjusted by
adding KCl to 80mM, phosphoenolpyruvate to 10mM,
ATP to 0.05mM, pyruvate kinase (Sigma) to 2.5U/ml and
his6-tagged bacteriophage T5 dNMP kinase (69) (Supple-
mentary Data) to 100 mg/ml and then incubated at 378C
for another 3 h.

Synthesis of 13C9/
15N3/

2H(1’,200,3’,4’,5’,500)-dC selective
labeled three-way junction ssDNA by self-primed
PCR (Figure 1 and Table 1)

All restriction endonucleases and buffers were purchased
from Fermentas. In step 1, 10 PCR reactions of 400ml
were carried out in PCR buffer with 2mM MgSO4

containing 0.2mM of each dGTP, dATP, dTTP,
13C9/

15N3/
2H(10,200,30,40,50,500)-dCTP, 0.1 mM of primers 3W-

sense and 3W-asense (Table 1). Each PCR mixture con-
tained 80 ng of His6-tagged Pfu DNA polymerase (70)
(Supplementary Data) and 10 ng of His6-tagged Pfu
dUTPase. Mixtures were cycled 30 times in a Progene
thermal cycler (Techne) at 958C for 90 s, at 658C for 90 s
and at 728C for 6min and 30 s and followed by a final
filling step at 728C for 20min. In step 2, 80 PCRs of
400 ml were carried out under the same conditions as in
step 1 PCRs, except a 10 times dilution of step 1 PCR
product served as DNA template instead of the primers
3W-sense and 3W-asense. The PCR mixtures were pooled,
diluted to 200ml buffer R+ and digested for 3 h at 378C
with 2.5 kU of 50-CGCG-30 cleaving Bsh1236I. The diges-
tion mixture was purified over a ResourceQ 6ml column
(GE Healthcare) using a linear gradient from 0 to 1.5M
NaCl in 10mM sodium phosphate buffer (pH 7.4),
desalted by ethanol precipitation and dissolved in 120ml
buffer EcoRI. Total 10 kU of EcoRI (50-GAATTC-30)
was added and incubated at 378C for 3 h. The digested
DNA was purified over a ResourceQ column, desalted
in an YM-3 centricon (Millipore) and subsequently,

electrophorized on a preparative 20% denaturing polya-
crylamide gel (PAGE) containing 8M urea. The band of
36-nt three-way junction ssDNA was electroeluted from
the gel in an Elutrap device (Schleicher & Schuell) and
subsequently washed with 20mM sodium phosphate
buffer (pH 7.5) containing 1M NaCl+50mM EDTA
and Milli-Q water. Finally, the DNA was exchanged
two times with 1ml D2O by lyophilization.

Synthesis of 13C9/
15N2/

2H(1’,200,3’,4’,5’,500)-dT and
13C9/

15N3/
2H(1’,200,3’,4’,5’,500)-dC selective and segmental

labeled triple-repeat junction 6 wt ssDNA

The 20 nt ssDNA segment junction 6 wt-p2 (C20-C39;
Table 1) for ligation was obtained by self-primed PCR
(Figure 1) as for the three-way junction ssDNA with the
case specific modifications as described hereafter. The
unlabeled dTTP in the PCR mixtures was substituted by
13C9/

15N2/
2H(10,200,30,40,50,500)-dTTP and the amplification

primers were junction 6 wt-p2-sense and junction 6 wt-
p2-asense (Table 1). Blunt end digestion of the amplified
DNA was carried out with 2.5 kU of PvuII (50-CAGCTG-
30) in buffer G+ and the second digestion with 10 kU XhoI
(50-CTCGAG-30) in buffer R+.
The purified 20-nt junction 6 wt-p2 ssDNA segment was

ligated to the 19-nt junction 6 wt-p1 ssDNA segment
(Table 1) in an 11ml preparative ligation reaction contain-
ing 7.5mM of junction 6 wt-p2, 10 mM of junction 6 wt-p1
and 10 mM of the 28-nt DNA splint (Table 1) in T4 DNA
ligase buffer. The reaction was heated 2min at 958C and
incubated 10min at room temperature prior to the addi-
tion of 2.8 kU T4 DNA ligase and followed by ligation at
378C for 4 h. The 39-nt ligation product was purified from
denaturing PAGE as described before and lyophilized.

NMR experiments

The three-way junction ssDNA sample was dissolved in
50mM NaCl in D2O (pD 5.6), to 0.2mM and the full
junction 6 wt ssDNA was dissolved in 10mM sodium
phosphate pH 6.7 containing 0.1mM EDTA and 7%
D2O to 0.2mM. The samples were heated at 958C, snap-
cooled on ice-water and transferred to a Shigemi NMR
tube. All NMR spectra were acquired at 258C using a
Varian 600 Inova spectrometer equipped with a shielded
triple-axis gradient HCN probe. A 2D H20C20C10 experi-
ment was recorded for the stereo-specific assignment of
the H20 of the cytidines by observation of (C10, H20) cor-
relations via the relayed H20!C20!C10 connectivity’s.
The 2D spectrum was acquired with 128 scans per incre-
ment as a data matrix of 160(t1) � 614(t2) complex points,
with sweep widths of 9000 (13C) and 8000Hz (1H). A 1D
imino spectrum of junction 6 wt was acquired with 256
scans, a recovery delay of 2 s and an acquisition time of
80ms. Selective water-flip-back pulses were employed
to prevent saturation of the water resonance and attenu-
ation of the imino protons signals. A (15N, 1H) HSQC
pulse scheme was used to acquire a 1D 15N-edited
spectrum of imino protons from 15N-labeled thymidine
nucleotides. A 2D (15N, 1H) HSQC was recorded with 64
scans per increment as a data matrix of 80(t1) � 1120(t2)
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complex points, with sweep widths of 1000Hz (15N) and
16 000Hz (1H).

RESULTS

We describe and demonstrate an efficient and easy-to-use
self-primed PCR method for the enzymatic synthesis of
isotope-labeled dsDNA and/or ssDNA, for which we
introduce and combine three new approaches.

(i) Self-primed PCR followed by asymmetric endonu-
clease double digestion to produce ssDNA
(Figure 1). This method originates from the highly
efficient and straightforward self-primed PCR-based
ESRA technique described by Louis et al. (45) for
the synthesis of isotope-labeled dsDNA. As in
ESRA, long tandem-repeated dsDNA PCR pro-
ducts are synthesized by self-primed PCR in a
number of heating/annealing cycles using Pfu
DNA polymerase. The major modification we
introduce lies in the enzymatic digestion of the
PCR products, which allows for separation of the
PCR products into ssDNAs. Instead of using a

single blunt-end digestion, we generate asymmetrical
dsDNA in two successive digestions. The double-
digested products migrate distinguishably on dena-
turing PAGE. The desired ssDNA fragment can be
used for NMR structural analysis directly after
purification from gel.

(ii) Segmental labeling via DNA-splinted ligation
(Table 1). Segmental labeled ssDNA can efficiently
be produced by T4 DNA ligase mediated ligation of
a labeled to unlabeled strand of DNA assisted by a
complementary DNA splint.

(iii) In vitro synthesis of isotope-labeled dNTPs
(Figure 2). In vitro production of rNTPs allows
for a large variety of labeling patterns including
deuteration (9,12,13,63). We demonstrate that
(stereo-)selective or uniformly 2H/13C/15N-labeled
dNTPs are efficiently obtained by in vitro rNTP
synthesis (9,12,13,63) followed by enzymatic reduc-
tion of the C20 hydroxyl of the produced rNTPs
(65,66).

The whole method is demonstrated on the synthesis of
a 36-nt three-way junction ssDNA (59) (Figure 2C, left)

Figure 1. Schematic of the proposed primer-pair amplification by self-primed PCR, here shown for the 20-nt junction 6 wt-p2 ssDNA sequence (see
below). The two designed primers hybridize to form an amplifiable overlap that is filled-in by Pfu DNA polymerase in the first PCR cycle. The
formed tandem repeat of dsDNA will be elongated in the next stages of cycling by the possibility to shift annealing position of the tandem repeated
dsDNA. After 30 cycles, the long DNA is digested with a blunt-end-generating endonuclease followed by digestion with a sticky-end-generating
endonuclease. The asymmetry in the digested DNA molecules allows for separation of the four individual strands on denaturing PAGE.
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(stereo-)selectively labeled on the cytidine residues and a
39-nt triple-repeat three-way junction ssDNA (60,61)
(Figure 2C, right) that is (stereo-)selectively labeled on
the cytidine and thymidine residues of segment C20–C39.

Design of PCR amplification primers and segments

The PCR primer pairs are designed to contain both target
sequence and endonuclease digestion sites (Figure 1 and
Table 1). It is essential that during PCR amplification
the desired hybridization of primers indeed occurs and
alternative stable structures do not interfere. Table 2 pro-
vides an overview of the predicted folds and stabilities of
the PCR primers and their hybridization products as pre-
dicted by DINAMelt (‘Materials and Methods’ section).
For all four individual primers, neither unfavorable intra-
molecular folds nor unfavorable self-complementary
duplexes are predicted. Although, a non-amplifiable
hybrid is predicted to be more stable than the desired
amplifiable hybrid (�G values inside versus outside

parentheses, Table 2), it is expected (and ultimately exper-
imentally proven) not to block PCR, because both hybrids
will occur in the annealed mixture.
For the segmental labeling of the junction 6 wt ssDNA

(Figure 2C, right), the molecule was divided into junction
6 wt-p1 (19-nt, residue 1–19) and junction 6 wt-p2 (20 nt;
residue 20–29), so that the latter encompasses the two
thymidine residues present in the structurally interesting
junction region. DINAMelt simulations were performed
to assess the potential presence of alternative secondary
structures that could interfere with ligation (Table 2).
The desired hybridization with the DNA splint was
predicted to be most stable.

Synthesis of 13C9/
15N3/

2H(1’,200,3’,4’,5’,500)-dCTP and
13C9/

15N2/
2H(1’,200,3’,4’,5’,500)-dTTP

The in vitro synthesis of 13C9/
15N2/

2H(10,200,30,40,50,500)-UTP
yielded 390 mmol of UTP out of 450 mmol 13C6/

2H7-D-
glucose and 440 mmol 13C4/

15N2-uracil, a yield of 89%.

Figure 2. (A) In vitro (deoxy)ribonucleotide triphosphate synthesis. Labeled starting materials are shown in bold and blue. Labeled rNTPs, here as
intermediate products, are circled. Labeled end-product dNTPs are shown in bold. The enzymes catalyzing different reactions are circled. See text for
detailed description of the reactions. (B) Overview of the in vitro synthesized labeled dNTPs. From left to right: 13C9/

15N2/
2H(10 ,200 ,30 ,40 ,50 ,500)-dUTP,

13C9/
15N3/

2H(10 ,200 ,30 ,40 ,50 ,500)-dCTP and 13C9/
15N2/

2H(10 ,200 ,30 ,40 ,50 ,500)-dTTP. The red asterisks at carbon atoms indicate 13C labels; the blue asterisks at
nitrogen atoms indicate 15N labels. The circled deuteron indicates the introduced stereo-selective deuteration in the sugar moiety during rNTP
reduction. (C) Predicted most stable secondary structures of the three-way junction ssDNA (left) and the triple-repeat three-way junction ssDNA
(junction 6 wt, right). The arrow indicates the chosen segmentation site in junction 6 wt. Blue cytidine residues are 13C9/

15N3/
2H(10 ,200 ,30 ,40 ,50 ,500)-labeled

(see also B) and red thymidine residues are 13C9/
15N2/

2H(10 ,200 ,30 ,40 ,50 ,500). (see B).

Table 1. Overview of used and synthesized ssDNA sequences

Sequence name Nucleotide sequence Utilization

3W-sense 50CGCGTGCAGCGGCTTGCCGGCACTTGTGCTTCTGCACGAATTCCAACCGGCGCGTGCAGCGGCTT-30 PCR
3W-asense 50CCGGTTGGAATTCGTGCAGAAGCACAAGTGCCGGCAAGCCGCTGCACGCGCCGGTTG-30 PCR
Junction 6 wt-

p2-sense
50CAGCTGCCCTTGGGCTGCTCCGCTCGAGACGTCGCCAGCTGCCCTTGG-30 PCR

Junction 6 wt-
p2-asense

50GCGACGTCTCGAGCGGAGCAGCCCAAGGGCAGCTGGCGACGTCTC-30 PCR

Junction 6 wt-p1 50GCGGAGCAGCACCTTGGTG-30 Ligation
Junction 6 wt-p2 50CTGCCCTTGGGCTGCTCCGC-30 Ligation
DNA splint 50CAGCCCAAGGGCAGCACCAAGGTGCTGC-30 Ligation
Three-way junction 50CGTGCAGCGGCTTGCCGGCACTTGTGCTTCTGCACG-30 NMR
Junction 6 wt 50GCGGAGCAGCACCTTGGTGCTGCCCTTGGGCTGCTCCGC-30 NMR

Sequence names shown in bold represent synthesized labeled sequences; all others are unlabeled and obtained from Biolegio (Nijmegen, the
Netherlands). Nucleotides of PCR primers shown in italics represent (a part of) the desired ssDNA sequence to be obtained. Nucleotides depicted
in bold represent (a part of) endonuclease sites and underlined parts represent the desired overlap to be formed during PCR and/or ligation.

PAGE 5 OF 10 Nucleic Acids Research, 2009, Vol. 37, No. 17 e114



The subsequent synthesis of 13C9/
15N3/

2H(10,200,30,40,50,500)-
CTP, out of 60 mmol UTP, yielded 59 mmol of CTP.
The reduction of 60 mmol UTP and 59 mmol CTP by
RTPR led to 58 mmol dUTP and 56 mmol of dCTP,

yields of 96.5% and 95%. The dephosphorylation of
dUTP proceeded for over 99%, the subsequent methyla-
tion of dUMP to dTMP for 93%, and the phosphoryla-
tion to dTTP for 98%, yielding 52 mmol of dTTP. The
overall yields for the synthesis of dTTP and dCTP from
glucose and uracil were 77% and 83%.

Synthesis of selective and/or segmentally labeled ssDNA

In step 1 of the self-primed PCR protocol (Materials
and Methods section and Figure 1), PCRs with the
primer pairs 3W-sense+3W-asense and junction 6 wt-
p2-sense+ junction 6 wt-p2-asense, yielded primarily
high molecular weight DNA (>>10 kb; the main band is
located near the loading slot in Figure 3A and B, lanes 1).
The step 1 PCR-product of the junction 6 wt DNA
(Figure 3B, lane 1) was substantially more smeared out
than the step 1 PCR-product of the three-way junction
DNA (Figure 3A, lane 1). The subsequent PCRs in step
2 yielded for both constructs even more high molecular
weight DNAs, as evident from the reduced smearing
(Figure 3A and B, lanes 1 and 2); note again that the
main band of PCR products is located near the loading
slot, indicating high molecular weight DNAs (Figure 3A
and B, lanes 2).

This main band disappeared completely after blunt-
end-generating endonuclease digestion and single bands
below the 100 bp marker were observed (Figure 3A and
B, lanes 3). The latter could be attributed to the expected
50 bp (3.75mg; 0.12 mmol) and 35 bp (2.5mg; 0.11mmol)
digestion products for the three-way junction and junction

Figure 3. Progress of the PCR amplifications of three-way junction DNA and junction 6 wt DNA on 0.8% agarose. (A) Lanes 1–3 contain the following
samples: (1) 10 ml of step 1 PCR mix of three-way junction DNA, (2) 10 ml of step 2 PCR mix, (3) 10 ml Bsh1236I digestion mixture. (B) Lanes 1–3 contain
the following samples: (1) 10 ml of step 1 PCR mix of junction 6 wt DNA, (2) 10 ml of step 2 PCR mix, (3) 10 ml PvuII digestion mixture. Lanes M contain
5ml of gene-ruler DNA Ladder Mix (Fermentas). Bands are visualized with ethidiumbromide (Sigma-Aldrich, Zwijndrecht, The Netherlands).

Table 2. Predicted hybridization and folding stabilities of ssDNA

sequences

DNA strand(s) Intramolecular
(�G)

Duplex
(�G)

Hybrid
(�G)

3W-sense �11.7 �18.5 NA
3W-asense �7.2 �17.6 NA
3W-sense+3W-asense NA NA –30.8� (–67.4)
Junction 6 wt-p2-sense �5.8 �13.8 NA
Junction 6 wt-p2-asense �6.3 �17.4 NA
Junction 6 wt-p2-sense+
Junction 6 wt-p2-asense

NA NA �29.1� (�47.9)

Junction 6 wt-p1 �3.0 �6.0 NA
Junction 6 wt-p2 �3.1 �9.1 NA
DNA splint �7.4 �19.3 NA
DNA splint+ junction
6 wt-p1

NA NA �18.0

DNA splint+ junction
6 wt-p2

NA NA �17.8

DNA splint+ junction
6 wt

NA NA �39.1

�G values are in kcal/mol at 378C. Simulation conditions are 10mM
NaCl, 2mM Mg2+ and 0.1 mM strand concentration for simulations
with PCR primers and 10mM NaCl, 10mM Mg2+ and 10 mM strand
concentration for simulations concerning ligation. �G values with an
asterisk represent the stability of the desired hybridization between the
parts of the PCR primer pairs, whereas the �G value in parentheses repre-
sents the stability of a non-amplifiable hybrid between the primer pairs.
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6 wt, respectively. After digestion of the 50 bp three-way
junction dsDNA fragments with EcoRI and 35 bp junction
6 wt-p2 dsDNA fragments with XhoI, distinguishable
bands were observed on a 20% denaturing PAGE
(Figure 4A and B, lanes 2 and 1, respectively). From
these bands, excised from a preparative denaturing gel,
DNA was purified yielding 675 mg (0.06 mmol) three-way
junction ssDNA and 450mg (0.073 mmol) 20-nt junction 6
wt-p2 ssDNA. Circa 43% (54% for the three-way
junction and 32% of junction 6 wt) of the 7.2mmol of
input labeled dCTPs were incorporated into the final
PCR product (50 and 35 bp products, see above).
Overall �10% of the labeled dCTPs become incorporated
in the purified target ssDNAs (�10% for the three-way
junction and �9% for junction 6 wt).

Ligation of the labeled 20-nt junction 6 wt-p2 to the
unlabeled 19-nt junction 6 wt-p1 assisted by the 28-nt
DNA splint into 39-nt junction 6 wt ssDNA, resulted in
a yield of �95% (visual estimation from gel; Figure 4C,
lane 4; UV of final pure product showed that the actual

yield was 85%). After purification, 750 mg (0.062 mmol) of
segmental selective labeled junction 6 wt ssDNA was
obtained.

NMR experiments

Thanks to the stereo-selective deuteration of the H200 in
the three-way junction ssDNA, the stereo-specific reso-
nance assignment of H20 can easily be obtained via
H20(C20)C10 correlation (Figure 5A) in combination with
H20C20 correlation (Figure 5B). The labeling of dT resi-
dues in segment C20–C39 of junction 6 wt ssDNA is illu-
strated in Figures 5C and D. Comparison of the 1D traces
in Figure 5C shows that only labeled dT imino resonances
(of A:T base pairs) remain upon 15N-filtering. In the 2D
HSQC (Figure 5D) only two dT imino cross-peaks are
expected, given the secondary structure and the segmental
labeling (Figure 2C). We observe one strong cross peak,
which can be attributed to T35 in the lower stem.
However, instead of the expected single cross-peak
for T32, two (weaker) cross-peaks are seen, indicating
multiple conformations at the junction.

DISCUSSION

We have shown that self-primed PCR of DNA combined
with asymmetrical double digestion of the PCR product
and in vitro dNTP synthesis forms an efficient and
straightforward method for obtaining NMR amounts of
(stereo-)selective and/or segmental 2H/13C/15N-labeled
ssDNA. A host of labeling patterns is possible, thereby
making NMR structural studies on (larger) ssDNA
more accessible. With this labeling, NMR spectral
crowding is reduced, specific resonances can be eliminated
or selected and line widths reduced by deuteration.

Synthesis of selective and/or segmentally labeled
ssDNA and dNTPs

The amplification of the DNA primers by means of
self-primed PCR followed by double digestion requires
attention to their design. The sequences should not
become trapped in duplexes or intramolecular structures
blocking PCR. When DINAMelt predicts such alternative
stable structures, the spacer fragment can be shortened,
lengthened or altered. The role of the spacer is essentially
only to facilitate efficient restriction endonuclease digestion
in the second digestion step and is of no further interest.
Furthermore, potentially any restriction site can be

chosen to flank the DNA fragment of interest. Amongst
the wide variety of available enzymes, it is likely that a
combination can be found that generates digested ends
exactly matching the 50-end- and 30-end of the DNA frag-
ment of interest. Our method is based on the difference
in migration distance on denaturing PAGE of the asym-
metric DNA fragments that are generated thanks to the
sticky-end restriction endonuclease digestion. In both
described cases, the asymmetry comprises 50-recessing
ends of 4-nt. For ssDNAs up to 50-nt, this 4-nt overhang
is sufficient for separation on preparative denaturing
polyacrylamide gels. Larger ssDNAs can be obtained
by applying the first endonuclease digestion with a

Figure 4. Digestion products generated after successive endonuclease
digestion of blunt dsDNA fragments. (A) Lanes 1–4 contain the fol-
lowing samples: (1) 1 mg of the 50 bp Bsh1236I digest of the long
repeated DNA, (2) 2.5 mg of EcoRI digested 50 bp three-way junction
dsDNA. (3) 1mg of 36-nt 3way-junction ssDNA (4) 1 mg of the com-
plementary 40-nt sequence. (B) Lanes 1–5 contain the following sam-
ples: (1) 2 mg XhoI digested 35 bp junction 6 wt-p2 dsDNA, (2) 1 mg of
purified junction 6 wt-p2 ssDNA, (3) 1 mg of the complementary 24-nt
fragment, (4) 1mg of 15 nt spacer fragment, (5) 1 mg 11-nt spacer frag-
ment. (C) Course of the segmental labeling of junction 6 wt ssDNA.
Lanes 1–5 contain the following samples: (1) 1.25 mg of junction 6 wt-
p1 ssDNA, (2) 1.25mg of labeled junction 6 wt-p2 ssDNA, (3) 2.2 mg of
28-nt DNA splint, (4) 28-nt DNA-splinted ligation of junction 6 wt-p1
ssDNA to junction 6 wt-p2 ssDNA, side-products were not observed
after ligation, (5) 1.5 mg of purified 39-nt junction 6 wt ssDNA. Bands
are visualized with Stains-All (Acros Organics, Geel, Belgium).
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30-recessing-end generating endonuclease. With the result-
ing 8-nt difference, ssDNA molecules up to 75-nt can be
separated.
Finally, 54% and 32% of the labeled dCTPs are incor-

porated into the final PCR product for the three-way junc-
tion and junction 6 wt-p2. These yields are comparable to
the�50% of Louis et al. (45). Most of the minor loss could
be due to instability of dNTPs over the extended heating/
cooling cycles (60–958C) in the PCR. For instance, deami-
nation of dCTP leading to dUTP may occur, as well as
aspecific dephosphorylation to dCMP (67). Finally, the
in vitro synthesis of dCTP and dTTP is not limiting as
they are produced with �80% yields from their rNTP
counterparts. In our experience these yields are attained
when applying standard optimization parameters for
PCR, such as annealing temperature, Mg2+-concentra-
tion, etc. To improve yields (e.g. the 32%) most effective

would be to increase the number of PCR cycles. In the
final ssDNAs for both the three-way junction and junc-
tion 6 wt-p2 �10% of the labeled dCTP is incorporated.
Part of the loss in the last step (compare with 54% and
32%) is due to the fact that the target ssDNAs contains
only 38% and 45% of the cytidines present in the
complete PCR repeat (see e.g. Table 1); further losses are
due to a combination of incomplete digestion and purifi-
cation steps.

A high yield (�95%) was obtained in the splinted
ligation by T4 DNA ligase of the two DNA segments
into the junction 6 wt ssDNA. We previously observed
that (DNA-)splinted ligation of RNA segments using
T4 DNA ligase is in general quite robust and leads to
high yields (27). Nevertheless, it is crucial for successful
(DNA-)splinted ligation of two ssDNA segments to verify
optimal formation of the desired hybridization product.

Figure 5. NMR spectra of the prepared labeled ssDNAs. (A) (C20, H20) and (B) (C10, H20) region of a 2D H20C20C10 spectrum of the selective
13C9/

15N3/
2H(10 ,200 ,30 ,40 ,50 ,500)-dC-labeled three-way junction; the spectrum is used for stereo-specific assignment of the H20 resonances in the ribose of the

labeled dC residues. (C) 1D proton spectra of the imino protons of segmental (C20–C39) 13C9/
15N2/

2H(10 ,200 ,30 ,40 ,50 ,500)-dT and 13C9/
15N3/

2H(10 ,200 ,30 ,40 ,50 ,500)-
dC-labeled junction 6 wt with (top) and without (bottom) filter for 15N-editing. (D) Imino region of a 2D (15N, 1H) HSQC displaying the signals of
15N-labeled thymidines of the segmental labeled junction 6 wt.
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This information can be obtained from DINAMelt
simulations. Finally, our segmental labeling method can
be extended to more than two segments without signifi-
cant loss in ligation yield, e.g. by designing two nicks on a
hybrid of three segments with a DNA splint or by using
two DNA splints and three segments in one ligation
reaction.

CONCLUSION

We propose and show that self-primed PCR of DNA
combined with asymmetrical double digestion of the
PCR product and in vitro dNTP synthesis forms an effi-
cient and straightforward method for obtaining
NMR amounts of (stereo-)selective and/or segmental
2H/13C/15N-labeled ssDNA.
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ACKNOWLEDGEMENTS

Funding within the context of the 6th framework program
of the EU, 6th framework STREP project FSG-V-RNA
is gratefully acknowledged.

FUNDING

Funding for open access charge: Department of Bio-
physical Chemistry of the Radboud University Nijmegen,
The Netherlands.

REFERENCES

1. Sattler,M., Schleucher,J. and Griesinger,C. (1999) Heteronuclear
multidimensional NMR experiments for the structure determination
of proteins in solution employing pulsed field gradients. Prog.
NMR Spec., 34, 93–158.

2. Tugarinov,V., Hwang,P.M. and Kay,L.E. (2004) Nuclear magnetic
resonance spectroscopy of high-molecular-weight proteins. Annu.
Rev. Biochem., 73, 107–146.

3. Kontaxis,G., Delaglio,F. and Bax,A. (2005) Molecular fragment
replacement approach to protein structure determination by
chemical shift and dipolar homology database mining. Methods
Enzymol., 394, 42–49.

4. Prestegard,J.H., Mayer,K.L., Valafar,H. and Benison,G.C. (2005)
Determination of protein backbone structures from residual
dipolar couplings. Methods Enzymol., 394, 175–185.

5. Korzhnev,D.M. and Kay,L.E. (2008) Probing invisible, low-
populated states of protein molecules by relaxation dispersion
NMR spectroscopy: An application to protein folding. Acc. Chem.
Res., 41, 442–451.

6. Batey,R.T., Inada,M., Kujawinski,E., Puglisi,J.D. and
Williamson,J.R. (1992) Preparation of isotopically labeled ribonu-
cleotides for multidimensional NMR-spectroscopy of RNA. Nucleic
Acids Res., 20, 4515–4523.

7. Nikonowicz,E.P., Sirr,A., Legault,P., Jucker,F.M., Baer,L.M. and
Pardi,A. (1992) Preparation of 13C and 15N labelled RNAs for
heteronuclear multi-dimensional NMR studies. Nucleic Acids Res.,
20, 4507–4513.

8. Foldesi,A., Yamakage,S.I., Nilsson,F.P., Maltseva,T.V. and
Chattopadhyaya,J. (1996) The use of non-uniform deuterium
labelling [‘NMR-window’] to study the NMR structure of a 21mer
RNA hairpin. Nucleic Acids Res., 24, 1187–1194.

9. Tolbert,T.J. and Williamson,J.R. (1997) Preparation of specifically
deuterated and 13C-labeled RNA for NMR studies using enzymatic
synthesis. J. Am. Chem. Soc., 119, 12100–12108.

10. Wijmenga,S.S., Heus,H.A., Leeuw,H.A.E., Hoppe,H.,
Vandergraaf,M. and Hilbers,C.W. (1995) Sequential backbone
assignment of uniformly 13C-labeled RNAs by a 2-dimensional
P(CC)H-TOCSY triple-resonance NMR experiment. J. Biomol.
NMR, 5, 82–86.

11. Wijmenga,S.S. and van Buuren,B.N.M. (1998) The use of NMR
methods for conformational studies of nucleic acids. Prog. NMR
Spec., 32, 287–387.

12. Cromsigt,J.A.M.T.C., Schleucher,J., Kidd-Ljunggren,K. and
Wijmenga,S.S. (2000) Synthesis of specifically deuterated
nucleotides for NMR studies on RNA. J. Biomol. Struct. Dyn.,
211–219.

13. Cromsigt,J., van Buuren,B., Schleucher,J. and Wijmenga,S. (2001)
Resonance assignment and structure determination for RNA.
Methods Enzymol., 338, 371–399.

14. Nikonowicz,E.P. (2001) Preparation and use of 2H-labeled RNA
oligonucleotides in nuclear magnetic resonance studies. Methods
Enzymol., 338, 320–341.

15. Cromsigt,J., Schleucher,J., Gustafsson,T., Kihlberg,J. and
Wijmenga,S. (2002) Preparation of partially 2H/13C-labelled RNA
for NMR studies. Stereo-specific deuteration of the H500 in
nucleotides. Nucleic Acids Res., 30, 1639–1645.

16. Kim,I., Lukavsky,P.J. and Puglisi,J.D. (2002) NMR study of
100 kDa HCV IRES RNA using segmental isotope labeling. J. Am.
Chem. Soc., 124, 9338–9339.

17. Flodell,S., Schleucher,J., Cromsigt,J., Ippel,H., Kidd-Ljunggren,K.
and Wijmenga,S. (2002) The apical stem-loop of the hepatitis B
virus encapsidation signal folds into a stable tri-loop with two
underlying pyrimidine bulges. Nucleic Acids Res., 30, 4803–4811.

18. Furtig,B., Richter,C., Wohnert,J. and Schwalbe,H. (2003) NMR
spectroscopy of RNA. Chembiochem, 4, 936–962.

19. Latham,M.R., Brown,D.J., McCallum,S.A. and Pardi,A. (2005)
NMR methods for studying the structure and dynamics of RNA.
Chembiochem, 6, 1492–1505.

20. Al-Hashimi,H.M. (2005) Dynamics-based amplification of RNA
function and its characterization by using NMR spectroscopy.
Chembiochem, 6, 1506–1519.

21. Flinders,J. and Dieckmann,T. (2006) NMR spectroscopy of
ribonucleic acids. Prog. NMR Spec., 48, 137–159.

22. Tzakos,A.G., Grace,C.R.R., Lukavsky,P.J. and Riek,R. (2006)
NMR techniques for very large proteins and RNAs in solution.
Annu. Rev. Biophys. Biomol. Struct., 35, 319–342.

23. Getz,M., Sun,X.Y., Casiano-Negroni,A., Zhang,Q. and
Al-Hashimi,H.M. (2007) NMR studies of RNA dynamics and
structural plasticity using NMR residual dipolar couplings.
Biopolymers, 86, 384–402.

24. Bailor,M.H., Musselman,C., Hansen,A.L., Gulati,K., Patel,D.J. and
Al-Hashimi,H.M. (2007) Characterizing the relative orientation and
dynamics of RNA A-form helices using NMR residual dipolar
couplings. Nature Protocols, 2, 1536–1546.

25. Ponchon,L. and Dardel,F. (2007) Recombinant RNA technology:
the tRNA scaffold. Nature Methods, 4, 571–576.

26. Dayie,K.T. (2008) Key labeling technologies to tackle sizeable
problems in RNA structural biology. Int. J. Mol. Sci., 9, 1214–1240.

27. Nelissen,F.H.T., van Gammeren,A.J., Tessari,M., Girard,F.C.,
Heus,H.A. and Wijmenga,S.S. (2008) Multiple segmental and
selective isotope labeling of large RNA for NMR structural studies.
Nucleic Acids Res., 36, e89.

28. Shajani,Z. and Varani,G. (2007) NMR studies of dynamics in RNA
and DNA by 13C relaxation. Biopolymers, 86, 348–359.

29. Kojima,C., Ono,A., Kainosho,M. and James,T.L. (1998) DNA
duplex dynamics: NMR relaxation studies of a decamer with
uniformly 13C-labeled purine nucleotides. J. Magn. Reson., 135,
310–333.

30. Foldesi,A., Maltseva,T.V. and Chattopadhyaya,J. (1999) The
application of ‘‘the Uppsala NMR-window’’ concept for
conformational analysis of large DNA & RNA by high-field NMR
spectroscopy. Nucleosides and Nucleotides, 18, 1599–1600.

31. Maltseva,T.V., Foldesi,A. and Chattopadhyaya,J. (1999)
Measurement of the deuterium relaxation times in double-labeled
(13C/2H) thymidine and 20-deoxyadenosine and in the selectively

PAGE 9 OF 10 Nucleic Acids Research, 2009, Vol. 37, No. 17 e114



labeled DNA duplex 5’d(1C2G3A4T5T6A7A8T9C10G)2
30. Magn.

Reson. Chem., 37, 203–213.
32. Kojima,C., Ono,A. and Kainosho,M. (2000) Studies of

physicochemical properties of N-H���N hydrogen bonds in DNA,
using selective 15N-labeling and direct 15N 1D NMR. J. Biomol.
NMR, 18, 269–277.

33. van Buuren,B.N.M., Overmars,F.J.J., Ippel,J.H., Altona,C. and
Wijmenga,S.S. (2000) Solution structure of a DNA three-way
junction containing two unpaired thymidine bases. Identification
of sequence features that decide conformer selection. J. Mol. Biol.,
304, 371–383.

34. Kojima,C., Ono,A.M., Ono,A. and Kainosho,M. (2001) Solid-phase
synthesis of selectively labeled DNA: Applications for multidimen-
sional nuclear magnetic resonance spectroscopy. Methods Enzymol.,
338, 261–283.

35. van Buuren,B.N.M., Hermann,T., Wijmenga,S.S. and Westhof,E.
(2002) Brownian-dynamics simulations of metal-ion binding to
four-way junctions. Nucleic Acids Res., 30, 507–514.

36. Wu,Z.G., Delaglio,F., Tjandra,N., Zhurkin,V.B. and Bax,A. (2003)
Overall structure and sugar dynamics of a DNA dodecamer from
homo and heteronuclear dipolar couplings and 31P chemical shift
anisotropy. J. Biomol. NMR, 26, 297–315.

37. van Buuren,B.N.M., Schleucher,J., Wittmann,V., Griesinger,C.,
Schwalbe,H. and Wijmenga,S.S. (2004) NMR spectroscopic
determination of the solution structure of a branched nucleic acid
from residual dipolar couplings by using isotopically labeled
nucleotides. Angew. Chem. Int. Edit., 43, 187–192.

38. Fernandez,C., Szyperski,T., Ono,A., Iwai,H., Tate,S., Kainosho,M.
and Wuthrich,K. (1998) NMR with 13C, 15N-doubly-labeled DNA:
The Antennapedia homeodomain complex with a 14-mer DNA
duplex. J. Biomol. NMR, 12, 25–37.

39. Allen,M., Varani,L. and Varani,G. (2001) Nuclear magnetic
resonance methods to study structure and dynamics of RNA–
protein complexes. Methods Enzymol., 339, 357–376.

40. Wu,H.H., Finger,L.D. and Feigon,J. (2005) Structure determination
of protein/RNA complexes by NMR. Methods Enzymol., 394,
525–545.

41. Mackereth,C.D., Simon,B. and Sattler,M. (2005) Extending the size
of protein-RNA complexes studied by nuclear magnetic resonance
spectroscopy. Chembiochem, 6, 1578–1582.

42. Williamson,J.R. and Boxer,S.G. (1988) Synthesis of a thymidine
phosphoramidite labeled with 13C at C6 – relaxation studies of the
loop region in a 13C-labeled DNA hairpin. Nucleic Acids Res., 16,
1529–1540.

43. Kellenbach,E.R., Remerowski,M.L., Eib,D., Boelens,R.,
Vandermarel,G.A., Vandenelst,H., Vanboom,J.H. and Kaptein,R.
(1992) Synthesis of isotope labeled oligonucleotides and their use in
an NMR-study of a protein–DNA complex. Nucleic Acids Res., 20,
653–657.

44. Ono,A., Tate,S., Ishido,Y. and Kainosho,M. (1994) Preparation
and heteronuclear 2D NMR-spectroscopy of a DNA dodecamer
containing a thymidine residue with a uniformly 13C-labeled
deoxyribose ring. J. Biomol. NMR, 4, 581–586.

45. Louis,J.M., Martin,R.G., Clore,G.M. and Gronenborn,A.M. (1998)
Preparation of uniformly isotope-labeled DNA oligonucleotides
for NMR spectroscopy. J. Biol. Chem., 273, 2374–2378.

46. Ramanathan,S., Rao,B.J. and Chary,K.V.R. (2002) A novel
approach for uniform 13C and 15N labeling of DNA for NMR
studies. Biochem. Biophys. Res. Comm., 290, 928–932.

47. Zimmer,D.P. and Crothers,D.M. (1995) NMR of enzymatically
synthesized uniformly 13C15N-labeled DNA oligonucleotides.
Proc. Natl Acad. Sci. USA, 92, 3091–3095.

48. Smith,D.E., Su,J.Y. and Jucker,F.M. (1997) Efficient enzymatic
synthesis of 13C,15N-labeled DNA for NMR studies. J. Biomol.
NMR, 10, 245–253.

49. Masse,J.E., Bortmann,P., Dieckmann,T. and Feigon,J. (1998)
Simple, efficient protocol for enzymatic synthesis of uniformly
13C,15N-labeled DNA for heteronuclear NMR studies. Nucleic
Acids Res., 26, 2618–2624.

50. Mer,G. and Chazin,W.J. (1998) Enzymatic synthesis of region-
specific isotope-labeled DNA oligomers for NMR analysis.
J. Am. Chem. Soc., 120, 607–608.

51. Rudert,W.A. and Trucco,M. (1990) DNA polymers of
protein-binding sequences generated by PCR. Nucleic Acids Res.,
18, 6460–6460.

52. White,M.J., Fristensky,B.W. and Thompson,W.F. (1991)
Concatemer chain-reaction—a Taq DNA Polymerase-mediated
mechanism for generating long tandemly repetitive DNA-sequences.
Anal. Biochem., 199, 184–190.

53. Chen,X., Mariappan,S.V.S., Kelley,J.J., Bushweller,J.H.,
Bradbury,E.M. and Gupta,G. (1998) A PCR-based method for
uniform 13C/15N labeling of long DNA oligomers. FEBS Lett., 436,
372–376.

54. Yan,J.L. and Bushweller,J.H. (2001) An optimized PCR-based
procedure for production of 13C/15N-labeled DNA. Biochem.
Biophys. Res. Comm., 284, 295–300.

55. Werner,M.H., Gupta,V., Lambert,L.J. and Nagata,T. (2001)
Uniform 13C/15N-labeling of DNA by tandem repeat amplification.
Methods Enzymol., 338, 283–304.

56. Rene,B., Masliah,G., Zargarian,L., Mauffret,O. and Fermandjian,S.
(2006) General method of preparation of uniformly 13C, 15N-labeled
DNA fragments for NMR analysis of DNA structures. J. Biomol.
NMR, 36, 137–146.

57. Muecke,M., Samuels,M., Davey,M. and Jeruzalmi,D. (2008)
Preparation of multimilligram quantities of large, linear DNA
molecules for structural studies. Structure, 16, 837–841.

58. Hoard,D.E. and Ott,D.G. (1965) Conversion of mono- and
oligodeoxyribonucleotides to 50-triphosphates. J. Am. Chem. Soc.,
87, 1785–1788.

59. Wu,B., Girard,F., van Buuren,B., Schleucher,J., Tessari,M. and
Wijmenga,S. (2004) Global structure of a DNA three-way junction
by solution NMR: towards prediction of 3H fold. Nucleic Acids
Res., 32, 3228–3239.

60. Panigrahi,G.B., Lau,R., Montgomery,S.E., Leonard,M.R. and
Pearson,C.E. (2005) Slipped (CTG)�(CAG) repeats can be correctly
repaired, escape repair or undergo error-prone repair. Nat. Struct.
Mol. Biol., 12, 654–662.

61. Panigrahi,G.B., Cleary,J.D. and Pearson,C.E. (2002) In vitro
(CTG)�(CAG) expansions and deletions by human cell extracts.
J. Biol. Chem., 277, 13926–13934.

62. Markham,N.R. and Zuker,M. (2005) DINAMelt web server
for nucleic acid melting prediction. Nucleic Acids Res., 33,
W577–W581.

63. Tolbert,T.J. and Williamson,J.R. (1996) Preparation of specifically
deuterated RNA for NMR studies using a combination of chemical
and enzymatic synthesis. J. Am. Chem. Soc., 118, 7929–7940.

64. Bearne,S.L., Hekmat,O. and MacDonnell,J.E. (2001) Inhibition of
Escherichia coli CTP synthase by glutamate gamma-semialdehyde
and the role of the allosteric effector GTP in glutamine hydrolysis.
Biochem. J., 356, 223–232.

65. Booker,S. and Stubbe,J. (1993) Cloning, sequencing, and expression
of the adenosylcobalamin-dependent ribonucleotide reductase from
Lactobacillus leichmannii. Proc. Natl Acad. Sci. USA, 90,
8352–8356.

66. MacDonald,D. and Lu,P.Z. (2002) Determination of DNA
structure in solution: enzymatic deuteration of the ribose 20 carbon.
J. Am. Chem. Soc., 124, 9722–9723.

67. Dabrowski,S. and Ahring,B.K. (2003) Cloning, expression, and
purification of the His6-tagged hyper-thermostable dUTPase from
Pyrococcus woesei in Escherichia coli: application in PCR.
Protein Expr. Purif., 31, 72–78.

68. Changchien,L.M., Garibian,A., Frasca,V., Lobo,A., Maley,G.F.
and Maley,F. (2000) High-level expression of Escherichia coli and
Bacillus subtilis thymidylate synthases. Protein Expr. Purif., 19,
265–270.

69. Mikoulinskaia,G.V., Zimin,A.A., Feofanov,S.A. and
Miroshnikov,A.I. (2004) Identification, cloning, and expression
of bacteriophage T5 dnk gene encoding a broad specificity
deoxyribonucleoside monophosphate kinase (EC 2.7.4.13).
Protein Expr. Purif., 33, 166–175.

70. Dabrowski,S. and Kur,J. (1998) Cloning and expression in
Escherichia coli of the recombinant His-tagged DNA polymerases
from Pyrococcus furiosus and Pyrococcus woesei. Protein Expr.
Purif., 14, 131–138.

e114 Nucleic Acids Research, 2009, Vol. 37, No. 17 PAGE 10 OF 10


